This commit is contained in:
Simon Alibert 2025-04-15 11:01:48 +00:00 committed by GitHub
commit 41b79bb76a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 1250 additions and 0 deletions

View File

@ -0,0 +1,3 @@
from .config_hope_jr import HopeJrArmConfig, HopeJrHandConfig
from .hope_jr_arm import HopeJrArm
from .hope_jr_hand import HopeJrHand

View File

@ -0,0 +1,46 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from lerobot.common.cameras import CameraConfig
from ..config import RobotConfig
@RobotConfig.register_subclass("hope_jr_hand")
@dataclass
class HopeJrHandConfig(RobotConfig):
port: str # Port to connect to the hand
disable_torque_on_disconnect: bool = True
cameras: dict[str, CameraConfig] = field(default_factory=dict)
@RobotConfig.register_subclass("hope_jr_arm")
@dataclass
class HopeJrArmConfig(RobotConfig):
port: str # Port to connect to the hand
disable_torque_on_disconnect: bool = True
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
# the number of motors in your follower arms.
max_relative_target: int | None = None
cameras: dict[str, CameraConfig] = field(default_factory=dict)

View File

@ -0,0 +1,194 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from typing import Any
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.feetech import (
FeetechMotorsBus,
OperatingMode,
)
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .config_hope_jr import HopeJrArmConfig
logger = logging.getLogger(__name__)
class HopeJrArm(Robot):
config_class = HopeJrArmConfig
name = "hope_jr_arm"
def __init__(self, config: HopeJrArmConfig):
super().__init__(config)
self.config = config
self.arm = FeetechMotorsBus(
port=self.config.port,
motors={
"shoulder_pitch": Motor(1, "sm8512bl", MotorNormMode.RANGE_M100_100),
"shoulder_yaw": Motor(2, "sts3250", MotorNormMode.RANGE_M100_100),
"shoulder_roll": Motor(3, "sts3250", MotorNormMode.RANGE_M100_100),
"elbow_flex": Motor(4, "sts3250", MotorNormMode.RANGE_M100_100),
"wrist_roll": Motor(5, "sts3215", MotorNormMode.RANGE_M100_100),
"wrist_yaw": Motor(6, "sts3215", MotorNormMode.RANGE_M100_100),
"wrist_pitch": Motor(7, "sts3215", MotorNormMode.RANGE_M100_100),
},
calibration=self.calibration,
)
self.cameras = make_cameras_from_configs(config.cameras)
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.arm),),
"names": {"motors": list(self.arm.motors)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def is_connected(self) -> bool:
# TODO(aliberts): add cam.is_connected for cam in self.cameras
return self.arm.is_connected
def connect(self) -> None:
"""
We assume that at connection time, arm is in a rest position,
and torque can be safely disabled to run calibration.
"""
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.arm.connect()
if not self.is_calibrated:
self.calibrate()
# Connect the cameras
for cam in self.cameras.values():
cam.connect()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
return self.arm.is_calibrated
def calibrate(self) -> None:
raise NotImplementedError # TODO(aliberts): adapt code below (copied from koch)
logger.info(f"\nRunning calibration of {self}")
self.arm.disable_torque()
for name in self.arm.names:
self.arm.write("Operating_Mode", name, OperatingMode.POSITION.value)
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.arm.set_half_turn_homings()
full_turn_motor = "wrist_roll"
unknown_range_motors = [name for name in self.arm.names if name != full_turn_motor]
logger.info(
f"Move all joints except '{full_turn_motor}' sequentially through their "
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.arm.record_ranges_of_motion(unknown_range_motors)
range_mins[full_turn_motor] = 0
range_maxes[full_turn_motor] = 4095
self.calibration = {}
for name, motor in self.arm.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=0,
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
self.arm.write_calibration(self.calibration)
self._save_calibration()
print("Calibration saved to", self.calibration_fpath)
def configure(self) -> None:
with self.arm.torque_disabled():
self.arm.configure_motors()
# TODO
def get_observation(self) -> dict[str, Any]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
obs_dict = {}
# Read arm position
start = time.perf_counter()
obs_dict[OBS_STATE] = self.arm.sync_read("Present_Position")
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
# Capture images from cameras
for cam_key, cam in self.cameras.items():
start = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
return obs_dict
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
goal_pos = action
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.arm.sync_read("Present_Position")
goal_present_pos = {key: (g_pos, present_pos[key]) for key, g_pos in goal_pos.items()}
goal_pos = ensure_safe_goal_position(goal_present_pos, self.config.max_relative_target)
self.arm.sync_write("Goal_Position", goal_pos)
return goal_pos
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self.arm.disconnect(self.config.disable_torque_on_disconnect)
for cam in self.cameras.values():
cam.disconnect()
logger.info(f"{self} disconnected.")

