FREEDOM, added back the optimization loop code in `learner_server.py`
Ran experiment with pushcube env from maniskill. The learning seem to work. Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
This commit is contained in:
parent
d347ad6c60
commit
4169a5659d
|
@ -259,7 +259,7 @@ class Logger:
|
||||||
if k == custom_step_key:
|
if k == custom_step_key:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if self._wandb_custom_step_key is not None:
|
if self._wandb_custom_step_key is not None and custom_step_key is not None:
|
||||||
# NOTE: Log the metric with the custom step key.
|
# NOTE: Log the metric with the custom step key.
|
||||||
value_custom_step_key = d[custom_step_key]
|
value_custom_step_key = d[custom_step_key]
|
||||||
self._wandb.log({f"{mode}/{k}": v, self._wandb_custom_step_key: value_custom_step_key})
|
self._wandb.log({f"{mode}/{k}": v, self._wandb_custom_step_key: value_custom_step_key})
|
||||||
|
|
|
@ -82,7 +82,7 @@ policy:
|
||||||
temperature_lr: 3e-4
|
temperature_lr: 3e-4
|
||||||
# critic_target_update_weight: 0.005
|
# critic_target_update_weight: 0.005
|
||||||
critic_target_update_weight: 0.01
|
critic_target_update_weight: 0.01
|
||||||
utd_ratio: 1
|
utd_ratio: 2
|
||||||
|
|
||||||
|
|
||||||
# # Loss coefficients.
|
# # Loss coefficients.
|
||||||
|
|
|
@ -116,6 +116,7 @@ def learner_push_parameters(
|
||||||
params_bytes = buf.getvalue()
|
params_bytes = buf.getvalue()
|
||||||
|
|
||||||
# Push them to the Actor’s "SendParameters" method
|
# Push them to the Actor’s "SendParameters" method
|
||||||
|
logging.info(f"[LEARNER] Pushing parameters to the Actor")
|
||||||
response = actor_stub.SendParameters(hilserl_pb2.Parameters(parameter_bytes=params_bytes))
|
response = actor_stub.SendParameters(hilserl_pb2.Parameters(parameter_bytes=params_bytes))
|
||||||
time.sleep(seconds_between_pushes)
|
time.sleep(seconds_between_pushes)
|
||||||
|
|
||||||
|
@ -144,7 +145,7 @@ def add_actor_information(
|
||||||
# are divided by 200. So we need to have a single thread that does all the work.
|
# are divided by 200. So we need to have a single thread that does all the work.
|
||||||
start = time.time()
|
start = time.time()
|
||||||
optimization_step = 0
|
optimization_step = 0
|
||||||
|
timeout_for_adding_transitions = 1
|
||||||
while True:
|
while True:
|
||||||
time_for_adding_transitions = time.time()
|
time_for_adding_transitions = time.time()
|
||||||
while not transition_queue.empty():
|
while not transition_queue.empty():
|
||||||
|
@ -153,99 +154,103 @@ def add_actor_information(
|
||||||
for transition in transition_list:
|
for transition in transition_list:
|
||||||
transition = move_transition_to_device(transition, device=device)
|
transition = move_transition_to_device(transition, device=device)
|
||||||
replay_buffer.add(**transition)
|
replay_buffer.add(**transition)
|
||||||
|
# logging.info(f"[LEARNER] size of replay buffer: {len(replay_buffer)}")
|
||||||
|
# logging.info(f"[LEARNER] size of transition queues: {transition_queue.qsize()}")
|
||||||
|
# logging.info(f"[LEARNER] size of replay buffer: {len(replay_buffer)}")
|
||||||
|
# logging.info(f"[LEARNER] size of transition queues: {transition }")
|
||||||
|
if len(replay_buffer) > cfg.training.online_step_before_learning:
|
||||||
logging.info(f"[LEARNER] size of replay buffer: {len(replay_buffer)}")
|
logging.info(f"[LEARNER] size of replay buffer: {len(replay_buffer)}")
|
||||||
logging.info(f"[LEARNER] size of transition queues: {transition_queue.qsize()}")
|
|
||||||
|
|
||||||
|
|
||||||
while not interaction_message_queue.empty():
|
while not interaction_message_queue.empty():
|
||||||
interaction_message = interaction_message_queue.get()
|
interaction_message = interaction_message_queue.get()
|
||||||
