Fix unit tests

This commit is contained in:
Remi Cadene 2025-04-22 10:35:20 +02:00
parent 601b5fdbfe
commit 367d9bda7d
5 changed files with 95 additions and 75 deletions

View File

@ -187,6 +187,7 @@ def aggregate_datasets(repo_ids: list[str], aggr_repo_id: str, roots: list[Path]
for chunk_idx, file_idx in data_chunk_file_ids:
path = meta.root / DEFAULT_DATA_PATH.format(chunk_index=chunk_idx, file_index=file_idx)
df = pd.read_parquet(path)
# TODO(rcadene): update frame index
update_data_func = get_update_episode_and_task_func(num_episodes, meta.tasks, aggr_meta.tasks)
df = df.apply(update_data_func, axis=1)

View File

@ -197,16 +197,15 @@ def convert_data(root, new_root):
def get_video_keys(root):
info = load_info(root)
features = info["features"]
image_keys = [key for key, ft in features.items() if ft["dtype"] == "image"]
if len(image_keys) != 0:
raise NotImplementedError()
video_keys = [key for key, ft in features.items() if ft["dtype"] == "video"]
return video_keys
def convert_videos(root: Path, new_root: Path):
video_keys = get_video_keys(root)
if len(video_keys) == 0:
return None
video_keys = sorted(video_keys)
eps_metadata_per_cam = []
@ -284,24 +283,32 @@ def convert_videos_of_camera(root: Path, new_root: Path, video_key):
def generate_episode_metadata_dict(
episodes_legacy_metadata, episodes_metadata, episodes_videos, episodes_stats
episodes_legacy_metadata, episodes_metadata, episodes_stats, episodes_videos=None
):
for ep_legacy_metadata, ep_metadata, ep_video, ep_stats, ep_idx_stats in zip(
episodes_legacy_metadata.values(),
episodes_metadata,
episodes_videos,
episodes_stats.values(),
episodes_stats.keys(),
strict=False,
):
ep_idx = ep_legacy_metadata["episode_index"]
ep_idx_data = ep_metadata["episode_index"]
ep_idx_video = ep_video["episode_index"]
num_episodes = len(episodes_metadata)
episodes_legacy_metadata_vals = list(episodes_legacy_metadata.values())
episodes_stats_vals = list(episodes_stats.values())
episodes_stats_keys = list(episodes_stats.keys())
if len({ep_idx, ep_idx_data, ep_idx_video, ep_idx_stats}) != 1:
raise ValueError(
f"Number of episodes is not the same ({ep_idx=},{ep_idx_data=},{ep_idx_video=},{ep_idx_stats=})."
)
for i in range(num_episodes):
ep_legacy_metadata = episodes_legacy_metadata_vals[i]
ep_metadata = episodes_metadata[i]
ep_stats = episodes_stats_vals[i]
ep_ids_set = {
ep_legacy_metadata["episode_index"],
ep_metadata["episode_index"],
episodes_stats_keys[i],
}
if episodes_videos is None:
ep_video = {}
else:
ep_video = episodes_videos[i]
ep_ids_set.add(ep_video["episode_index"])
if len(ep_ids_set) != 1:
raise ValueError(f"Number of episodes is not the same ({ep_ids_set}).")
ep_dict = {**ep_metadata, **ep_video, **ep_legacy_metadata, **flatten_dict({"stats": ep_stats})}
ep_dict["meta/episodes/chunk_index"] = 0
@ -309,21 +316,20 @@ def generate_episode_metadata_dict(
yield ep_dict
def convert_episodes_metadata(root, new_root, episodes_metadata, episodes_video_metadata):
def convert_episodes_metadata(root, new_root, episodes_metadata, episodes_video_metadata=None):
episodes_legacy_metadata = legacy_load_episodes(root)
episodes_stats = legacy_load_episodes_stats(root)
num_eps = len(episodes_legacy_metadata)
num_eps_metadata = len(episodes_metadata)
num_eps_video_metadata = len(episodes_video_metadata)
if len({num_eps, num_eps_metadata, num_eps_video_metadata}) != 1:
raise ValueError(
f"Number of episodes is not the same ({num_eps=},{num_eps_metadata=},{num_eps_video_metadata=})."
)
num_eps_set = {len(episodes_legacy_metadata), len(episodes_metadata)}
if episodes_video_metadata is not None:
num_eps_set.add(len(episodes_video_metadata))
if len(num_eps_set) != 1:
raise ValueError(f"Number of episodes is not the same ({num_eps_set}).")
ds_episodes = Dataset.from_generator(
lambda: generate_episode_metadata_dict(
episodes_legacy_metadata, episodes_metadata, episodes_video_metadata, episodes_stats
episodes_legacy_metadata, episodes_metadata, episodes_stats, episodes_video_metadata
)
)
write_episodes(ds_episodes, new_root)