View File

@ -0,0 +1,195 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import time
from typing import Any
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from lerobot.common.motors import Motor, MotorCalibration, MotorNormMode
from lerobot.common.motors.feetech import (
FeetechMotorsBus,
OperatingMode,
)
from ..robot import Robot
from .config_hope_jr import HopeJrHandConfig
logger = logging.getLogger(__name__)
class HopeJrHand(Robot):
config_class = HopeJrHandConfig
name = "hope_jr_hand"
def __init__(self, config: HopeJrHandConfig):
super().__init__(config)
self.config = config
self.hand = FeetechMotorsBus(
port=self.config.port,
motors={
# Thumb
"thumb_basel_rotation": Motor(1, "scs0009", MotorNormMode.RANGE_M100_100),
"thumb_mcp": Motor(2, "scs0009", MotorNormMode.RANGE_M100_100),
"thumb_pip": Motor(3, "scs0009", MotorNormMode.RANGE_M100_100),
"thumb_dip": Motor(4, "scs0009", MotorNormMode.RANGE_M100_100),
# Index
"index_thumb_side": Motor(5, "scs0009", MotorNormMode.RANGE_M100_100),
"index_pinky_side": Motor(6, "scs0009", MotorNormMode.RANGE_M100_100),
"index_flexor": Motor(7, "scs0009", MotorNormMode.RANGE_M100_100),
# Middle
"middle_thumb_side": Motor(8, "scs0009", MotorNormMode.RANGE_M100_100),
"middle_pinky_side": Motor(9, "scs0009", MotorNormMode.RANGE_M100_100),
"middle_flexor": Motor(10, "scs0009", MotorNormMode.RANGE_M100_100),
# Ring
"ring_thumb_side": Motor(11, "scs0009", MotorNormMode.RANGE_M100_100),
"ring_pinky_side": Motor(12, "scs0009", MotorNormMode.RANGE_M100_100),
"ring_flexor": Motor(13, "scs0009", MotorNormMode.RANGE_M100_100),
# Pinky
"pinky_thumb_side": Motor(14, "scs0009", MotorNormMode.RANGE_M100_100),
"pinky_pinky_side": Motor(15, "scs0009", MotorNormMode.RANGE_M100_100),
"pinky_flexor": Motor(16, "scs0009", MotorNormMode.RANGE_M100_100),
},
calibration=self.calibration,
protocol_version=1,
)
self.cameras = make_cameras_from_configs(config.cameras)
@property
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.hand),),
"names": {"motors": list(self.hand.motors)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def is_connected(self) -> bool:
# TODO(aliberts): add cam.is_connected for cam in self.cameras
return self.hand.is_connected
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.hand.connect()
if not self.is_calibrated:
self.calibrate()
# Connect the cameras
for cam in self.cameras.values():
cam.connect()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
return self.hand.is_calibrated
def calibrate(self) -> None:
raise NotImplementedError # TODO(aliberts): adapt code below (copied from koch)
logger.info(f"\nRunning calibration of {self}")
self.hand.disable_torque()
for name in self.hand.names:
self.hand.write("Operating_Mode", name, OperatingMode.POSITION.value)
input("Move robot to the middle of its range of motion and press ENTER....")
homing_offsets = self.hand.set_half_turn_homings()
full_turn_motor = "wrist_roll"
unknown_range_motors = [name for name in self.hand.names if name != full_turn_motor]
logger.info(
f"Move all joints except '{full_turn_motor}' sequentially through their "
"entire ranges of motion.\nRecording positions. Press ENTER to stop..."
)
range_mins, range_maxes = self.hand.record_ranges_of_motion(unknown_range_motors)
range_mins[full_turn_motor] = 0
range_maxes[full_turn_motor] = 4095
self.calibration = {}
for name, motor in self.hand.motors.items():
self.calibration[name] = MotorCalibration(
id=motor.id,
drive_mode=0,
homing_offset=homing_offsets[name],
range_min=range_mins[name],
range_max=range_maxes[name],
)
self.hand.write_calibration(self.calibration)
self._save_calibration()
print("Calibration saved to", self.calibration_fpath)
def configure(self) -> None:
with self.hand.torque_disabled():
self.hand.configure_motors()
# TODO
def get_observation(self) -> dict[str, Any]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
obs_dict = {}
# Read hand position
start = time.perf_counter()
obs_dict[OBS_STATE] = self.hand.sync_read("Present_Position")
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read state: {dt_ms:.1f}ms")
# Capture images from cameras
for cam_key, cam in self.cameras.items():
start = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
dt_ms = (time.perf_counter() - start) * 1e3
logger.debug(f"{self} read {cam_key}: {dt_ms:.1f}ms")
return obs_dict
def send_action(self, action: dict[str, Any]) -> dict[str, Any]:
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self.hand.sync_write("Goal_Position", action)
return action
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError(f"{self} is not connected.")
self.hand.disconnect(self.config.disable_torque_on_disconnect)
for cam in self.cameras.values():
cam.disconnect()
logger.info(f"{self} disconnected.")

