Add gym-aloha, rename simxarm -> xarm, refactor

This commit is contained in:
Simon Alibert 2024-04-08 16:18:53 +02:00
parent 5dff6d8339
commit 3f6dfa4916
15 changed files with 91 additions and 97 deletions

View File

@ -204,7 +204,7 @@ jobs:
source .venv/bin/activate
python lerobot/scripts/train.py \
policy=tdmpc \
env=simxarm \
env=xarm \
wandb.enable=False \
offline_steps=1 \
online_steps=1 \
@ -229,6 +229,6 @@ jobs:
python lerobot/scripts/eval.py \
--config lerobot/configs/default.yaml \
policy=tdmpc \
env=simxarm \
env=xarm \
eval_episodes=1 \
device=cpu

View File

@ -27,7 +27,7 @@ from lerobot.__version__ import __version__ # noqa: F401
available_envs = [
"aloha",
"pusht",
"simxarm",
"xarm",
]
available_tasks_per_env = {
@ -36,7 +36,7 @@ available_tasks_per_env = {
"sim_transfer_cube",
],
"pusht": ["pusht"],
"simxarm": ["lift"],
"xarm": ["lift"],
}
available_datasets_per_env = {
@ -47,7 +47,7 @@ available_datasets_per_env = {
"aloha_sim_transfer_cube_scripted",
],
"pusht": ["pusht"],
"simxarm": ["xarm_lift_medium"],
"xarm": ["xarm_lift_medium"],
}
available_datasets = [dataset for env in available_envs for dataset in available_datasets_per_env[env]]

View File

@ -19,10 +19,10 @@ def make_dataset(
normalize=True,
stats_path=None,
):
if cfg.env.name == "simxarm":
from lerobot.common.datasets.simxarm import SimxarmDataset
if cfg.env.name == "xarm":
from lerobot.common.datasets.xarm import XarmDataset
clsfunc = SimxarmDataset
clsfunc = XarmDataset
elif cfg.env.name == "pusht":
from lerobot.common.datasets.pusht import PushtDataset

View File

@ -24,7 +24,7 @@ def download(raw_dir):
zip_path.unlink()
class SimxarmDataset(torch.utils.data.Dataset):
class XarmDataset(torch.utils.data.Dataset):
available_datasets = [
"xarm_lift_medium",
]

View File

@ -1,3 +1,5 @@
import importlib
import gymnasium as gym
@ -8,43 +10,28 @@ def make_env(cfg, num_parallel_envs=0) -> gym.Env | gym.vector.SyncVectorEnv:
"""
kwargs = {
"obs_type": "pixels_agent_pos",
"render_mode": "rgb_array",
"max_episode_steps": cfg.env.episode_length,
"visualization_width": 384,
"visualization_height": 384,
}
if cfg.env.name == "simxarm":
import gym_xarm # noqa: F401
package_name = f"gym_{cfg.env.name}"
assert cfg.env.task == "lift"
env_fn = lambda: gym.make( # noqa: E731
"gym_xarm/XarmLift-v0",
**kwargs,
try:
importlib.import_module(package_name)
except ModuleNotFoundError as e:
print(
f"{package_name} is not installed. Please install it with `pip install 'lerobot[{cfg.env.name}]'`"
)
elif cfg.env.name == "pusht":
import gym_pusht # noqa: F401
raise e
# assert kwargs["seed"] > 200, "Seed 0-200 are used for the demonstration dataset, so we don't want to seed the eval env with this range."
env_fn = lambda: gym.make( # noqa: E731
"gym_pusht/PushTPixels-v0",
**kwargs,
)
elif cfg.env.name == "aloha":
from lerobot.common.envs import aloha as gym_aloha # noqa: F401
kwargs["task"] = cfg.env.task
env_fn = lambda: gym.make( # noqa: E731
"gym_aloha/AlohaInsertion-v0",
**kwargs,
)
else:
raise ValueError(cfg.env.name)
handle = f"{package_name}/{cfg.env.handle}"
if num_parallel_envs == 0:
# non-batched version of the env that returns an observation of shape (c)
env = env_fn()
env = gym.make(handle, **kwargs)
else:
# batched version of the env that returns an observation of shape (b, c)
env = gym.vector.SyncVectorEnv([env_fn for _ in range(num_parallel_envs)])
env = gym.vector.SyncVectorEnv([lambda: gym.make(handle, **kwargs) for _ in range(num_parallel_envs)])
return env

View File

@ -4,7 +4,7 @@ eval_episodes: 50
eval_freq: 7500
save_freq: 75000
log_freq: 250
# TODO: same as simxarm, need to adjust
# TODO: same as xarm, need to adjust
offline_steps: 25000
online_steps: 25000
@ -14,6 +14,8 @@ dataset_id: aloha_sim_insertion_human
env:
name: aloha
handle: AlohaInsertion-v0
# TODO(aliberts): replace task with handle
task: insertion
from_pixels: True
pixels_only: False

