Fix stats override in ACT config (#161)
This commit is contained in:
parent
e89521dfa0
commit
473345fdf6
|
@ -3,6 +3,12 @@
|
||||||
seed: 1000
|
seed: 1000
|
||||||
dataset_repo_id: lerobot/aloha_sim_insertion_human
|
dataset_repo_id: lerobot/aloha_sim_insertion_human
|
||||||
|
|
||||||
|
override_dataset_stats:
|
||||||
|
observation.images.top:
|
||||||
|
# stats from imagenet, since we use a pretrained vision model
|
||||||
|
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
||||||
|
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
||||||
|
|
||||||
training:
|
training:
|
||||||
offline_steps: 80000
|
offline_steps: 80000
|
||||||
online_steps: 0
|
online_steps: 0
|
||||||
|
@ -18,12 +24,6 @@ training:
|
||||||
grad_clip_norm: 10
|
grad_clip_norm: 10
|
||||||
online_steps_between_rollouts: 1
|
online_steps_between_rollouts: 1
|
||||||
|
|
||||||
override_dataset_stats:
|
|
||||||
observation.images.top:
|
|
||||||
# stats from imagenet, since we use a pretrained vision model
|
|
||||||
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
|
|
||||||
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
|
|
||||||
|
|
||||||
delta_timestamps:
|
delta_timestamps:
|
||||||
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
|
||||||
|
|
||||||
|
|
|
@ -7,6 +7,20 @@
|
||||||
seed: 100000
|
seed: 100000
|
||||||
dataset_repo_id: lerobot/pusht
|
dataset_repo_id: lerobot/pusht
|
||||||
|
|
||||||
|
override_dataset_stats:
|
||||||
|
# TODO(rcadene, alexander-soare): should we remove image stats as well? do we use a pretrained vision model?
|
||||||
|
observation.image:
|
||||||
|
mean: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
|
||||||
|
std: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
|
||||||
|
# TODO(rcadene, alexander-soare): we override state and action stats to use the same as the pretrained model
|
||||||
|
# from the original codebase, but we should remove these and train our own pretrained model
|
||||||
|
observation.state:
|
||||||
|
min: [13.456424, 32.938293]
|
||||||
|
max: [496.14618, 510.9579]
|
||||||
|
action:
|
||||||
|
min: [12.0, 25.0]
|
||||||
|
max: [511.0, 511.0]
|
||||||
|
|
||||||
training:
|
training:
|
||||||
offline_steps: 200000
|
offline_steps: 200000
|
||||||
online_steps: 0
|
online_steps: 0
|
||||||
|
@ -34,20 +48,6 @@ eval:
|
||||||
n_episodes: 50
|
n_episodes: 50
|
||||||
batch_size: 50
|
batch_size: 50
|
||||||
|
|
||||||
override_dataset_stats:
|
|
||||||
# TODO(rcadene, alexander-soare): should we remove image stats as well? do we use a pretrained vision model?
|
|
||||||
observation.image:
|
|
||||||
mean: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
|
|
||||||
std: [[[0.5]], [[0.5]], [[0.5]]] # (c,1,1)
|
|
||||||
# TODO(rcadene, alexander-soare): we override state and action stats to use the same as the pretrained model
|
|
||||||
# from the original codebase, but we should remove these and train our own pretrained model
|
|
||||||
observation.state:
|
|
||||||
min: [13.456424, 32.938293]
|
|
||||||
max: [496.14618, 510.9579]
|
|
||||||
action:
|
|
||||||
min: [12.0, 25.0]
|
|
||||||
max: [511.0, 511.0]
|
|
||||||
|
|
||||||
policy:
|
policy:
|
||||||
name: diffusion
|
name: diffusion
|
||||||
|
|
||||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue