Bug fix: missing attention mask in VAE encoder in ACT policy (#279)

Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>
This commit is contained in:
Thomas Wolf 2024-06-19 13:07:21 +02:00 committed by GitHub
parent 56199fb76f
commit 48951662f2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 60 additions and 25 deletions

View File

@ -314,9 +314,23 @@ class ACT(nn.Module):
# Note: detach() shouldn't be necessary but leaving it the same as the original code just in case. # Note: detach() shouldn't be necessary but leaving it the same as the original code just in case.
pos_embed = self.vae_encoder_pos_enc.clone().detach() # (1, S+2, D) pos_embed = self.vae_encoder_pos_enc.clone().detach() # (1, S+2, D)
# Prepare key padding mask for the transformer encoder. We have 1 or 2 extra tokens at the start of the
# sequence depending whether we use the input states or not (cls and robot state)
# False means not a padding token.
cls_joint_is_pad = torch.full(
(batch_size, 2 if self.use_input_state else 1),
False,
device=batch["observation.state"].device,
)
key_padding_mask = torch.cat(
[cls_joint_is_pad, batch["action_is_pad"]], axis=1
) # (bs, seq+1 or 2)
# Forward pass through VAE encoder to get the latent PDF parameters. # Forward pass through VAE encoder to get the latent PDF parameters.
cls_token_out = self.vae_encoder( cls_token_out = self.vae_encoder(
vae_encoder_input.permute(1, 0, 2), pos_embed=pos_embed.permute(1, 0, 2) vae_encoder_input.permute(1, 0, 2),
pos_embed=pos_embed.permute(1, 0, 2),
key_padding_mask=key_padding_mask,
)[0] # select the class token, with shape (B, D) )[0] # select the class token, with shape (B, D)
latent_pdf_params = self.vae_encoder_latent_output_proj(cls_token_out) latent_pdf_params = self.vae_encoder_latent_output_proj(cls_token_out)
mu = latent_pdf_params[:, : self.config.latent_dim] mu = latent_pdf_params[:, : self.config.latent_dim]
@ -402,9 +416,11 @@ class ACTEncoder(nn.Module):
self.layers = nn.ModuleList([ACTEncoderLayer(config) for _ in range(config.n_encoder_layers)]) self.layers = nn.ModuleList([ACTEncoderLayer(config) for _ in range(config.n_encoder_layers)])
self.norm = nn.LayerNorm(config.dim_model) if config.pre_norm else nn.Identity() self.norm = nn.LayerNorm(config.dim_model) if config.pre_norm else nn.Identity()
def forward(self, x: Tensor, pos_embed: Tensor | None = None) -> Tensor: def forward(
self, x: Tensor, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None
) -> Tensor:
for layer in self.layers: for layer in self.layers:
x = layer(x, pos_embed=pos_embed) x = layer(x, pos_embed=pos_embed, key_padding_mask=key_padding_mask)
x = self.norm(x) x = self.norm(x)
return x return x
@ -427,12 +443,13 @@ class ACTEncoderLayer(nn.Module):
self.activation = get_activation_fn(config.feedforward_activation) self.activation = get_activation_fn(config.feedforward_activation)
self.pre_norm = config.pre_norm self.pre_norm = config.pre_norm
def forward(self, x, pos_embed: Tensor | None = None) -> Tensor: def forward(self, x, pos_embed: Tensor | None = None, key_padding_mask: Tensor | None = None) -> Tensor:
skip = x skip = x
if self.pre_norm: if self.pre_norm:
x = self.norm1(x) x = self.norm1(x)
q = k = x if pos_embed is None else x + pos_embed q = k = x if pos_embed is None else x + pos_embed
x = self.self_attn(q, k, value=x)[0] # select just the output, not the attention weights x = self.self_attn(q, k, value=x, key_padding_mask=key_padding_mask)
x = x[0] # note: [0] to select just the output, not the attention weights
x = skip + self.dropout1(x) x = skip + self.dropout1(x)
if self.pre_norm: if self.pre_norm:
skip = x skip = x

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:3f4e0e525aeb22ea94b79e26b39a87e6f2da9fbee33e493906aaf2aad9a7c1ef
size 515400

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:6dc658a1c1616c7d1c211eb8f87cec3d44f7b67d6b3cea7a6ce12b32d74674da
size 31688

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:03971f92b7907b6b7e6ac207f508666104cd84c26c5276f510c431db604e188b
size 68

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:01d993c67a9267032fe9fbeff20b4359c209464976ea503040a0a76ae213450a
size 33408