View File

@ -4,7 +4,7 @@ eval_episodes: 50
eval_freq: 7500
save_freq: 75000
log_freq: 250
# TODO: same as simxarm, need to adjust
# TODO: same as xarm, need to adjust
offline_steps: 25000
online_steps: 25000
@ -14,6 +14,8 @@ dataset_id: pusht
env:
name: pusht
handle: PushT-v0
# TODO(aliberts): replace task with handle
task: pusht
from_pixels: True
pixels_only: False

View File

@ -12,7 +12,9 @@ fps: 15
dataset_id: xarm_lift_medium
env:
name: simxarm
name: xarm
handle: XarmLift-v0
# TODO(aliberts): replace task with handle
task: lift
from_pixels: True
pixels_only: False

View File

@ -162,7 +162,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
logger = Logger(out_dir, job_name, cfg)
log_output_dir(out_dir)
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.env.handle=}")
logging.info(f"{cfg.offline_steps=} ({format_big_number(cfg.offline_steps)})")
logging.info(f"{cfg.online_steps=}")
logging.info(f"{cfg.env.action_repeat=}")

33
poetry.lock generated
View File

@ -879,10 +879,30 @@ files = [
[package.extras]
protobuf = ["grpcio-tools (>=1.62.1)"]
[[package]]
name = "gym-aloha"
version = "0.1.0"
description = "A gym environment for ALOHA"
optional = true
python-versions = "^3.10"
files = []
develop = false
[package.dependencies]
dm-control = "1.0.14"
gymnasium = "^0.29.1"
mujoco = "^2.3.7"
[package.source]
type = "git"
url = "git@github.com:huggingface/gym-aloha.git"
reference = "HEAD"
resolved_reference = "ec7200831e36c14e343cf7d275c6b047f2fe9d11"
[[package]]
name = "gym-pusht"
version = "0.1.0"
description = "PushT environment for LeRobot"
description = "A gymnasium environment for PushT."
optional = true
python-versions = "^3.10"
files = []
@ -900,7 +920,7 @@ shapely = "^2.0.3"
type = "git"
url = "git@github.com:huggingface/gym-pusht.git"
reference = "HEAD"
resolved_reference = "0fe4449cca5a2b08f529f7a07fbf5b9df24962ec"
resolved_reference = "6c9893504f670ff069d0f759a733e971ea1efdbf"
[[package]]
name = "gym-xarm"
@ -920,7 +940,7 @@ mujoco = "^2.3.7"
type = "git"
url = "git@github.com:huggingface/gym-xarm.git"
reference = "HEAD"
resolved_reference = "2eb83fc4fc871b9d271c946d169e42f226ac3a7c"
resolved_reference = "08ddd5a9400783a6898bbf3c3014fc5da3961b9d"
[[package]]
name = "gymnasium"
@ -3630,10 +3650,11 @@ docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.link
testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[extras]
pusht = ["gym_pusht"]
xarm = ["gym_xarm"]
aloha = ["gym-aloha"]
pusht = ["gym-pusht"]
xarm = ["gym-xarm"]
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "c9524cdf000eaa755a2ab3be669118222b4f8b1c262013f103f6874cbd54eeb6"
content-hash = "cb450ac7186e004536d75409edd42cd96062f7b1fd47822a5460d12eab8762f9"

View File

@ -52,14 +52,17 @@ robomimic = "0.2.0"
gymnasium-robotics = "^1.2.4"
gymnasium = "^0.29.1"
cmake = "^3.29.0.1"
gym_pusht = { git = "git@github.com:huggingface/gym-pusht.git", optional = true}
gym_xarm = { git = "git@github.com:huggingface/gym-xarm.git", optional = true}
# gym_pusht = { path = "../gym-pusht", develop = true, optional = true}
# gym_xarm = { path = "../gym-xarm", develop = true, optional = true}
gym-pusht = { git = "git@github.com:huggingface/gym-pusht.git", optional = true}
gym-xarm = { git = "git@github.com:huggingface/gym-xarm.git", optional = true}
gym-aloha = { git = "git@github.com:huggingface/gym-aloha.git", optional = true}
# gym-pusht = { path = "../gym-pusht", develop = true, optional = true}
# gym-xarm = { path = "../gym-xarm", develop = true, optional = true}
# gym-aloha = { path = "../gym-aloha", develop = true, optional = true}
[tool.poetry.extras]
pusht = ["gym_pusht"]
xarm = ["gym_xarm"]
pusht = ["gym-pusht"]
xarm = ["gym-xarm"]
aloha = ["gym-aloha"]
[tool.poetry.group.dev.dependencies]
pre-commit = "^3.6.2"

View File

@ -19,7 +19,7 @@ import lerobot
# from gym_pusht.envs import PushtEnv
# from gym_xarm.envs import SimxarmEnv
# from lerobot.common.datasets.simxarm import SimxarmDataset
# from lerobot.common.datasets.xarm import SimxarmDataset
# from lerobot.common.datasets.aloha import AlohaDataset
# from lerobot.common.datasets.pusht import PushtDataset