View File

@ -0,0 +1,3 @@
from .config_homonculus import HomonculusArmConfig, HomonculusGloveConfig
from .homonculus_arm import HomonculusArm
from .homonculus_glove import HomonculusGlove

View File

@ -0,0 +1,35 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from ..config import TeleoperatorConfig
@TeleoperatorConfig.register_subclass("homonculus_glove")
@dataclass
class HomonculusGloveConfig(TeleoperatorConfig):
port: str # Port to connect to the glove
baud_rate: int = 115_200
buffer_size: int = 10 # Number of past values to keep in memory
@TeleoperatorConfig.register_subclass("homonculus_arm")
@dataclass
class HomonculusArmConfig(TeleoperatorConfig):
port: str # Port to connect to the arm
baud_rate: int = 115_200
buffer_size: int = 10 # Number of past values to keep in memory

View File

@ -0,0 +1,425 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import pickle # nosec
import threading
import time
from collections import deque
from enum import Enum
import numpy as np
import serial
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from ..teleoperator import Teleoperator
from .config_homonculus import HomonculusArmConfig
logger = logging.getLogger(__name__)
LOWER_BOUND_LINEAR = -100
UPPER_BOUND_LINEAR = 200
class CalibrationMode(Enum):
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
DEGREE = 0
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
LINEAR = 1
class HomonculusArm(Teleoperator):
config_class = HomonculusArmConfig
name = "homonculus_arm"
def __init__(self, config: HomonculusArmConfig):
self.config = config
self.serial = serial.Serial(config.port, config.baud_rate, timeout=1)
self.buffer_size = config.buffer_size
self.joints = [
"wrist_roll",
"wrist_pitch",
"wrist_yaw",
"elbow_flex",
"shoulder_roll",
"shoulder_yaw",
"shoulder_pitch",
]
# Initialize a buffer (deque) for each joint
self.joints_buffer = {joint: deque(maxlen=self.buffer_size) for joint in self.joints}
# Last read dictionary
self.last_d = dict.fromkeys(self.joints, 100)
# For adaptive EMA, we store a "previous smoothed" state per joint
self.adaptive_ema_state = dict.fromkeys(self.joints)
self.kalman_state = {joint: {"x": None, "P": None} for joint in self.joints}
self.calibration = None
self.thread = threading.Thread(target=self.async_read, daemon=True)
@property
def action_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.joints),),
"names": {"motors": self.joints},
}
@property
def feedback_feature(self) -> dict:
return {}
@property
def is_connected(self) -> bool:
return self.thread.is_alive() and self.serial.is_open
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.serial.open()
self.thread.start()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
raise NotImplementedError # TODO
def calibrate(self) -> None:
raise NotImplementedError # TODO
def configure(self) -> None:
raise NotImplementedError # TODO
def get_action(self) -> dict[str, float]:
raise NotImplementedError # TODO
def send_feedback(self, feedback: dict[str, float]) -> None:
raise NotImplementedError
def disconnect(self) -> None:
if not self.is_connected:
DeviceNotConnectedError(f"{self} is not connected.")
self.thread.join()
self.serial.close()
logger.info(f"{self} disconnected.")
### WIP below ###
@property
def joint_names(self):
return list(self.last_d.keys())
def read(self, motor_names: list[str] | None = None):
"""
Return the most recent (single) values from self.last_d,
optionally applying calibration.
"""
if motor_names is None:
motor_names = self.joint_names
# Get raw (last) values
values = np.array([self.last_d[k] for k in motor_names])
# print(motor_names)
print(values)
# Apply calibration if available
if self.calibration is not None:
values = self.apply_calibration(values, motor_names)
print(values)
return values
def read_running_average(self, motor_names: list[str] | None = None, linearize=False):
"""