logger.log_dict(interaction_message,mode="train",custom_step_key="interaction_step")
|
logger.log_dict(interaction_message,mode="train",custom_step_key="interaction_step")
|
||||||
logging.info(f"[LEARNER] size of interaction message queue: {interaction_message_queue.qsize()}")
|
# logging.info(f"[LEARNER] size of interaction message queue: {interaction_message_queue.qsize()}")
|
||||||
|
|
||||||
# if len(replay_buffer.memory) < cfg.training.online_step_before_learning:
|
if len(replay_buffer) < cfg.training.online_step_before_learning:
|
||||||
# continue
|
continue
|
||||||
|
time_for_one_optimization_step = time.time()
|
||||||
|
for _ in range(cfg.policy.utd_ratio - 1):
|
||||||
|
batch = replay_buffer.sample(batch_size)
|
||||||
|
|
||||||
# for _ in range(cfg.policy.utd_ratio - 1):
|
if cfg.dataset_repo_id is not None:
|
||||||
|
batch_offline = offline_replay_buffer.sample(batch_size)
|
||||||
|
batch = concatenate_batch_transitions(batch, batch_offline)
|
||||||
|
|
||||||
# batch = replay_buffer.sample(batch_size)
|
actions = batch["action"]
|
||||||
# if cfg.dataset_repo_id is not None:
|
rewards = batch["reward"]
|
||||||
# batch_offline = offline_replay_buffer.sample(batch_size)
|
observations = batch["state"]
|
||||||
# batch = concatenate_batch_transitions(batch, batch_offline)
|
next_observations = batch["next_state"]
|
||||||
|
done = batch["done"]
|
||||||
|
|
||||||
# actions = batch["action"]
|
with policy_lock:
|
||||||
# rewards = batch["reward"]
|
loss_critic = policy.compute_loss_critic(
|
||||||
# observations = batch["state"]
|
observations=observations,
|
||||||
# next_observations = batch["next_state"]
|
actions=actions,
|
||||||
# done = batch["done"]
|
rewards=rewards,
|
||||||
|
next_observations=next_observations,
|
||||||
|
done=done,
|
||||||
|
)
|
||||||
|
optimizers["critic"].zero_grad()
|
||||||
|
loss_critic.backward()
|
||||||
|
optimizers["critic"].step()
|
||||||
|
|
||||||
# with policy_lock:
|
batch = replay_buffer.sample(batch_size)
|
||||||
# loss_critic = policy.compute_loss_critic(
|
|
||||||
# observations=observations,
|
|
||||||
# actions=actions,
|
|
||||||
# rewards=rewards,
|
|
||||||
# next_observations=next_observations,
|
|
||||||
# done=done,
|
|
||||||
# )
|
|
||||||
# optimizers["critic"].zero_grad()
|
|
||||||
# loss_critic.backward()
|
|
||||||
# optimizers["critic"].step()
|
|
||||||
|
|
||||||
# batch = replay_buffer.sample(batch_size)
|
if cfg.dataset_repo_id is not None:
|
||||||
|
batch_offline = offline_replay_buffer.sample(batch_size)
|
||||||
|
batch = concatenate_batch_transitions(
|
||||||
|
left_batch_transitions=batch, right_batch_transition=batch_offline
|
||||||
|
)
|
||||||
|
|
||||||
# if cfg.dataset_repo_id is not None:
|
actions = batch["action"]
|
||||||
# batch_offline = offline_replay_buffer.sample(batch_size)
|
rewards = batch["reward"]
|
||||||
# batch = concatenate_batch_transitions(
|
observations = batch["state"]
|
||||||
# left_batch_transitions=batch, right_batch_transition=batch_offline
|
next_observations = batch["next_state"]
|
||||||
# )
|
done = batch["done"]
|
||||||
|
|
||||||
# actions = batch["action"]
|
with policy_lock:
|
||||||
# rewards = batch["reward"]
|
loss_critic = policy.compute_loss_critic(
|
||||||
# observations = batch["state"]
|
observations=observations,
|
||||||
# next_observations = batch["next_state"]
|
actions=actions,
|
||||||
# done = batch["done"]
|
rewards=rewards,
|
||||||
|
next_observations=next_observations,
|
||||||
|
done=done,
|
||||||
|
)
|
||||||
|
optimizers["critic"].zero_grad()
|
||||||
|
loss_critic.backward()
|
||||||
|
optimizers["critic"].step()
|
||||||
|
|
||||||
# with policy_lock:
|
training_infos = {}
|
||||||
# loss_critic = policy.compute_loss_critic(
|
