Merge branch '2025_02_20_add_dexvla' of https://github.com/JayceWen/lerobot into 2025_02_20_add_dexvla
This commit is contained in:
commit
463add8fc8
|
@ -13,6 +13,7 @@ from timm.models.vision_transformer import Mlp, use_fused_attn
|
||||||
from torch.jit import Final
|
from torch.jit import Final
|
||||||
from transformers import AutoModel
|
from transformers import AutoModel
|
||||||
from transformers.modeling_utils import PreTrainedModel
|
from transformers.modeling_utils import PreTrainedModel
|
||||||
|
|
||||||
from .configuration_scaledp import ScaleDPPolicyConfig
|
from .configuration_scaledp import ScaleDPPolicyConfig
|
||||||
|
|
||||||
_logger = logging.getLogger(__name__)
|
_logger = logging.getLogger(__name__)
|
||||||
|
@ -193,8 +194,6 @@ class FinalLayer(nn.Module):
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class ScaleDP(PreTrainedModel):
|
class ScaleDP(PreTrainedModel):
|
||||||
"""
|
"""
|
||||||
Diffusion models with a Transformer backbone.
|
Diffusion models with a Transformer backbone.
|
||||||
|
|
|
@ -1377,7 +1377,9 @@ class Qwen2VLModel(Qwen2VLPreTrainedModel):
|
||||||
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
||||||
)
|
)
|
||||||
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
||||||
if config.sliding_window is not None and (not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length):
|
if config.sliding_window is not None and (
|
||||||
|
not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length
|
||||||
|
):
|
||||||
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
||||||
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
||||||
sliding_attend_mask = torch.arange(target_length, device=device) <= (
|
sliding_attend_mask = torch.arange(target_length, device=device) <= (
|
||||||
|
|
Loading…
Reference in New Issue