Return the AVERAGE of the most recent self.buffer_size (or fewer, if not enough data) readings
for each joint, optionally applying calibration.
"""
if motor_names is None:
motor_names = self.joint_names
# Gather averaged readings from buffers
smoothed_vals = []
for name in motor_names:
buf = self.joint_buffer[name]
if len(buf) == 0:
# If no data has been read yet, fall back to last_d
smoothed_vals.append(self.last_d[name])
else:
# Otherwise, average over the existing buffer
smoothed_vals.append(np.mean(buf))
smoothed_vals = np.array(smoothed_vals, dtype=np.float32)
# Apply calibration if available
if self.calibration is not None:
if False:
for i, joint_name in enumerate(motor_names):
# Re-use the same raw_min / raw_max from the calibration
calib_idx = self.calibration["motor_names"].index(joint_name)
min_reading = self.calibration["start_pos"][calib_idx]
max_reading = self.calibration["end_pos"][calib_idx]
b_value = smoothed_vals[i]
print(joint_name)
if joint_name == "elbow_flex":
print("elbow")
try:
smoothed_vals[i] = int(
min_reading
+ (max_reading - min_reading)
* np.arcsin((b_value - min_reading) / (max_reading - min_reading))
/ (np.pi / 2)
)
except Exception:
print("not working")
print(smoothed_vals)
print("not working")
smoothed_vals = self.apply_calibration(smoothed_vals, motor_names)
return smoothed_vals
def read_kalman_filter(
self, process_noise: float = 1.0, measurement_noise: float = 100.0, motors: list[str] | None = None
) -> np.ndarray:
"""
Return a Kalman-filtered reading for each requested joint.
We store a separate Kalman filter (x, P) per joint. For each new measurement Z:
1) Predict:
x_pred = x (assuming no motion model)
P_pred = P + Q
2) Update:
K = P_pred / (P_pred + R)
x = x_pred + K * (Z - x_pred)
P = (1 - K) * P_pred
Args:
process_noise (float, optional): Process noise (Q). Larger Q means the estimate can change more
freely. Defaults to 1.0.
measurement_noise (float, optional): Measurement noise (R). Larger R means we trust our sensor
less. Defaults to 100.0.
motors (list[str] | None, optional): If None, all joints are filtered. Defaults to None.
Returns:
np.ndarray: Kalman-filtered positions.
"""
if motors is None:
motors = self.joint_names
current_vals = np.array([self.last_d[name] for name in motors], dtype=np.float32)
filtered_vals = np.zeros_like(current_vals)
for i, name in enumerate(motors):
# Retrieve the filter state for this joint
x = self.kalman_state[name]["x"]
p = self.kalman_state[name]["P"]
z = current_vals[i]
# If this is the first reading, initialize
if x is None or p is None:
x = z
p = 1.0 # or some large initial uncertainty
# 1) Predict step
x_pred = x # no velocity model, so x_pred = x
p_pred = p + process_noise
# 2) Update step
kalman_gain = p_pred / (p_pred + measurement_noise) # Kalman gain
x_new = x_pred + kalman_gain * (z - x_pred) # new state estimate
p_new = (1 - kalman_gain) * p_pred # new covariance
# Save back
self.kalman_state[name]["x"] = x_new
self.kalman_state[name]["P"] = p_new
filtered_vals[i] = x_new
if self.calibration is not None:
filtered_vals = self.apply_calibration(filtered_vals, motors)
return filtered_vals
def async_read(self):
"""
Continuously read from the serial buffer in its own thread,
store into `self.last_d` and also append to the rolling buffer (joint_buffer).
"""
while True:
if self.serial.in_waiting > 0:
self.serial.flush()
vals = self.serial.readline().decode("utf-8").strip()
vals = vals.split(" ")
if len(vals) != 7:
continue
try:
vals = [int(val) for val in vals] # remove last digit
except ValueError:
self.serial.flush()
vals = self.serial.readline().decode("utf-8").strip()
vals = vals.split(" ")
vals = [int(val) for val in vals]
d = {
"wrist_roll": vals[0],
"wrist_yaw": vals[1],
"wrist_pitch": vals[2],
"elbow_flex": vals[3],
"shoulder_roll": vals[4],
"shoulder_yaw": vals[5],
"shoulder_pitch": vals[6],
}
# Update the last_d dictionary
self.last_d = d
