FREEDOM, added back the optimization loop code in `learner_server.py`

Ran experiment with pushcube env from maniskill. The learning seem to work.

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
This commit is contained in:
Michel Aractingi 2025-01-28 17:25:49 +00:00
parent 322a78a378
commit 36576c958f
3 changed files with 85 additions and 80 deletions

View File

@ -259,7 +259,7 @@ class Logger:
if k == custom_step_key:
continue
if self._wandb_custom_step_key is not None:
if self._wandb_custom_step_key is not None and custom_step_key is not None:
# NOTE: Log the metric with the custom step key.
value_custom_step_key = d[custom_step_key]
self._wandb.log({f"{mode}/{k}": v, self._wandb_custom_step_key: value_custom_step_key})

View File

@ -82,7 +82,7 @@ policy:
temperature_lr: 3e-4
# critic_target_update_weight: 0.005
critic_target_update_weight: 0.01
utd_ratio: 1
utd_ratio: 2
# # Loss coefficients.

View File

@ -116,6 +116,7 @@ def learner_push_parameters(
params_bytes = buf.getvalue()
# Push them to the Actors "SendParameters" method
logging.info(f"[LEARNER] Pushing parameters to the Actor")
response = actor_stub.SendParameters(hilserl_pb2.Parameters(parameter_bytes=params_bytes))
time.sleep(seconds_between_pushes)
@ -144,7 +145,7 @@ def add_actor_information(
# are divided by 200. So we need to have a single thread that does all the work.
start = time.time()
optimization_step = 0
timeout_for_adding_transitions = 1
while True:
time_for_adding_transitions = time.time()
while not transition_queue.empty():
@ -153,99 +154,103 @@ def add_actor_information(
for transition in transition_list:
transition = move_transition_to_device(transition, device=device)
replay_buffer.add(**transition)
# logging.info(f"[LEARNER] size of replay buffer: {len(replay_buffer)}")
# logging.info(f"[LEARNER] size of transition queues: {transition_queue.qsize()}")
# logging.info(f"[LEARNER] size of replay buffer: {len(replay_buffer)}")
# logging.info(f"[LEARNER] size of transition queues: {transition }")
if len(replay_buffer) > cfg.training.online_step_before_learning:
logging.info(f"[LEARNER] size of replay buffer: {len(replay_buffer)}")
logging.info(f"[LEARNER] size of transition queues: {transition_queue.qsize()}")
while not interaction_message_queue.empty():
interaction_message = interaction_message_queue.get()
logger.log_dict(interaction_message,mode="train",custom_step_key="interaction_step")
logging.info(f"[LEARNER] size of interaction message queue: {interaction_message_queue.qsize()}")
# logging.info(f"[LEARNER] size of interaction message queue: {interaction_message_queue.qsize()}")
# if len(replay_buffer.memory) < cfg.training.online_step_before_learning:
# continue
if len(replay_buffer) < cfg.training.online_step_before_learning:
continue
time_for_one_optimization_step = time.time()
for _ in range(cfg.policy.utd_ratio - 1):
batch = replay_buffer.sample(batch_size)
# for _ in range(cfg.policy.utd_ratio - 1):
if cfg.dataset_repo_id is not None:
batch_offline = offline_replay_buffer.sample(batch_size)
batch = concatenate_batch_transitions(batch, batch_offline)
# batch = replay_buffer.sample(batch_size)
# if cfg.dataset_repo_id is not None:
# batch_offline = offline_replay_buffer.sample(batch_size)
# batch = concatenate_batch_transitions(batch, batch_offline)
actions = batch["action"]
rewards = batch["reward"]
observations = batch["state"]
next_observations = batch["next_state"]
done = batch["done"]
# actions = batch["action"]
# rewards = batch["reward"]
# observations = batch["state"]
# next_observations = batch["next_state"]
# done = batch["done"]
with policy_lock:
loss_critic = policy.compute_loss_critic(
observations=observations,
actions=actions,
rewards=rewards,
next_observations=next_observations,
done=done,
)
optimizers["critic"].zero_grad()
loss_critic.backward()
optimizers["critic"].step()
# with policy_lock:
# loss_critic = policy.compute_loss_critic(
# observations=observations,
# actions=actions,
# rewards=rewards,
# next_observations=next_observations,
# done=done,
# )
# optimizers["critic"].zero_grad()
# loss_critic.backward()
# optimizers["critic"].step()
batch = replay_buffer.sample(batch_size)