View File

@ -11,7 +11,7 @@ from .utils import DEVICE, DEFAULT_CONFIG_PATH
@pytest.mark.parametrize(
"env_name,dataset_id,policy_name",
[
("simxarm", "xarm_lift_medium", "tdmpc"),
("xarm", "xarm_lift_medium", "tdmpc"),
("pusht", "pusht", "diffusion"),
("aloha", "aloha_sim_insertion_human", "act"),
("aloha", "aloha_sim_insertion_scripted", "act"),

View File

@ -1,3 +1,4 @@
import importlib
import pytest
import torch
from lerobot.common.datasets.factory import make_dataset
@ -13,49 +14,25 @@ from .utils import DEVICE, DEFAULT_CONFIG_PATH
@pytest.mark.parametrize(
"env_task, obs_type",
"env_name, handle, obs_type",
[
# ("AlohaInsertion-v0", "state"),
("AlohaInsertion-v0", "pixels"),
("AlohaInsertion-v0", "pixels_agent_pos"),
("AlohaTransferCube-v0", "pixels"),
("AlohaTransferCube-v0", "pixels_agent_pos"),
("aloha", "AlohaInsertion-v0", "pixels"),
("aloha", "AlohaInsertion-v0", "pixels_agent_pos"),
("aloha", "AlohaTransferCube-v0", "pixels"),
("aloha", "AlohaTransferCube-v0", "pixels_agent_pos"),
("xarm", "XarmLift-v0", "state"),
("xarm", "XarmLift-v0", "pixels"),
("xarm", "XarmLift-v0", "pixels_agent_pos"),
("pusht", "PushT-v0", "state"),
("pusht", "PushT-v0", "pixels"),
("pusht", "PushT-v0", "pixels_agent_pos"),
],
)
def test_aloha(env_task, obs_type):
from lerobot.common.envs import aloha as gym_aloha # noqa: F401
env = gym.make(f"gym_aloha/{env_task}", obs_type=obs_type)
check_env(env.unwrapped)
@pytest.mark.parametrize(
"env_task, obs_type",
[
("XarmLift-v0", "state"),
("XarmLift-v0", "pixels"),
("XarmLift-v0", "pixels_agent_pos"),
# TODO(aliberts): Add gym_xarm other tasks
],
)
def test_xarm(env_task, obs_type):
import gym_xarm # noqa: F401
env = gym.make(f"gym_xarm/{env_task}", obs_type=obs_type)
check_env(env.unwrapped)
@pytest.mark.parametrize(
"env_task, obs_type",
[
("PushTPixels-v0", "state"),
("PushTPixels-v0", "pixels"),
("PushTPixels-v0", "pixels_agent_pos"),
],
)
def test_pusht(env_task, obs_type):
import gym_pusht # noqa: F401
env = gym.make(f"gym_pusht/{env_task}", obs_type=obs_type)
def test_env(env_name, handle, obs_type):
package_name = f"gym_{env_name}"
importlib.import_module(package_name)
env = gym.make(f"{package_name}/{handle}", obs_type=obs_type)
check_env(env.unwrapped)
@ -63,7 +40,7 @@ def test_pusht(env_task, obs_type):
"env_name",
[
"pusht",
"simxarm",
"xarm",
"aloha",
],
)
@ -76,7 +53,7 @@ def test_factory(env_name):
dataset = make_dataset(cfg)
env = make_env(cfg, num_parallel_envs=1)
obs, info = env.reset()
obs, _ = env.reset()
obs = preprocess_observation(obs, transform=dataset.transform)
for key in dataset.image_keys:
img = obs[key]

View File

@ -12,15 +12,15 @@ from .utils import DEVICE, DEFAULT_CONFIG_PATH
@pytest.mark.parametrize(
"env_name,policy_name,extra_overrides",
[
("simxarm", "tdmpc", ["policy.mpc=true"]),
("xarm", "tdmpc", ["policy.mpc=true"]),
("pusht", "tdmpc", ["policy.mpc=false"]),
("pusht", "diffusion", []),
# ("aloha", "act", ["env.task=sim_insertion", "dataset_id=aloha_sim_insertion_human"]),
#("aloha", "act", ["env.task=sim_insertion", "dataset_id=aloha_sim_insertion_scripted"]),
#("aloha", "act", ["env.task=sim_transfer_cube", "dataset_id=aloha_sim_transfer_cube_human"]),
#("aloha", "act", ["env.task=sim_transfer_cube", "dataset_id=aloha_sim_transfer_cube_scripted"]),
# TODO(aliberts): simxarm not working with diffusion
# ("simxarm", "diffusion", []),
# TODO(aliberts): xarm not working with diffusion
# ("xarm", "diffusion", []),
],
)
def test_policy(env_name, policy_name, extra_overrides):