# Also push these new values into the rolling buffers
for joint_name, joint_val in d.items():
self.joint_buffer[joint_name].append(joint_val)
# Optional: short sleep to avoid busy-loop
# time.sleep(0.001)
def run_calibration(self, robot):
robot.arm_bus.write("Acceleration", 50)
n_joints = len(self.joint_names)
max_open_all = np.zeros(n_joints, dtype=np.float32)
min_open_all = np.zeros(n_joints, dtype=np.float32)
max_closed_all = np.zeros(n_joints, dtype=np.float32)
min_closed_all = np.zeros(n_joints, dtype=np.float32)
for i, jname in enumerate(self.joint_names):
print(f"\n--- Calibrating joint '{jname}' ---")
joint_idx = robot.arm_calib_dict["motor_names"].index(jname)
open_val = robot.arm_calib_dict["start_pos"][joint_idx]
print(f"Commanding {jname} to OPEN position {open_val}...")
robot.arm_bus.write("Goal_Position", [open_val], [jname])
input("Physically verify or adjust the joint. Press Enter when ready to capture...")
open_pos_list = []
for _ in range(100):
all_joints_vals = self.read() # read entire arm
open_pos_list.append(all_joints_vals[i]) # store only this joint
time.sleep(0.01)
# Convert to numpy and track min/max
open_array = np.array(open_pos_list, dtype=np.float32)
max_open_all[i] = open_array.max()
min_open_all[i] = open_array.min()
closed_val = robot.arm_calib_dict["end_pos"][joint_idx]
if jname == "elbow_flex":
closed_val = closed_val - 700
closed_val = robot.arm_calib_dict["end_pos"][joint_idx]
print(f"Commanding {jname} to CLOSED position {closed_val}...")
robot.arm_bus.write("Goal_Position", [closed_val], [jname])
input("Physically verify or adjust the joint. Press Enter when ready to capture...")
closed_pos_list = []
for _ in range(100):
all_joints_vals = self.read()
closed_pos_list.append(all_joints_vals[i])
time.sleep(0.01)
closed_array = np.array(closed_pos_list, dtype=np.float32)
# Some thresholding for closed positions
# closed_array[closed_array < 1000] = 60000
max_closed_all[i] = closed_array.max()
min_closed_all[i] = closed_array.min()
robot.arm_bus.write("Goal_Position", [int((closed_val + open_val) / 2)], [jname])
open_pos = np.maximum(max_open_all, max_closed_all)
closed_pos = np.minimum(min_open_all, min_closed_all)
for i, jname in enumerate(self.joint_names):
if jname not in ["wrist_pitch", "shoulder_pitch"]:
# Swap open/closed for these joints
tmp_pos = open_pos[i]
open_pos[i] = closed_pos[i]
closed_pos[i] = tmp_pos
# Debug prints
print("\nFinal open/closed arrays after any swaps/inversions:")
print(f"open_pos={open_pos}")
print(f"closed_pos={closed_pos}")
homing_offset = [0] * n_joints
drive_mode = [0] * n_joints
calib_modes = [CalibrationMode.LINEAR.name] * n_joints
calib_dict = {
"homing_offset": homing_offset,
"drive_mode": drive_mode,
"start_pos": open_pos,
"end_pos": closed_pos,
"calib_mode": calib_modes,
"motor_names": self.joint_names,
}
file_path = "examples/hopejr/settings/arm_calib.pkl"
if not os.path.exists(file_path):
with open(file_path, "wb") as f:
pickle.dump(calib_dict, f) # TODO(aliberts): use json
print(f"Dictionary saved to {file_path}")
self.set_calibration(calib_dict)
def set_calibration(self, calibration: dict[str, list]):
self.calibration = calibration
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""
Example calibration that linearly maps [start_pos, end_pos] to [0,100].
Extend or modify for your needs.
"""
if motor_names is None:
motor_names = self.joint_names
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Rescale the present position to [0, 100]
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
# Check boundaries
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
# If you want to handle out-of-range differently:
# raise JointOutOfRangeError(msg)
msg = (
f"Wrong motor position range detected for {name}. "
f"Value = {values[i]} %, expected within [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}]"
)
print(msg)
return values