View File

@ -13,10 +13,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import re
from copy import deepcopy
from itertools import chain
from pathlib import Path
@ -36,8 +34,6 @@ from lerobot.common.datasets.lerobot_dataset import (
)
from lerobot.common.datasets.utils import (
create_branch,
flatten_dict,
unflatten_dict,
)
from lerobot.common.envs.factory import make_env_config
from lerobot.common.policies.factory import make_policy_config
@ -100,6 +96,25 @@ def test_dataset_initialization(tmp_path, lerobot_dataset_factory):
assert dataset.num_frames == len(dataset)
# TODO(rcadene, aliberts): do not run LeRobotDataset.create, instead refactor LeRobotDatasetMetadata.create
# and test the small resulting function that validates the features
def test_dataset_feature_with_forward_slash_raises_error():
# make sure dir does not exist
from lerobot.common.constants import HF_LEROBOT_HOME
dataset_dir = HF_LEROBOT_HOME / "lerobot/test/with/slash"
# make sure does not exist
if dataset_dir.exists():
dataset_dir.rmdir()
with pytest.raises(ValueError):
LeRobotDataset.create(
repo_id="lerobot/test/with/slash",
fps=30,
features={"a/b": {"dtype": "float32", "shape": 2, "names": None}},
)
def test_add_frame_missing_task(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
@ -329,6 +344,13 @@ def test_image_array_to_pil_image_wrong_range_float_0_255():
# - [ ] test push_to_hub
# - [ ] test smaller methods
# TODO(rcadene):
# - [ ] fix code so that old test_factory + backward pass
# - [ ] write new unit tests to test save_episode + getitem
# - [ ] save_episode : case where new dataset, concatenate same file, write new file (meta/episodes, data, videos)
# - [ ]
# - [ ] remove old tests
@pytest.mark.parametrize(
"env_name, repo_id, policy_name",
@ -436,30 +458,6 @@ def test_multidataset_frames():
assert torch.equal(sub_dataset_item[k], dataset_item[k])
# TODO(aliberts): Move to more appropriate location
def test_flatten_unflatten_dict():
d = {
"obs": {
"min": 0,
"max": 1,
"mean": 2,
"std": 3,
},
"action": {
"min": 4,
"max": 5,
"mean": 6,
"std": 7,
},
}
original_d = deepcopy(d)
d = unflatten_dict(flatten_dict(d))
# test equality between nested dicts
assert json.dumps(original_d, sort_keys=True) == json.dumps(d, sort_keys=True), f"{original_d} != {d}"
@pytest.mark.parametrize(
"repo_id",
[
@ -569,20 +567,3 @@ def test_create_branch():
# Clean
api.delete_repo(repo_id, repo_type=repo_type)
def test_dataset_feature_with_forward_slash_raises_error():
# make sure dir does not exist
from lerobot.common.constants import HF_LEROBOT_HOME
dataset_dir = HF_LEROBOT_HOME / "lerobot/test/with/slash"
# make sure does not exist
if dataset_dir.exists():
dataset_dir.rmdir()
with pytest.raises(ValueError):
LeRobotDataset.create(
repo_id="lerobot/test/with/slash",
fps=30,
features={"a/b": {"dtype": "float32", "shape": 2, "names": None}},
)

View File

@ -14,12 +14,20 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from copy import deepcopy
import torch
from datasets import Dataset
from huggingface_hub import DatasetCard
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
from lerobot.common.datasets.utils import create_lerobot_dataset_card, hf_transform_to_torch
from lerobot.common.datasets.utils import (
create_lerobot_dataset_card,
flatten_dict,
hf_transform_to_torch,
unflatten_dict,
)
def test_default_parameters():
@ -53,3 +61,26 @@ def test_calculate_episode_data_index():
episode_data_index = calculate_episode_data_index(dataset)
assert torch.equal(episode_data_index["from"], torch.tensor([0, 2, 3]))
assert torch.equal(episode_data_index["to"], torch.tensor([2, 3, 6]))
def test_flatten_unflatten_dict():
d = {
"obs": {
"min": 0,
"max": 1,
"mean": 2,
"std": 3,
},
"action": {
"min": 4,
"max": 5,
"mean": 6,
"std": 7,
},
}
original_d = deepcopy(d)
d = unflatten_dict(flatten_dict(d))
# test equality between nested dicts
assert json.dumps(original_d, sort_keys=True) == json.dumps(d, sort_keys=True), f"{original_d} != {d}"

View File

@ -141,6 +141,7 @@ def test_policy(ds_repo_id, env_name, env_kwargs, policy_name, policy_kwargs):
Note: We test various combinations of policy and dataset. The combinations are by no means exhaustive,
and for now we add tests as we see fit.
"""
policy_kwargs["device"] = DEVICE
train_cfg = TrainPipelineConfig(
# TODO(rcadene, aliberts): remove dataset download