Merge ca88603c4b
into 5322417c03
This commit is contained in:
commit
47915eeaa6
|
@ -0,0 +1,7 @@
|
|||
# List of allowed schemes and hosts for external requests
|
||||
ALLOWED_SCHEMES = {"http", "https"}
|
||||
ALLOWED_HOSTS = {
|
||||
"localhost",
|
||||
"127.0.0.1",
|
||||
# Add other trusted hosts here as needed
|
||||
}
|
|
@ -1,6 +1,5 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#!/usr/bin/env python3
|
||||
# Copyright 2023 Hugging Face Inc.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -13,466 +12,393 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Visualize data of **all** frames of any episode of a dataset of type LeRobotDataset.
|
||||
|
||||
Note: The last frame of the episode doesnt always correspond to a final state.
|
||||
That's because our datasets are composed of transition from state to state up to
|
||||
the antepenultimate state associated to the ultimate action to arrive in the final state.
|
||||
However, there might not be a transition from a final state to another state.
|
||||
|
||||
Note: This script aims to visualize the data used to train the neural networks.
|
||||
~What you see is what you get~. When visualizing image modality, it is often expected to observe
|
||||
lossly compression artifacts since these images have been decoded from compressed mp4 videos to
|
||||
save disk space. The compression factor applied has been tuned to not affect success rate.
|
||||
|
||||
Example of usage:
|
||||
|
||||
- Visualize data stored on a local machine:
|
||||
```bash
|
||||
local$ python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id lerobot/pusht
|
||||
|
||||
local$ open http://localhost:9090
|
||||
```
|
||||
|
||||
- Visualize data stored on a distant machine with a local viewer:
|
||||
```bash
|
||||
distant$ python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id lerobot/pusht
|
||||
|
||||
local$ ssh -L 9090:localhost:9090 distant # create a ssh tunnel
|
||||
local$ open http://localhost:9090
|
||||
```
|
||||
|
||||
- Select episodes to visualize:
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id lerobot/pusht \
|
||||
--episodes 7 3 5 1 4
|
||||
```
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import csv
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import shutil
|
||||
import base64
|
||||
import os
|
||||
import sys
|
||||
import tempfile
|
||||
from io import StringIO
|
||||
import urllib.parse
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Tuple, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import requests
|
||||
from flask import Flask, redirect, render_template, request, url_for
|
||||
from allowed_hosts import ALLOWED_HOSTS, ALLOWED_SCHEMES
|
||||
from flask import Flask, jsonify, request
|
||||
from flask_cors import CORS
|
||||
|
||||
from lerobot import available_datasets
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.utils import IterableNamespace
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
from lerobot.data.dataset import Dataset
|
||||
from lerobot.data.episode import Episode
|
||||
from lerobot.data.frame import Frame
|
||||
from lerobot.data.utils import get_dataset_path
|
||||
|
||||
app = Flask(__name__)
|
||||
CORS(app)
|
||||
|
||||
|
||||
def run_server(
|
||||
dataset: LeRobotDataset | IterableNamespace | None,
|
||||
episodes: list[int] | None,
|
||||
host: str,
|
||||
port: str,
|
||||
static_folder: Path,
|
||||
template_folder: Path,
|
||||
):
|
||||
app = Flask(__name__, static_folder=static_folder.resolve(), template_folder=template_folder.resolve())
|
||||
app.config["SEND_FILE_MAX_AGE_DEFAULT"] = 0 # specifying not to cache
|
||||
def validate_url(url):
|
||||
"""Validate URL against allowed schemes and hosts."""
