This commit is contained in:
Remi Cadene 2024-05-22 15:15:13 +00:00
parent 772927616a
commit 4843988d81
1 changed files with 53 additions and 52 deletions

View File

@ -18,8 +18,6 @@ Contains utilities to process raw data format from dora-record
"""
import logging
import re
import shutil
from pathlib import Path
import pandas as pd
@ -35,7 +33,7 @@ from lerobot.common.utils.utils import init_logging
def check_format(raw_dir) -> bool:
# TODO(rcadene): remove hardcoding
raw_dir = raw_dir / "018f9c37-c092-72fd-bd83-6f5a5c1b59d2"
raw_dir = raw_dir / "018f9fdc-6b7b-7432-a529-40d2cc718032"
assert raw_dir.exists()
leader_file = list(raw_dir.glob("*.parquet"))
@ -46,7 +44,7 @@ def check_format(raw_dir) -> bool:
def load_from_raw(raw_dir: Path, out_dir: Path):
# TODO(rcadene): remove hardcoding
raw_dir = raw_dir / "018f9c37-c092-72fd-bd83-6f5a5c1b59d2"
raw_dir = raw_dir / "018f9fdc-6b7b-7432-a529-40d2cc718032"
# Load data stream that will be used as reference for the timestamps synchronization
reference_key = "observation.images.cam_right_wrist"
@ -54,82 +52,85 @@ def load_from_raw(raw_dir: Path, out_dir: Path):
reference_df = reference_df[["timestamp_utc", reference_key]]
# Merge all data stream using nearest backward strategy
data_df = reference_df
df = reference_df
for path in raw_dir.glob("*.parquet"):
key = path.stem # action or observation.state or ...
if key == reference_key:
continue
df = pd.read_parquet(path)
df = df[["timestamp_utc", key]]
data_df = pd.merge_asof(
data_df,
modality_df = pd.read_parquet(path)
modality_df = modality_df[["timestamp_utc", key]]
df = pd.merge_asof(
df,
modality_df,
on="timestamp_utc",
direction="backward",
)
# dora only use arrays, so single values are encapsulated into a list
data_df["episode_index"] = data_df["episode_index"].map(lambda x: x[0])
data_df["frame_index"] = data_df.groupby("episode_index").cumcount()
data_df["index"] = data_df.index
# set 'next.done' to True for the last frame of each episode
data_df["next.done"] = False
data_df.loc[data_df.groupby("episode_index").tail(1).index, "next.done"] = True
data_df["timestamp"] = data_df["timestamp_utc"].map(lambda x: x.timestamp())
# each episode starts with timestamp 0 to match the ones from the video
data_df["timestamp"] = data_df.groupby("episode_index")["timestamp"].transform(lambda x: x - x.iloc[0])
del data_df["timestamp_utc"]
# Remove rows with a NaN in any column. It can happened during the first frames of an episode,
# because some cameras didnt start recording yet.
data_df = data_df.dropna(axis=0)
df = df.dropna(axis=0)
# Remove rows with episode_index -1 which indicates a failed episode
df = df[df["episode_index"] != -1]
# dora only use arrays, so single values are encapsulated into a list
df["episode_index"] = df["episode_index"].map(lambda x: x[0])
df["frame_index"] = df.groupby("episode_index").cumcount()
df = df.reset_index()
df["index"] = df.index
# set 'next.done' to True for the last frame of each episode
df["next.done"] = False
df.loc[df.groupby("episode_index").tail(1).index, "next.done"] = True
df["timestamp"] = df["timestamp_utc"].map(lambda x: x.timestamp())
# each episode starts with timestamp 0 to match the ones from the video
df["timestamp"] = df.groupby("episode_index")["timestamp"].transform(lambda x: x - x.iloc[0])
del df["timestamp_utc"]
# sanity check episode indices go from 0 to n-1
ep_ids = [ep_idx for ep_idx, _ in df.groupby("episode_index")]
expected_ep_ids = list(range(df["episode_index"].max()))
assert ep_ids == expected_ep_ids, f"Episodes indices go from {ep_ids} instead of {expected_ep_ids}"
# Create symlink to raw videos directory (that needs to be absolute not relative)
# out_dir.mkdir(parents=True, exist_ok=True)
# absolute_videos_dir = (raw_dir / "videos").absolute()
# (out_dir / "videos").symlink_to(absolute_videos_dir)
out_dir.mkdir(parents=True, exist_ok=True)
videos_dir = out_dir / "videos"
videos_dir.symlink_to((raw_dir / "videos").absolute())
# TODO(rcadene): remove before merge
(out_dir / "videos").mkdir(parents=True, exist_ok=True)
for from_path in (raw_dir / "videos").glob("*.mp4"):
match = re.search(r"_(\d+)\.mp4$", from_path.name)
if not match:
raise ValueError(from_path.name)
ep_idx = match.group(1)
to_path = out_dir / "videos" / from_path.name.replace(ep_idx, f"{int(ep_idx):06d}")
shutil.copy2(from_path, to_path)
# sanity check the video paths are well formated
for key in df:
if "observation.images." not in key:
continue
for ep_idx in ep_ids:
video_path = videos_dir / f"{key}_episode_{ep_idx:06d}.mp4"
assert video_path.exists(), f"Video file not found in {video_path}"
data_dict = {}
for key in data_df:
for key in df:
# is video frame
if "observation.images." in key:
# we need `[0] because dora only use arrays, so single values are encapsulated into a list.
# it is the case for video_frame dictionary = [{"path": ..., "timestamp": ...}]
data_dict[key] = [video_frame[0] for video_frame in data_df[key].values]
data_dict[key] = [video_frame[0] for video_frame in df[key].values]
# TODO(rcadene): remove before merge
for item in data_dict[key]:
path = item["path"]
match = re.search(r"_(\d+)\.mp4$", path)
if not match:
raise ValueError(path)
ep_idx = match.group(1)
item["path"] = path.replace(ep_idx, f"{int(ep_idx):06d}")
# sanity check the video path is well formated
video_path = videos_dir.parent / data_dict[key][0]["path"]
assert video_path.exists(), f"Video file not found in {video_path}"
# is number
elif data_df[key].iloc[0].ndim == 0 or data_df[key].iloc[0].shape[0] == 1:
data_dict[key] = torch.from_numpy(data_df[key].values)
elif df[key].iloc[0].ndim == 0 or df[key].iloc[0].shape[0] == 1:
data_dict[key] = torch.from_numpy(df[key].values)
# is vector
elif data_df[key].iloc[0].shape[0] > 1:
data_dict[key] = torch.stack([torch.from_numpy(x.copy()) for x in data_df[key].values])
elif df[key].iloc[0].shape[0] > 1:
data_dict[key] = torch.stack([torch.from_numpy(x.copy()) for x in df[key].values])
else:
raise ValueError(key)
# Get the episode index containing for each unique episode index
first_ep_index_df = data_df.groupby("episode_index").agg(start_index=("index", "first")).reset_index()
first_ep_index_df = df.groupby("episode_index").agg(start_index=("index", "first")).reset_index()
from_ = first_ep_index_df["start_index"].tolist()
to_ = from_[1:] + [len(data_df)]
to_ = from_[1:] + [len(df)]
episode_data_index = {
"from": from_,
"to": to_,