# batch = replay_buffer.sample(batch_size)
if cfg.dataset_repo_id is not None:
batch_offline = offline_replay_buffer.sample(batch_size)
batch = concatenate_batch_transitions(
left_batch_transitions=batch, right_batch_transition=batch_offline
)
# if cfg.dataset_repo_id is not None:
# batch_offline = offline_replay_buffer.sample(batch_size)
# batch = concatenate_batch_transitions(
# left_batch_transitions=batch, right_batch_transition=batch_offline
# )
actions = batch["action"]
rewards = batch["reward"]
observations = batch["state"]
next_observations = batch["next_state"]
done = batch["done"]
# actions = batch["action"]
# rewards = batch["reward"]
# observations = batch["state"]
# next_observations = batch["next_state"]
# done = batch["done"]
with policy_lock:
loss_critic = policy.compute_loss_critic(
observations=observations,
actions=actions,
rewards=rewards,
next_observations=next_observations,
done=done,
)
optimizers["critic"].zero_grad()
loss_critic.backward()
optimizers["critic"].step()
# with policy_lock:
# loss_critic = policy.compute_loss_critic(
# observations=observations,
# actions=actions,
# rewards=rewards,
# next_observations=next_observations,
# done=done,
# )
# optimizers["critic"].zero_grad()
# loss_critic.backward()
# optimizers["critic"].step()
training_infos = {}
training_infos["loss_critic"] = loss_critic.item()
# training_infos = {}
# training_infos["loss_critic"] = loss_critic.item()
# if optimization_step % cfg.training.policy_update_freq == 0:
# for _ in range(cfg.training.policy_update_freq):
# with policy_lock:
# loss_actor = policy.compute_loss_actor(observations=observations)
if optimization_step % cfg.training.policy_update_freq == 0:
for _ in range(cfg.training.policy_update_freq):
with policy_lock:
loss_actor = policy.compute_loss_actor(observations=observations)
# optimizers["actor"].zero_grad()
# loss_actor.backward()
# optimizers["actor"].step()
optimizers["actor"].zero_grad()
loss_actor.backward()
optimizers["actor"].step()
# training_infos["loss_actor"] = loss_actor.item()
training_infos["loss_actor"] = loss_actor.item()
# loss_temperature = policy.compute_loss_temperature(observations=observations)
# optimizers["temperature"].zero_grad()
# loss_temperature.backward()
# optimizers["temperature"].step()
loss_temperature = policy.compute_loss_temperature(observations=observations)
optimizers["temperature"].zero_grad()
loss_temperature.backward()
optimizers["temperature"].step()
# training_infos["loss_temperature"] = loss_temperature.item()
training_infos["loss_temperature"] = loss_temperature.item()
# if optimization_step % cfg.training.log_freq == 0:
# logger.log_dict(training_infos, step=optimization_step, mode="train")
if optimization_step % cfg.training.log_freq == 0:
logger.log_dict(training_infos, step=optimization_step, mode="train")
# policy.update_target_networks()
# optimization_step += 1
# time_for_one_optimization_step = time.time() - time_for_one_optimization_step
policy.update_target_networks()
optimization_step += 1
time_for_one_optimization_step = time.time() - time_for_one_optimization_step
# logger.log_dict({"[LEARNER] Time optimization step":time_for_one_optimization_step}, step=optimization_step, mode="train")
# time_for_one_optimization_step = time.time()
logging.info(f"[LEARNER] Time for one optimization step: {time_for_one_optimization_step}")
logger.log_dict({"Time optimization step":time_for_one_optimization_step}, step=optimization_step, mode="train")
def make_optimizers_and_scheduler(cfg, policy):
@ -360,13 +365,13 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
)
transition_thread.start()
# param_push_thread = Thread(
# target=learner_push_parameters,
# args=(policy, policy_lock, "127.0.0.1", 50052, 15),
# # args=("127.0.0.1", 50052),
# daemon=True,
# )
# param_push_thread.start()
param_push_thread = Thread(
target=learner_push_parameters,
args=(policy, policy_lock, "127.0.0.1", 50051, 15),
# args=("127.0.0.1", 50052),
daemon=True,
)
param_push_thread.start()
# interaction_thread = Thread(
# target=add_message_interaction_to_wandb,