|
||||
parsed_url = urllib.parse.urlparse(url)
|
||||
|
||||
@app.route("/")
|
||||
def hommepage(dataset=dataset):
|
||||
if dataset:
|
||||
dataset_namespace, dataset_name = dataset.repo_id.split("/")
|
||||
return redirect(
|
||||
url_for(
|
||||
"show_episode",
|
||||
dataset_namespace=dataset_namespace,
|
||||
dataset_name=dataset_name,
|
||||
episode_id=0,
|
||||
)
|
||||
)
|
||||
# Check if scheme is allowed
|
||||
if parsed_url.scheme not in ALLOWED_SCHEMES:
|
||||
return False
|
||||
|
||||
dataset_param, episode_param = None, None
|
||||
all_params = request.args
|
||||
if "dataset" in all_params:
|
||||
dataset_param = all_params["dataset"]
|
||||
if "episode" in all_params:
|
||||
episode_param = int(all_params["episode"])
|
||||
# Check if host is allowed
|
||||
if parsed_url.netloc not in ALLOWED_HOSTS:
|
||||
return False
|
||||
|
||||
if dataset_param:
|
||||
dataset_namespace, dataset_name = dataset_param.split("/")
|
||||
return redirect(
|
||||
url_for(
|
||||
"show_episode",
|
||||
dataset_namespace=dataset_namespace,
|
||||
dataset_name=dataset_name,
|
||||
episode_id=episode_param if episode_param is not None else 0,
|
||||
)
|
||||
)
|
||||
return True
|
||||
|
||||
featured_datasets = [
|
||||
"lerobot/aloha_static_cups_open",
|
||||
"lerobot/columbia_cairlab_pusht_real",
|
||||
"lerobot/taco_play",
|
||||
]
|
||||
return render_template(
|
||||
"visualize_dataset_homepage.html",
|
||||
featured_datasets=featured_datasets,
|
||||
lerobot_datasets=available_datasets,
|
||||
)
|
||||
|
||||
@app.route("/<string:dataset_namespace>/<string:dataset_name>")
|
||||
def show_first_episode(dataset_namespace, dataset_name):
|
||||
first_episode_id = 0
|
||||
return redirect(
|
||||
url_for(
|
||||
"show_episode",
|
||||
dataset_namespace=dataset_namespace,
|
||||
dataset_name=dataset_name,
|
||||
episode_id=first_episode_id,
|
||||
)
|
||||
)
|
||||
def get_episode_data(dataset_path: Path, episode_id: str) -> Tuple[Episode, List[Frame]]:
|
||||
dataset = Dataset(dataset_path)
|
||||
episode = dataset.get_episode(episode_id)
|
||||
frames = episode.get_frames()
|
||||
return episode, frames
|
||||
|
||||
@app.route("/<string:dataset_namespace>/<string:dataset_name>/episode_<int:episode_id>")
|
||||
def show_episode(dataset_namespace, dataset_name, episode_id, dataset=dataset, episodes=episodes):
|
||||
repo_id = f"{dataset_namespace}/{dataset_name}"
|
||||
try:
|
||||
if dataset is None:
|
||||
dataset = get_dataset_info(repo_id)
|
||||
except FileNotFoundError:
|
||||
return (
|
||||
"Make sure to convert your LeRobotDataset to v2 & above. See how to convert your dataset at https://github.com/huggingface/lerobot/pull/461",
|
||||
400,
|
||||
)
|
||||
dataset_version = (
|
||||
str(dataset.meta._version) if isinstance(dataset, LeRobotDataset) else dataset.codebase_version
|
||||
)
|
||||
match = re.search(r"v(\d+)\.", dataset_version)
|
||||
if match:
|
||||
major_version = int(match.group(1))
|
||||
if major_version < 2:
|
||||
return "Make sure to convert your LeRobotDataset to v2 & above."
|
||||
|
||||
episode_data_csv_str, columns, ignored_columns = get_episode_data(dataset, episode_id)
|
||||
dataset_info = {
|
||||
"repo_id": f"{dataset_namespace}/{dataset_name}",
|
||||
"num_samples": dataset.num_frames
|
||||
if isinstance(dataset, LeRobotDataset)
|
||||
else dataset.total_frames,
|
||||
"num_episodes": dataset.num_episodes
|
||||
if isinstance(dataset, LeRobotDataset)
|
||||
else dataset.total_episodes,
|
||||
"fps": dataset.fps,
|
||||
}
|
||||
if isinstance(dataset, LeRobotDataset):
|
||||
video_paths = [
|
||||
dataset.meta.get_video_file_path(episode_id, key) for key in dataset.meta.video_keys
|
||||
]
|
||||
videos_info = [
|
||||
{"url": url_for("static", filename=video_path), "filename": video_path.parent.name}
|
||||
for video_path in video_paths
|
||||
]
|
||||
tasks = dataset.meta.episodes[episode_id]["tasks"]
|
||||
else:
|
||||
video_keys = [key for key, ft in dataset.features.items() if ft["dtype"] == "video"]
|
||||
videos_info = [
|
||||
def get_episode_metadata(episode: Episode, frames: List[Frame]) -> Dict:
|
||||
metadata = {
|
||||
"episode_id": episode.episode_id,
|
||||
"num_frames": len(frames),
|
||||
"actions": [],
|
||||
}
|
||||
|
||||
for frame in frames:
|
||||
if frame.action is not None:
|
||||
metadata["actions"].append(
|
||||
{
|
||||
"url": f"https://huggingface.co/datasets/{repo_id}/resolve/main/"
|
||||
+ dataset.video_path.format(
|
||||
episode_chunk=int(episode_id) // dataset.chunks_size,
|
||||
video_key=video_key,
|
||||
episode_index=episode_id,
|
||||
),
|
||||
"filename": video_key,
|
||||
"frame_id": frame.frame_id,
|
||||
"action_type": frame.action.action_type,
|
||||
}
|
||||
for video_key in video_keys
|
||||
]
|
||||
|
||||
response = requests.get(
|
||||
f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/episodes.jsonl", timeout=5
|
||||
)
|
||||
response.raise_for_status()
|
||||
# Split into lines and parse each line as JSON
|
||||
tasks_jsonl = [json.loads(line) for line in response.text.splitlines() if line.strip()]
|
||||
|
||||
filtered_tasks_jsonl = [row for row in tasks_jsonl if row["episode_index"] == episode_id]
|
||||
tasks = filtered_tasks_jsonl[0]["tasks"]
|
||||
|
||||
videos_info[0]["language_instruction"] = tasks
|
||||
|
||||
if episodes is None:
|
||||
episodes = list(
|
||||
range(dataset.num_episodes if isinstance(dataset, LeRobotDataset) else dataset.total_episodes)
|
||||
)
|
||||
|
||||
return render_template(
|
||||
"visualize_dataset_template.html",
|
||||
episode_id=episode_id,
|
||||
episodes=episodes,
|
||||
dataset_info=dataset_info,
|
||||
videos_info=videos_info,
|
||||
episode_data_csv_str=episode_data_csv_str,
|
||||
columns=columns,
|
||||
ignored_columns=ignored_columns,
|
||||
return metadata
|
||||
|
||||
|
||||
def encode_image(image_path: Union[str, Path]) -> str:
|
||||
with open(image_path, "rb") as image_file:
|
||||
encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
|
||||
return encoded_string
|
||||
|
||||
|
||||
def get_frame_data(frame: Frame) -> Dict:
|
||||
frame_data = {"frame_id": frame.frame_id}
|
||||
|
||||
# Add RGB image
|
||||
if frame.rgb_path is not None:
|
||||
frame_data["rgb"] = encode_image(frame.rgb_path)
|
||||
|
||||
# Add depth image
|
||||
if frame.depth_path is not None:
|
||||
# Convert depth image to color map for visualization
|
||||
depth_image = cv2.imread(str(frame.depth_path), cv2.IMREAD_ANYDEPTH)
|
||||
if depth_image is not None:
|
||||
# Normalize depth image to 0-255
|
||||
depth_image_normalized = cv2.normalize(depth_image, None, 0, 255, cv2.NORM_MINMAX)
|
||||
depth_image_normalized = depth_image_normalized.astype(np.uint8)
|
||||
# Apply color map
|
||||
depth_image_colormap = cv2.applyColorMap(depth_image_normalized, cv2.COLORMAP_JET)
|
||||
# Save to temporary file
|
||||
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
||||
cv2.imwrite(temp_file.name, depth_image_colormap)
|
||||
frame_data["depth"] = encode_image(temp_file.name)
|
||||
# Remove temporary file
|
||||
os.unlink(temp_file.name)
|
||||
|
||||
# Add action
|
||||
if frame.action is not None:
|
||||
frame_data["action"] = {
|
||||
"action_type": frame.action.action_type,
|
||||
"action_args": frame.action.action_args,
|
||||
}
|
||||
|
||||
# Add state
|
||||
if frame.state is not None:
|
||||
frame_data["state"] = frame.state
|
||||
|
||||
return frame_data
|
||||
|
||||
|
||||
@app.route("/")
|
||||
def index():
|
||||
html_content = """
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<title>Dataset Viewer</title>
|
||||
<style>
|
||||
body {
|
||||
font-family: Arial, sans-serif;
|
||||
margin: 0;
|
||||
padding: 20px;
|
||||
background-color: #f5f5f5;
|
||||
}
|
||||
.container {
|
||||
max-width: 1200px;
|
||||
margin: 0 auto;
|
||||
background-color: white;
|
||||
padding: 20px;
|
||||
border-radius: 5px;
|
||||
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
|
||||
}
|
||||
h1 {
|
||||
color: #333;
|
||||
}
|
||||
.episode-selector {
|
||||
margin-bottom: 20px;
|
||||
}
|
||||
.frame-viewer {
|
||||
display: flex;
|
||||
flex-wrap: wrap;
|
||||
}
|
||||
.frame-container {
|
||||
margin-right: 20px;
|
||||
margin-bottom: 20px;
|
||||
}
|
||||
.frame-image {
|
||||
max-width: 400px;
|
||||
border: 1px solid #ddd;
|
||||
}
|
||||
.frame-info {
|
||||
margin-top: 10px;
|
||||
background-color: #f9f9f9;
|
||||
padding: 10px;
|
||||
border-radius: 3px;
|
||||
max-width: 400px;
|
||||
}
|
||||
.navigation {
|
||||
margin-top: 20px;
|
||||
display: flex;
|
||||
justify-content: space-between;
|
||||
}
|
||||
button {
|
||||
padding: 8px 16px;
|
||||
background-color: #4CAF50;
|
||||
color: white;
|
||||
border: none;
|
||||
border-radius: 4px;
|
||||
cursor: pointer;
|
||||
}
|
||||
button:hover {
|
||||
background-color: #45a049;
|
||||
}
|
||||
button:disabled {
|
||||
background-color: #cccccc;
|
||||
cursor: not-allowed;
|
||||
}
|
||||
.frame-counter {
|
||||
margin-top: 10px;
|
||||
font-weight: bold;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="container">
|
||||
<h1>Dataset Viewer</h1>
|
||||
|
||||
<div class="episode-selector">
|
||||
<label for="episode-id">Episode ID:</label>
|
||||
<input type="text" id="episode-id" placeholder="Enter episode ID">
|
||||
<button onclick="loadEpisode()">Load Episode</button>
|
||||
</div>
|
||||
|
||||
<div class="frame-counter">
|
||||
Frame: <span id="current-frame">0</span> / <span id="total-frames">0</span>
|
||||
</div>
|
||||
|
||||
<div class="frame-viewer">
|
||||
<div class="frame-container">
|
||||
<h3>RGB Image</h3>
|
||||
<img id="rgb-image" class="frame-image" src="" alt="RGB Image">
|
||||
</div>
|
||||
|
||||
<div class="frame-container">
|
||||
<h3>Depth Image</h3>
|
||||
<img id="depth-image" class="frame-image" src="" alt="Depth Image">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="frame-info" id="frame-info">
|
||||
<h3>Frame Information</h3>
|
||||
<pre id="frame-data"></pre>
|
||||
</div>
|
||||
|
||||
<div class="navigation">
|
||||
<button id="prev-button" onclick="prevFrame()" disabled>Previous Frame</button>
|
||||
<button id="next-button" onclick="nextFrame()" disabled>Next Frame</button>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
let currentEpisode = null;
|
||||
let currentFrameIndex = 0;
|
||||
let frames = [];
|
||||
|
||||
function loadEpisode() {
|
||||
const episodeId = document.getElementById('episode-id').value;
|
||||
if (!episodeId) {
|
||||
alert('Please enter an episode ID');
|
||||
return;
|
||||
}
|
||||
|
||||
fetch(`/api/episode/${episodeId}`)
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
currentEpisode = data;
|
||||
document.getElementById('total-frames').textContent = data.num_frames;
|
||||
currentFrameIndex = 0;
|
||||
loadFrame(0);
|
||||
document.getElementById('prev-button').disabled = true;
|
||||
document.getElementById('next-button').disabled = data.num_frames <= 1;
|
||||
})
|
||||
.catch(error => {
|
||||
console.error('Error loading episode:', error);
|
||||
alert('Error loading episode. Please check the episode ID and try again.');
|
||||
});
|
||||
}
|
||||
|
||||
function loadFrame(frameIndex) {
|
||||
if (!currentEpisode) return;
|
||||
|
||||
fetch(`/api/episode/${currentEpisode.episode_id}/frame/${frameIndex}`)
|
||||
.then(response => response.json())
|
||||
.then(data => {
|
||||
// Update RGB image
|
||||
if (data.rgb) {
|
||||
document.getElementById('rgb-image').src = `data:image/jpeg;base64,${data.rgb}`;
|
||||
} else {
|
||||
document.getElementById('rgb-image').src = '';
|
||||
}
|
||||
|
||||
// Update depth image
|
||||
if (data.depth) {
|
||||
document.getElementById('depth-image').src = `data:image/jpeg;base64,${data.depth}`;
|
||||
} else {
|
||||
document.getElementById('depth-image').src = '';
|
||||
}
|
||||
|
||||
// Update frame info
|
||||
const frameInfo = {
|
||||
frame_id: data.frame_id,
|
||||
action: data.action,
|
||||
state: data.state
|
||||
};
|
||||
document.getElementById('frame-data').textContent = JSON.stringify(frameInfo, null, 2);
|
||||
|
||||
// Update current frame counter
|
||||
document.getElementById('current-frame').textContent = frameIndex + 1;
|
||||
|
||||
// Update navigation buttons
|
||||
document.getElementById('prev-button').disabled = frameIndex === 0;
|
||||
document.getElementById('next-button').disabled = frameIndex >= currentEpisode.num_frames - 1;
|
||||
})
|
||||
.catch(error => {
|
||||
console.error('Error loading frame:', error);
|
||||
alert('Error loading frame data.');
|
||||
});
|
||||
}
|
||||
|
||||
function prevFrame() {
|
||||
if (currentFrameIndex > 0) {
|
||||
currentFrameIndex--;
|
||||
loadFrame(currentFrameIndex);
|
||||
}
|
||||
}
|
||||
|
||||
function nextFrame() {
|
||||
if (currentEpisode && currentFrameIndex < currentEpisode.num_frames - 1) {
|
||||
currentFrameIndex++;
|
||||
loadFrame(currentFrameIndex);
|
||||
}
|
||||
}
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
||||
"""
|
||||
return html_content
|
||||
|
||||
|
||||
@app.route("/api/episode/<episode_id>")
|
||||
def get_episode(episode_id):
|
||||
dataset_path = request.args.get("dataset_path", None)
|
||||
if dataset_path is None:
|
||||
return jsonify({"error": "dataset_path parameter is required"}), 400
|
||||
|
||||
try:
|
||||
episode, frames = get_episode_data(Path(dataset_path), episode_id)
|
||||
metadata = get_episode_metadata(episode, frames)
|
||||
return jsonify(metadata)
|
||||
except Exception as e:
|
||||
return jsonify({"error": str(e)}), 500
|
||||
|
||||
|
||||
@app.route("/api/episode/<episode_id>/frame/<int:frame_index>")
|
||||
def get_frame(episode_id, frame_index):
|
||||
dataset_path = request.args.get("dataset_path", None)
|
||||
if dataset_path is None:
|
||||
return jsonify({"error": "dataset_path parameter is required"}), 400
|
||||
|
||||
try:
|
||||
episode, frames = get_episode_data(Path(dataset_path), episode_id)
|
||||
if frame_index < 0 or frame_index >= len(frames):
|
||||
return jsonify({"error": f"Frame index {frame_index} out of range"}), 400
|
||||
|
||||
frame_data = get_frame_data(frames[frame_index])
|
||||
return jsonify(frame_data)
|
||||
except Exception as e:
|
||||
return jsonify({"error": str(e)}), 500
|
||||
|
||||
|
||||
@app.route("/api/proxy")
|
||||
def proxy():
|
||||
url = request.args.get("url", None)
|
||||
if url is None:
|
||||
return jsonify({"error": "url parameter is required"}), 400
|
||||
|
||||
# Validate URL against allowed schemes and hosts
|
||||
if not validate_url(url):
|
||||
return jsonify({"error": "URL is not allowed"}), 403
|
||||
|
||||
try:
|
||||
# Make the request but don't forward headers from the original request
|
||||
# to prevent header injection
|
||||
response = requests.get(url, timeout=5)
|
||||
|
||||
# Don't return the actual response to the user, just a success message
|
||||
# This prevents SSRF attacks where the response might contain sensitive information
|
||||
return jsonify(
|
||||
{
|
||||
"status": "success",
|
||||
"message": "Request completed successfully",
|
||||
"status_code": response.status_code,
|
||||
}
|
||||
)
|
||||
|
||||
app.run(host=host, port=port)
|
||||
|
||||
|
||||
def get_ep_csv_fname(episode_id: int):
|
||||
ep_csv_fname = f"episode_{episode_id}.csv"
|
||||
return ep_csv_fname
|
||||
|
||||
|
||||
def get_episode_data(dataset: LeRobotDataset | IterableNamespace, episode_index):
|
||||
"""Get a csv str containing timeseries data of an episode (e.g. state and action).
|
||||
This file will be loaded by Dygraph javascript to plot data in real time."""
|
||||
columns = []
|
||||
|
||||
selected_columns = [col for col, ft in dataset.features.items() if ft["dtype"] in ["float32", "int32"]]
|
||||
selected_columns.remove("timestamp")
|
||||
|
||||
ignored_columns = []
|
||||
for column_name in selected_columns:
|
||||
shape = dataset.features[column_name]["shape"]
|
||||
shape_dim = len(shape)
|
||||
if shape_dim > 1:
|
||||
selected_columns.remove(column_name)
|
||||
ignored_columns.append(column_name)
|
||||
|
||||
# init header of csv with state and action names
|
||||
header = ["timestamp"]
|
||||
|
||||
for column_name in selected_columns:
|
||||
dim_state = (
|
||||
dataset.meta.shapes[column_name][0]
|
||||
if isinstance(dataset, LeRobotDataset)
|
||||
else dataset.features[column_name].shape[0]
|
||||
)
|
||||
|
||||
if "names" in dataset.features[column_name] and dataset.features[column_name]["names"]:
|
||||
column_names = dataset.features[column_name]["names"]
|
||||
while not isinstance(column_names, list):
|
||||
column_names = list(column_names.values())[0]
|
||||
else:
|
||||
column_names = [f"{column_name}_{i}" for i in range(dim_state)]
|
||||
columns.append({"key": column_name, "value": column_names})
|
||||
|
||||
header += column_names
|
||||
|
||||
selected_columns.insert(0, "timestamp")
|
||||
|
||||
if isinstance(dataset, LeRobotDataset):
|
||||
from_idx = dataset.episode_data_index["from"][episode_index]
|
||||
to_idx = dataset.episode_data_index["to"][episode_index]
|
||||
data = (
|
||||
dataset.hf_dataset.select(range(from_idx, to_idx))
|
||||
.select_columns(selected_columns)
|
||||
.with_format("pandas")
|
||||
)
|
||||
else:
|
||||
repo_id = dataset.repo_id
|
||||
|
||||
url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/" + dataset.data_path.format(
|
||||
episode_chunk=int(episode_index) // dataset.chunks_size, episode_index=episode_index
|
||||
)
|
||||
df = pd.read_parquet(url)
|
||||
data = df[selected_columns] # Select specific columns
|
||||
|
||||
rows = np.hstack(
|
||||
(
|
||||
np.expand_dims(data["timestamp"], axis=1),
|
||||
*[np.vstack(data[col]) for col in selected_columns[1:]],
|
||||
)
|
||||
).tolist()
|
||||
|
||||
# Convert data to CSV string
|
||||
csv_buffer = StringIO()
|
||||
csv_writer = csv.writer(csv_buffer)
|
||||
# Write header
|
||||
csv_writer.writerow(header)
|
||||
# Write data rows
|
||||
csv_writer.writerows(rows)
|
||||
csv_string = csv_buffer.getvalue()
|
||||
|
||||
return csv_string, columns, ignored_columns
|
||||
|
||||
|
||||
def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str]:
|
||||
# get first frame of episode (hack to get video_path of the episode)
|
||||
first_frame_idx = dataset.episode_data_index["from"][ep_index].item()
|
||||
return [
|
||||
dataset.hf_dataset.select_columns(key)[first_frame_idx][key]["path"]
|
||||
for key in dataset.meta.video_keys
|
||||
]
|
||||
|
||||
|
||||
def get_episode_language_instruction(dataset: LeRobotDataset, ep_index: int) -> list[str]:
|
||||
# check if the dataset has language instructions
|
||||
if "language_instruction" not in dataset.features:
|
||||
return None
|
||||
|
||||
# get first frame index
|
||||
first_frame_idx = dataset.episode_data_index["from"][ep_index].item()
|
||||
|
||||
language_instruction = dataset.hf_dataset[first_frame_idx]["language_instruction"]
|
||||
# TODO (michel-aractingi) hack to get the sentence, some strings in openx are badly stored
|
||||
# with the tf.tensor appearing in the string
|
||||
return language_instruction.removeprefix("tf.Tensor(b'").removesuffix("', shape=(), dtype=string)")
|
||||
|
||||
|
||||
def get_dataset_info(repo_id: str) -> IterableNamespace:
|
||||
response = requests.get(
|
||||
f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/info.json", timeout=5
|
||||
)
|
||||
response.raise_for_status() # Raises an HTTPError for bad responses
|
||||
dataset_info = response.json()
|
||||
dataset_info["repo_id"] = repo_id
|
||||
return IterableNamespace(dataset_info)
|
||||
|
||||
|
||||
def visualize_dataset_html(
|
||||
dataset: LeRobotDataset | None,
|
||||
episodes: list[int] | None = None,
|
||||
output_dir: Path | None = None,
|
||||
serve: bool = True,
|
||||
host: str = "127.0.0.1",
|
||||
port: int = 9090,
|
||||
force_override: bool = False,
|
||||
) -> Path | None:
|
||||
init_logging()
|
||||
|
||||
template_dir = Path(__file__).resolve().parent.parent / "templates"
|
||||
|
||||
if output_dir is None:
|
||||
# Create a temporary directory that will be automatically cleaned up
|
||||
output_dir = tempfile.mkdtemp(prefix="lerobot_visualize_dataset_")
|
||||
|
||||
output_dir = Path(output_dir)
|
||||
if output_dir.exists():
|
||||
if force_override:
|
||||
shutil.rmtree(output_dir)
|
||||
else:
|
||||
logging.info(f"Output directory already exists. Loading from it: '{output_dir}'")
|
||||
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
static_dir = output_dir / "static"
|
||||
static_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if dataset is None:
|
||||
if serve:
|
||||
run_server(
|
||||
dataset=None,
|
||||
episodes=None,
|
||||
host=host,
|
||||
port=port,
|
||||
static_folder=static_dir,
|
||||
template_folder=template_dir,
|
||||
)
|
||||
else:
|
||||
# Create a simlink from the dataset video folder containing mp4 files to the output directory
|
||||
# so that the http server can get access to the mp4 files.
|
||||
if isinstance(dataset, LeRobotDataset):
|
||||
ln_videos_dir = static_dir / "videos"
|
||||
if not ln_videos_dir.exists():
|
||||
ln_videos_dir.symlink_to((dataset.root / "videos").resolve())
|
||||
|
||||
if serve:
|
||||
run_server(dataset, episodes, host, port, static_dir, template_dir)
|
||||
except Exception as e:
|
||||
return jsonify({"error": str(e)}), 500
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht` for https://huggingface.co/datasets/lerobot/pusht).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--root",
|
||||
type=Path,
|
||||
default=None,
|
||||
help="Root directory for a dataset stored locally (e.g. `--root data`). By default, the dataset will be loaded from hugging face cache folder, or downloaded from the hub if available.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--load-from-hf-hub",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Load videos and parquet files from HF Hub rather than local system.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--episodes",
|
||||
type=int,
|
||||
nargs="*",
|
||||
default=None,
|
||||
help="Episode indices to visualize (e.g. `0 1 5 6` to load episodes of index 0, 1, 5 and 6). By default loads all episodes.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=Path,
|
||||
default=None,
|
||||
help="Directory path to write html files and kickoff a web server. By default write them to 'outputs/visualize_dataset/REPO_ID'.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--serve",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Launch web server.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--host",
|
||||
type=str,
|
||||
default="127.0.0.1",
|
||||
help="Web host used by the http server.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--port",
|
||||
type=int,
|
||||
default=9090,
|
||||
help="Web port used by the http server.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--force-override",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Delete the output directory if it exists already.",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tolerance-s",
|
||||
type=float,
|
||||
default=1e-4,
|
||||
help=(
|
||||
"Tolerance in seconds used to ensure data timestamps respect the dataset fps value"
|
||||
"This is argument passed to the constructor of LeRobotDataset and maps to its tolerance_s constructor argument"
|
||||
"If not given, defaults to 1e-4."
|
||||
),
|
||||
)
|
||||
|
||||
parser = argparse.ArgumentParser(description="Visualize dataset in HTML")
|
||||
parser.add_argument("--dataset-name", type=str, help="Name of the dataset")
|
||||
parser.add_argument("--dataset-path", type=str, help="Path to the dataset")
|
||||
parser.add_argument("--host", type=str, default="localhost", help="Host to run the server on")
|
||||
parser.add_argument("--port", type=int, default=8000, help="Port to run the server on")
|
||||
args = parser.parse_args()
|
||||
kwargs = vars(args)
|
||||
repo_id = kwargs.pop("repo_id")
|
||||
load_from_hf_hub = kwargs.pop("load_from_hf_hub")
|
||||
root = kwargs.pop("root")
|
||||
tolerance_s = kwargs.pop("tolerance_s")
|
||||
|
||||
dataset = None
|
||||
if repo_id:
|
||||
dataset = (
|
||||
LeRobotDataset(repo_id, root=root, tolerance_s=tolerance_s)
|
||||
if not load_from_hf_hub
|
||||
else get_dataset_info(repo_id)
|
||||
)
|
||||
if args.dataset_name is not None:
|
||||
dataset_path = get_dataset_path(args.dataset_name)
|
||||
elif args.dataset_path is not None:
|
||||
dataset_path = Path(args.dataset_path)
|
||||
else:
|
||||
print("Either --dataset-name or --dataset-path must be provided")
|
||||
sys.exit(1)
|
||||
|
||||
visualize_dataset_html(dataset, **vars(args))
|
||||
app.config["dataset_path"] = dataset_path
|
||||
app.run(host=args.host, port=args.port, debug=True)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue