Remove/comment obsolete tests
This commit is contained in:
parent
ab23a4fd27
commit
443a9eec88
|
@ -16,7 +16,6 @@
|
|||
import json
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
|
@ -30,15 +29,13 @@ import lerobot
|
|||
from lerobot.common.datasets.compute_stats import (
|
||||
aggregate_stats,
|
||||
compute_stats,
|
||||
get_stats_einops_patterns,
|
||||
)
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, MultiLeRobotDataset
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.utils import (
|
||||
create_branch,
|
||||
flatten_dict,
|
||||
hf_transform_to_torch,
|
||||
load_previous_and_future_frames,
|
||||
unflatten_dict,
|
||||
)
|
||||
from lerobot.common.utils.utils import init_hydra_config, seeded_context
|
||||
|
@ -72,6 +69,7 @@ def test_same_attributes_defined(dataset_create, dataset_init):
|
|||
assert init_attr == create_attr, "Attribute sets do not match between __init__ and .create()"
|
||||
|
||||
|
||||
@pytest.mark.skip("TODO after v2 migration / removing hydra")
|
||||
@pytest.mark.parametrize(
|
||||
"env_name, repo_id, policy_name",
|
||||
lerobot.env_dataset_policy_triplets
|
||||
|
@ -143,162 +141,97 @@ def test_factory(env_name, repo_id, policy_name):
|
|||
assert key in item, f"{key}"
|
||||
|
||||
|
||||
# TODO(alexander-soare): If you're hunting for savings on testing time, this takes about 5 seconds.
|
||||
def test_multilerobotdataset_frames():
|
||||
"""Check that all dataset frames are incorporated."""
|
||||
# Note: use the image variants of the dataset to make the test approx 3x faster.
|
||||
# Note: We really do need three repo_ids here as at some point this caught an issue with the chaining
|
||||
# logic that wouldn't be caught with two repo IDs.
|
||||
repo_ids = [
|
||||
"lerobot/aloha_sim_insertion_human_image",
|
||||
"lerobot/aloha_sim_transfer_cube_human_image",
|
||||
"lerobot/aloha_sim_insertion_scripted_image",
|
||||
]
|
||||
sub_datasets = [LeRobotDataset(repo_id) for repo_id in repo_ids]
|
||||
dataset = MultiLeRobotDataset(repo_ids)
|
||||
assert len(dataset) == sum(len(d) for d in sub_datasets)
|
||||
assert dataset.num_samples == sum(d.num_samples for d in sub_datasets)
|
||||
assert dataset.num_episodes == sum(d.num_episodes for d in sub_datasets)
|
||||
# # TODO(alexander-soare): If you're hunting for savings on testing time, this takes about 5 seconds.
|
||||
# def test_multilerobotdataset_frames():
|
||||
# """Check that all dataset frames are incorporated."""
|
||||
# # Note: use the image variants of the dataset to make the test approx 3x faster.
|
||||
# # Note: We really do need three repo_ids here as at some point this caught an issue with the chaining
|
||||
# # logic that wouldn't be caught with two repo IDs.
|
||||
# repo_ids = [
|
||||
# "lerobot/aloha_sim_insertion_human_image",
|
||||
# "lerobot/aloha_sim_transfer_cube_human_image",
|
||||
# "lerobot/aloha_sim_insertion_scripted_image",
|
||||
# ]
|
||||
# sub_datasets = [LeRobotDataset(repo_id) for repo_id in repo_ids]
|
||||
# dataset = MultiLeRobotDataset(repo_ids)
|
||||
# assert len(dataset) == sum(len(d) for d in sub_datasets)
|
||||
# assert dataset.num_samples == sum(d.num_samples for d in sub_datasets)
|
||||
# assert dataset.num_episodes == sum(d.num_episodes for d in sub_datasets)
|
||||
|
||||
# Run through all items of the LeRobotDatasets in parallel with the items of the MultiLerobotDataset and
|
||||
# check they match.
|
||||
expected_dataset_indices = []
|
||||
for i, sub_dataset in enumerate(sub_datasets):
|
||||
expected_dataset_indices.extend([i] * len(sub_dataset))
|
||||
# # Run through all items of the LeRobotDatasets in parallel with the items of the MultiLerobotDataset and
|
||||
# # check they match.
|
||||
# expected_dataset_indices = []
|
||||
# for i, sub_dataset in enumerate(sub_datasets):
|
||||
# expected_dataset_indices.extend([i] * len(sub_dataset))
|
||||
|
||||
for expected_dataset_index, sub_dataset_item, dataset_item in zip(
|
||||
expected_dataset_indices, chain(*sub_datasets), dataset, strict=True
|
||||
):
|
||||
dataset_index = dataset_item.pop("dataset_index")
|
||||
assert dataset_index == expected_dataset_index
|
||||
assert sub_dataset_item.keys() == dataset_item.keys()
|
||||
for k in sub_dataset_item:
|
||||
assert torch.equal(sub_dataset_item[k], dataset_item[k])
|
||||
# for expected_dataset_index, sub_dataset_item, dataset_item in zip(
|
||||
# expected_dataset_indices, chain(*sub_datasets), dataset, strict=True
|
||||
# ):
|
||||
# dataset_index = dataset_item.pop("dataset_index")
|
||||
# assert dataset_index == expected_dataset_index
|
||||
# assert sub_dataset_item.keys() == dataset_item.keys()
|
||||
# for k in sub_dataset_item:
|
||||
# assert torch.equal(sub_dataset_item[k], dataset_item[k])
|
||||
|
||||
|
||||
def test_compute_stats_on_xarm():
|
||||
"""Check that the statistics are computed correctly according to the stats_patterns property.
|
||||
# TODO(aliberts, rcadene): Refactor and move this to a tests/test_compute_stats.py
|
||||
# def test_compute_stats_on_xarm():
|
||||
# """Check that the statistics are computed correctly according to the stats_patterns property.
|
||||
|
||||
We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
|
||||
because we are working with a small dataset).
|
||||
"""
|
||||
dataset = LeRobotDataset("lerobot/xarm_lift_medium")
|
||||
# We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
|
||||
# because we are working with a small dataset).
|
||||
# """
|
||||
# dataset = LeRobotDataset("lerobot/xarm_lift_medium")
|
||||
|
||||
# reduce size of dataset sample on which stats compute is tested to 10 frames
|
||||
dataset.hf_dataset = dataset.hf_dataset.select(range(10))
|
||||
# # reduce size of dataset sample on which stats compute is tested to 10 frames
|
||||
# dataset.hf_dataset = dataset.hf_dataset.select(range(10))
|
||||
|
||||
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
||||
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
|
||||
# dataset into even batches.
|
||||
computed_stats = compute_stats(dataset, batch_size=int(len(dataset) * 0.25), num_workers=0)
|
||||
# # Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
||||
# # computation of the statistics. While doing this, we also make sure it works when we don't divide the
|
||||
# # dataset into even batches.
|
||||
# computed_stats = compute_stats(dataset, batch_size=int(len(dataset) * 0.25), num_workers=0)
|
||||
|
||||
# get einops patterns to aggregate batches and compute statistics
|
||||
stats_patterns = get_stats_einops_patterns(dataset)
|
||||
# # get einops patterns to aggregate batches and compute statistics
|
||||
# stats_patterns = get_stats_einops_patterns(dataset)
|
||||
|
||||
# get all frames from the dataset in the same dtype and range as during compute_stats
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=0,
|
||||
batch_size=len(dataset),
|
||||
shuffle=False,
|
||||
)
|
||||
full_batch = next(iter(dataloader))
|
||||
# # get all frames from the dataset in the same dtype and range as during compute_stats
|
||||
# dataloader = torch.utils.data.DataLoader(
|
||||
# dataset,
|
||||
# num_workers=0,
|
||||
# batch_size=len(dataset),
|
||||
# shuffle=False,
|
||||
# )
|
||||
# full_batch = next(iter(dataloader))
|
||||
|
||||
# compute stats based on all frames from the dataset without any batching
|
||||
expected_stats = {}
|
||||
for k, pattern in stats_patterns.items():
|
||||
full_batch[k] = full_batch[k].float()
|
||||
expected_stats[k] = {}
|
||||
expected_stats[k]["mean"] = einops.reduce(full_batch[k], pattern, "mean")
|
||||
expected_stats[k]["std"] = torch.sqrt(
|
||||
einops.reduce((full_batch[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
|
||||
)
|
||||
expected_stats[k]["min"] = einops.reduce(full_batch[k], pattern, "min")
|
||||
expected_stats[k]["max"] = einops.reduce(full_batch[k], pattern, "max")
|
||||
# # compute stats based on all frames from the dataset without any batching
|
||||
# expected_stats = {}
|
||||
# for k, pattern in stats_patterns.items():
|
||||
# full_batch[k] = full_batch[k].float()
|
||||
# expected_stats[k] = {}
|
||||
# expected_stats[k]["mean"] = einops.reduce(full_batch[k], pattern, "mean")
|
||||
# expected_stats[k]["std"] = torch.sqrt(
|
||||
# einops.reduce((full_batch[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
|
||||
# )
|
||||
# expected_stats[k]["min"] = einops.reduce(full_batch[k], pattern, "min")
|
||||
# expected_stats[k]["max"] = einops.reduce(full_batch[k], pattern, "max")
|
||||
|
||||
# test computed stats match expected stats
|
||||
for k in stats_patterns:
|
||||
assert torch.allclose(computed_stats[k]["mean"], expected_stats[k]["mean"])
|
||||
assert torch.allclose(computed_stats[k]["std"], expected_stats[k]["std"])
|
||||
assert torch.allclose(computed_stats[k]["min"], expected_stats[k]["min"])
|
||||
assert torch.allclose(computed_stats[k]["max"], expected_stats[k]["max"])
|
||||
# # test computed stats match expected stats
|
||||
# for k in stats_patterns:
|
||||
# assert torch.allclose(computed_stats[k]["mean"], expected_stats[k]["mean"])
|
||||
# assert torch.allclose(computed_stats[k]["std"], expected_stats[k]["std"])
|
||||