View File

@ -0,0 +1,349 @@
#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import pickle # nosec
import threading
import time
from collections import deque
from enum import Enum
import numpy as np
import serial
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from ..teleoperator import Teleoperator
from .config_homonculus import HomonculusGloveConfig
logger = logging.getLogger(__name__)
LOWER_BOUND_LINEAR = -100
UPPER_BOUND_LINEAR = 200
class CalibrationMode(Enum):
# Joints with rotational motions are expressed in degrees in nominal range of [-180, 180]
DEGREE = 0
# Joints with linear motions (like gripper of Aloha) are expressed in nominal range of [0, 100]
LINEAR = 1
class HomonculusGlove(Teleoperator):
config_class = HomonculusGloveConfig
name = "homonculus_glove"
def __init__(self, config: HomonculusGloveConfig):
self.config = config
self.serial = serial.Serial(config.port, config.baud_rate, timeout=1)
self.buffer_size = config.buffer_size
self.joints = [
"thumb_0",
"thumb_1",
"thumb_2",
"thumb_3",
"index_0",
"index_1",
"index_2",
"middle_0",
"middle_1",
"middle_2",
"ring_0",
"ring_1",
"ring_2",
"pinky_0",
"pinky_1",
"pinky_2",
"battery_voltage", # TODO(aliberts): Should this be in joints?
]
# Initialize a buffer (deque) for each joint
self.joints_buffer = {joint: deque(maxlen=self.buffer_size) for joint in self.joints}
# Last read dictionary
self.last_d = dict.fromkeys(self.joints, 100)
self.calibration = None
self.thread = threading.Thread(target=self.async_read, daemon=True)
@property
def action_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.joints),),
"names": {"motors": self.joints},
}
@property
def feedback_feature(self) -> dict:
return {}
@property
def is_connected(self) -> bool:
return self.thread.is_alive() and self.serial.is_open
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(f"{self} already connected")
self.serial.open()
self.thread.start()
self.configure()
logger.info(f"{self} connected.")
@property
def is_calibrated(self) -> bool:
raise NotImplementedError # TODO
def calibrate(self) -> None:
raise NotImplementedError # TODO
def configure(self) -> None:
raise NotImplementedError # TODO
def get_action(self) -> dict[str, float]:
raise NotImplementedError # TODO
def send_feedback(self, feedback: dict[str, float]) -> None:
raise NotImplementedError
def disconnect(self) -> None:
if not self.is_connected:
DeviceNotConnectedError(f"{self} is not connected.")
self.thread.join()
self.serial.close()
logger.info(f"{self} disconnected.")
### WIP below ###
@property
def joint_names(self):
return list(self.last_d.keys())
def read(self, motor_names: list[str] | None = None):
"""
Return the most recent (single) values from self.last_d,
optionally applying calibration.
"""
if motor_names is None:
motor_names = self.joint_names
# Get raw (last) values
values = np.array([self.last_d[k] for k in motor_names])
print(values)
# Apply calibration if available
if self.calibration is not None:
values = self.apply_calibration(values, motor_names)
print(values)
return values