View File

@ -89,8 +89,8 @@ def get_policy_stats(env_name, policy_name, extra_overrides):
return output_dict, grad_stats, param_stats, actions return output_dict, grad_stats, param_stats, actions
def save_policy_to_safetensors(output_dir, env_name, policy_name, extra_overrides): def save_policy_to_safetensors(output_dir, env_name, policy_name, extra_overrides, file_name_extra):
env_policy_dir = Path(output_dir) / f"{env_name}_{policy_name}" env_policy_dir = Path(output_dir) / f"{env_name}_{policy_name}{file_name_extra}"
if env_policy_dir.exists(): if env_policy_dir.exists():
print(f"Overwrite existing safetensors in '{env_policy_dir}':") print(f"Overwrite existing safetensors in '{env_policy_dir}':")
@ -108,15 +108,17 @@ def save_policy_to_safetensors(output_dir, env_name, policy_name, extra_override
if __name__ == "__main__": if __name__ == "__main__":
env_policies = [ env_policies = [
("xarm", "tdmpc", []), # ("xarm", "tdmpc", []),
( # (
"pusht", # "pusht",
"diffusion", # "diffusion",
["policy.n_action_steps=8", "policy.num_inference_steps=10", "policy.down_dims=[128, 256, 512]"], # ["policy.n_action_steps=8", "policy.num_inference_steps=10", "policy.down_dims=[128, 256, 512]"],
), # ),
("aloha", "act", ["policy.n_action_steps=10"]), ("aloha", "act", ["policy.n_action_steps=1000", "policy.chunk_size=1000"], "_1000_steps"),
("dora_aloha_real", "act_real", ["policy.n_action_steps=10"]), # ("dora_aloha_real", "act_real", ["policy.n_action_steps=10"]),
("dora_aloha_real", "act_real_no_state", ["policy.n_action_steps=10"]), # ("dora_aloha_real", "act_real_no_state", ["policy.n_action_steps=10"]),
] ]
for env, policy, extra_overrides in env_policies: for env, policy, extra_overrides, file_name_extra in env_policies:
save_policy_to_safetensors("tests/data/save_policy_to_safetensors", env, policy, extra_overrides) save_policy_to_safetensors(
"tests/data/save_policy_to_safetensors", env, policy, extra_overrides, file_name_extra
)

View File

@ -315,24 +315,26 @@ def test_normalize(insert_temporal_dim):
@pytest.mark.parametrize( @pytest.mark.parametrize(
"env_name, policy_name, extra_overrides", "env_name, policy_name, extra_overrides, file_name_extra",
[ [
("xarm", "tdmpc", []), ("xarm", "tdmpc", [], ""),
( (
"pusht", "pusht",
"diffusion", "diffusion",
["policy.n_action_steps=8", "policy.num_inference_steps=10", "policy.down_dims=[128, 256, 512]"], ["policy.n_action_steps=8", "policy.num_inference_steps=10", "policy.down_dims=[128, 256, 512]"],
"",
), ),
("aloha", "act", ["policy.n_action_steps=10"]), ("aloha", "act", ["policy.n_action_steps=10"], ""),
("dora_aloha_real", "act_real", ["policy.n_action_steps=10"]), ("aloha", "act", ["policy.n_action_steps=1000", "policy.chunk_size=1000"], "_1000_steps"),
("dora_aloha_real", "act_real_no_state", ["policy.n_action_steps=10"]), ("dora_aloha_real", "act_real", ["policy.n_action_steps=10"], ""),
("dora_aloha_real", "act_real_no_state", ["policy.n_action_steps=10"], ""),
], ],
) )
# As artifacts have been generated on an x86_64 kernel, this test won't # As artifacts have been generated on an x86_64 kernel, this test won't
# pass if it's run on another platform due to floating point errors # pass if it's run on another platform due to floating point errors
@require_x86_64_kernel @require_x86_64_kernel
@require_cpu @require_cpu
def test_backward_compatibility(env_name, policy_name, extra_overrides): def test_backward_compatibility(env_name, policy_name, extra_overrides, file_name_extra):
""" """
NOTE: If this test does not pass, and you have intentionally changed something in the policy: NOTE: If this test does not pass, and you have intentionally changed something in the policy:
1. Inspect the differences in policy outputs and make sure you can account for them. Your PR should 1. Inspect the differences in policy outputs and make sure you can account for them. Your PR should
@ -344,7 +346,9 @@ def test_backward_compatibility(env_name, policy_name, extra_overrides):
5. Remember to restore `tests/scripts/save_policy_to_safetensors.py` to its original state. 5. Remember to restore `tests/scripts/save_policy_to_safetensors.py` to its original state.
6. Remember to stage and commit the resulting changes to `tests/data`. 6. Remember to stage and commit the resulting changes to `tests/data`.
""" """
env_policy_dir = Path("tests/data/save_policy_to_safetensors") / f"{env_name}_{policy_name}" env_policy_dir = (
Path("tests/data/save_policy_to_safetensors") / f"{env_name}_{policy_name}{file_name_extra}"
)
saved_output_dict = load_file(env_policy_dir / "output_dict.safetensors") saved_output_dict = load_file(env_policy_dir / "output_dict.safetensors")
saved_grad_stats = load_file(env_policy_dir / "grad_stats.safetensors") saved_grad_stats = load_file(env_policy_dir / "grad_stats.safetensors")
saved_param_stats = load_file(env_policy_dir / "param_stats.safetensors") saved_param_stats = load_file(env_policy_dir / "param_stats.safetensors")