# assert torch.allclose(computed_stats[k]["min"], expected_stats[k]["min"])
|
||||
# assert torch.allclose(computed_stats[k]["max"], expected_stats[k]["max"])
|
||||
|
||||
# load stats used during training which are expected to match the ones returned by computed_stats
|
||||
loaded_stats = dataset.stats # noqa: F841
|
||||
# # load stats used during training which are expected to match the ones returned by computed_stats
|
||||
# loaded_stats = dataset.stats # noqa: F841
|
||||
|
||||
# TODO(rcadene): we can't test this because expected_stats is computed on a subset
|
||||
# # test loaded stats match expected stats
|
||||
# for k in stats_patterns:
|
||||
# assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"])
|
||||
# assert torch.allclose(loaded_stats[k]["std"], expected_stats[k]["std"])
|
||||
# assert torch.allclose(loaded_stats[k]["min"], expected_stats[k]["min"])
|
||||
# assert torch.allclose(loaded_stats[k]["max"], expected_stats[k]["max"])
|
||||
|
||||
|
||||
def test_load_previous_and_future_frames_within_tolerance():
|
||||
hf_dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_index": [0, 0, 0, 0, 0],
|
||||
}
|
||||
)
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
episode_data_index = {
|
||||
"from": torch.tensor([0]),
|
||||
"to": torch.tensor([5]),
|
||||
}
|
||||
delta_timestamps = {"index": [-0.2, 0, 0.139]}
|
||||
tol = 0.04
|
||||
item = hf_dataset[2]
|
||||
item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
|
||||
data, is_pad = item["index"], item["index_is_pad"]
|
||||
assert torch.equal(data, torch.tensor([0, 2, 3])), "Data does not match expected values"
|
||||
assert not is_pad.any(), "Unexpected padding detected"
|
||||
|
||||
|
||||
def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range():
|
||||
hf_dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_index": [0, 0, 0, 0, 0],
|
||||
}
|
||||
)
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
episode_data_index = {
|
||||
"from": torch.tensor([0]),
|
||||
"to": torch.tensor([5]),
|
||||
}
|
||||
delta_timestamps = {"index": [-0.2, 0, 0.141]}
|
||||
tol = 0.04
|
||||
item = hf_dataset[2]
|
||||
with pytest.raises(AssertionError):
|
||||
load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
|
||||
|
||||
|
||||
def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range():
|
||||
hf_dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_index": [0, 0, 0, 0, 0],
|
||||
}
|
||||
)
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
episode_data_index = {
|
||||
"from": torch.tensor([0]),
|
||||
"to": torch.tensor([5]),
|
||||
}
|
||||
delta_timestamps = {"index": [-0.3, -0.24, 0, 0.26, 0.3]}
|
||||
tol = 0.04
|
||||
item = hf_dataset[2]
|
||||
item = load_previous_and_future_frames(item, hf_dataset, episode_data_index, delta_timestamps, tol)
|
||||
data, is_pad = item["index"], item["index_is_pad"]
|
||||
assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values"
|
||||
assert torch.equal(
|
||||
is_pad, torch.tensor([True, False, False, True, True])
|
||||
), "Padding does not match expected values"
|
||||
# # TODO(rcadene): we can't test this because expected_stats is computed on a subset
|
||||
# # # test loaded stats match expected stats
|
||||
# # for k in stats_patterns:
|
||||
# # assert torch.allclose(loaded_stats[k]["mean"], expected_stats[k]["mean"])
|
||||
# # assert torch.allclose(loaded_stats[k]["std"], expected_stats[k]["std"])
|
||||
# # assert torch.allclose(loaded_stats[k]["min"], expected_stats[k]["min"])
|
||||
# # assert torch.allclose(loaded_stats[k]["max"], expected_stats[k]["max"])
|
||||
|
||||
|
||||
def test_flatten_unflatten_dict():
|
||||
|
@ -324,6 +257,7 @@ def test_flatten_unflatten_dict():
|
|||
assert json.dumps(original_d, sort_keys=True) == json.dumps(d, sort_keys=True), f"{original_d} != {d}"
|
||||
|
||||
|
||||
@pytest.mark.skip("TODO after v2 migration / removing hydra")
|
||||
@pytest.mark.parametrize(
|
||||
"repo_id",
|
||||
[
|
||||
|
@ -395,6 +329,7 @@ def test_backward_compatibility(repo_id):
|
|||
# load_and_compare(i - 1)
|
||||
|
||||
|
||||
@pytest.mark.skip("TODO after v2 migration / removing hydra")
|
||||
def test_aggregate_stats():
|
||||
"""Makes 3 basic datasets and checks that aggregate stats are computed correctly."""
|
||||
with seeded_context(0):
|
||||
|
|
Loading…
Reference in New Issue