def read_running_average(self, motor_names: list[str] | None = None, linearize=False):
"""
Return the AVERAGE of the most recent self.buffer_size (or fewer, if not enough data) readings
for each joint, optionally applying calibration.
"""
if motor_names is None:
motor_names = self.joint_names
# Gather averaged readings from buffers
smoothed_vals = []
for name in motor_names:
buf = self.joint_buffer[name]
if len(buf) == 0:
# If no data has been read yet, fall back to last_d
smoothed_vals.append(self.last_d[name])
else:
# Otherwise, average over the existing buffer
smoothed_vals.append(np.mean(buf))
smoothed_vals = np.array(smoothed_vals, dtype=np.float32)
# Apply calibration if available
if self.calibration is not None:
smoothed_vals = self.apply_calibration(smoothed_vals, motor_names)
return smoothed_vals
def async_read(self):
"""
Continuously read from the serial buffer in its own thread,
store into `self.last_d` and also append to the rolling buffer (joint_buffer).
"""
while True:
if self.serial.in_waiting > 0:
self.serial.flush()
vals = self.serial.readline().decode("utf-8").strip()
vals = vals.split(" ")
if len(vals) != 17:
continue
vals = [int(val) for val in vals]
d = {
"thumb_0": vals[0],
"thumb_1": vals[1],
"thumb_2": vals[2],
"thumb_3": vals[3],
"index_0": vals[4],
"index_1": vals[5],
"index_2": vals[6],
"middle_0": vals[7],
"middle_1": vals[8],
"middle_2": vals[9],
"ring_0": vals[10],
"ring_1": vals[11],
"ring_2": vals[12],
"pinky_0": vals[13],
"pinky_1": vals[14],
"pinky_2": vals[15],
"battery_voltage": vals[16],
}
# Update the last_d dictionary
self.last_d = d
# Also push these new values into the rolling buffers
for joint_name, joint_val in d.items():
self.joint_buffer[joint_name].append(joint_val)
def run_calibration(self):
print("\nMove arm to open position")
input("Press Enter to continue...")
open_pos_list = []
for _ in range(100):
open_pos = self.read()
open_pos_list.append(open_pos)
time.sleep(0.01)
open_pos = np.array(open_pos_list)
max_open_pos = open_pos.max(axis=0)
min_open_pos = open_pos.min(axis=0)
print(f"{max_open_pos=}")
print(f"{min_open_pos=}")
print("\nMove arm to closed position")
input("Press Enter to continue...")
closed_pos_list = []
for _ in range(100):
closed_pos = self.read()
closed_pos_list.append(closed_pos)
time.sleep(0.01)
closed_pos = np.array(closed_pos_list)
max_closed_pos = closed_pos.max(axis=0)
closed_pos[closed_pos < 1000] = 60000
min_closed_pos = closed_pos.min(axis=0)
print(f"{max_closed_pos=}")
print(f"{min_closed_pos=}")
open_pos = np.array([max_open_pos, max_closed_pos]).max(axis=0)
closed_pos = np.array([min_open_pos, min_closed_pos]).min(axis=0)
# INVERSION
for i, jname in enumerate(self.joint_names):
if jname in [
"thumb_0",
"thumb_3",
"index_2",
"middle_2",
"ring_2",
"pinky_2",
"index_0",
]:
tmp_pos = open_pos[i]
open_pos[i] = closed_pos[i]
closed_pos[i] = tmp_pos
print()
print(f"{open_pos=}")
print(f"{closed_pos=}")
homing_offset = [0] * len(self.joint_names)
drive_mode = [0] * len(self.joint_names)
calib_modes = [CalibrationMode.LINEAR.name] * len(self.joint_names)
calib_dict = {
"homing_offset": homing_offset,
"drive_mode": drive_mode,
"start_pos": open_pos,
"end_pos": closed_pos,
"calib_mode": calib_modes,
"motor_names": self.joint_names,
}
file_path = "examples/hopejr/settings/hand_calib.pkl"
if not os.path.exists(file_path):
with open(file_path, "wb") as f:
pickle.dump(calib_dict, f) # TODO(aliberts): use json
print(f"Dictionary saved to {file_path}")
# return calib_dict
self.set_calibration(calib_dict)
def set_calibration(self, calibration: dict[str, list]):
self.calibration = calibration
def apply_calibration(self, values: np.ndarray | list, motor_names: list[str] | None):
"""Convert from unsigned int32 joint position range [0, 2**32[ to the universal float32 nominal degree range ]-180.0, 180.0[ with
a "zero position" at 0 degree.
Note: We say "nominal degree range" since the motors can take values outside this range. For instance, 190 degrees, if the motor
rotate more than a half a turn from the zero position. However, most motors can't rotate more than 180 degrees and will stay in this range.
Joints values are original in [0, 2**32[ (unsigned int32). Each motor are expected to complete a full rotation
when given a goal position that is + or - their resolution. For instance, feetech xl330-m077 have a resolution of 4096, and
at any position in their original range, let's say the position 56734, they complete a full rotation clockwise by moving to 60830,
or anticlockwise by moving to 52638. The position in the original range is arbitrary and might change a lot between each motor.
To harmonize between motors of the same model, different robots, or even models of different brands, we propose to work
in the centered nominal degree range ]-180, 180[.
"""
if motor_names is None:
motor_names = self.motor_names
# Convert from unsigned int32 original range [0, 2**32] to signed float32 range
values = values.astype(np.float32)
for i, name in enumerate(motor_names):
calib_idx = self.calibration["motor_names"].index(name)
calib_mode = self.calibration["calib_mode"][calib_idx]
if CalibrationMode[calib_mode] == CalibrationMode.LINEAR:
start_pos = self.calibration["start_pos"][calib_idx]
end_pos = self.calibration["end_pos"][calib_idx]
# Rescale the present position to a nominal range [0, 100] %,
# useful for joints with linear motions like Aloha gripper
values[i] = (values[i] - start_pos) / (end_pos - start_pos) * 100
if (values[i] < LOWER_BOUND_LINEAR) or (values[i] > UPPER_BOUND_LINEAR):
if name == "pinky_1" and (values[i] < LOWER_BOUND_LINEAR):
values[i] = end_pos
else:
msg = (
f"Wrong motor position range detected for {name}. "
f"Expected to be in nominal range of [0, 100] % (a full linear translation), "
f"with a maximum range of [{LOWER_BOUND_LINEAR}, {UPPER_BOUND_LINEAR}] % to account for some imprecision during calibration, "
f"but present value is {values[i]} %. "
"This might be due to a cable connection issue creating an artificial jump in motor values. "
"You need to recalibrate by running: `python lerobot/scripts/control_robot.py calibrate`"
)
print(msg)
# raise JointOutOfRangeError(msg)
return values