training_infos["loss_critic"] = loss_critic.item()
|
||||||
# observations=observations,
|
|
||||||
# actions=actions,
|
|
||||||
# rewards=rewards,
|
|
||||||
# next_observations=next_observations,
|
|
||||||
# done=done,
|
|
||||||
# )
|
|
||||||
# optimizers["critic"].zero_grad()
|
|
||||||
# loss_critic.backward()
|
|
||||||
# optimizers["critic"].step()
|
|
||||||
|
|
||||||
# training_infos = {}
|
|
||||||
# training_infos["loss_critic"] = loss_critic.item()
|
|
||||||
|
|
||||||
# if optimization_step % cfg.training.policy_update_freq == 0:
|
if optimization_step % cfg.training.policy_update_freq == 0:
|
||||||
# for _ in range(cfg.training.policy_update_freq):
|
for _ in range(cfg.training.policy_update_freq):
|
||||||
# with policy_lock:
|
with policy_lock:
|
||||||
# loss_actor = policy.compute_loss_actor(observations=observations)
|
loss_actor = policy.compute_loss_actor(observations=observations)
|
||||||
|
|
||||||
# optimizers["actor"].zero_grad()
|
optimizers["actor"].zero_grad()
|
||||||
# loss_actor.backward()
|
loss_actor.backward()
|
||||||
# optimizers["actor"].step()
|
optimizers["actor"].step()
|
||||||
|
|
||||||
# training_infos["loss_actor"] = loss_actor.item()
|
training_infos["loss_actor"] = loss_actor.item()
|
||||||
|
|
||||||
# loss_temperature = policy.compute_loss_temperature(observations=observations)
|
loss_temperature = policy.compute_loss_temperature(observations=observations)
|
||||||
# optimizers["temperature"].zero_grad()
|
optimizers["temperature"].zero_grad()
|
||||||
# loss_temperature.backward()
|
loss_temperature.backward()
|
||||||
# optimizers["temperature"].step()
|
optimizers["temperature"].step()
|
||||||
|
|
||||||
# training_infos["loss_temperature"] = loss_temperature.item()
|
training_infos["loss_temperature"] = loss_temperature.item()
|
||||||
|
|
||||||
# if optimization_step % cfg.training.log_freq == 0:
|
if optimization_step % cfg.training.log_freq == 0:
|
||||||
# logger.log_dict(training_infos, step=optimization_step, mode="train")
|
logger.log_dict(training_infos, step=optimization_step, mode="train")
|
||||||
|
|
||||||
# policy.update_target_networks()
|
policy.update_target_networks()
|
||||||
# optimization_step += 1
|
optimization_step += 1
|
||||||
# time_for_one_optimization_step = time.time() - time_for_one_optimization_step
|
time_for_one_optimization_step = time.time() - time_for_one_optimization_step
|
||||||
|
|
||||||
# logger.log_dict({"[LEARNER] Time optimization step":time_for_one_optimization_step}, step=optimization_step, mode="train")
|
logging.info(f"[LEARNER] Time for one optimization step: {time_for_one_optimization_step}")
|
||||||
# time_for_one_optimization_step = time.time()
|
logger.log_dict({"Time optimization step":time_for_one_optimization_step}, step=optimization_step, mode="train")
|
||||||
|
|
||||||
|
|
||||||
def make_optimizers_and_scheduler(cfg, policy):
|
def make_optimizers_and_scheduler(cfg, policy):
|
||||||
|
@ -360,13 +365,13 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
||||||
)
|
)
|
||||||
transition_thread.start()
|
transition_thread.start()
|
||||||
|
|
||||||
# param_push_thread = Thread(
|
param_push_thread = Thread(
|
||||||
# target=learner_push_parameters,
|
target=learner_push_parameters,
|
||||||
# args=(policy, policy_lock, "127.0.0.1", 50052, 15),
|
args=(policy, policy_lock, "127.0.0.1", 50051, 15),
|
||||||
# # args=("127.0.0.1", 50052),
|
# args=("127.0.0.1", 50052),
|
||||||
# daemon=True,
|
daemon=True,
|
||||||
# )
|
)
|
||||||
# param_push_thread.start()
|
param_push_thread.start()
|
||||||
|
|
||||||
# interaction_thread = Thread(
|
# interaction_thread = Thread(
|
||||||
# target=add_message_interaction_to_wandb,
|
# target=add_message_interaction_to_wandb,
|
||||||
|
|
Loading…
Reference in New Issue