Merge pull request #7 from Cadene/user/rcadene/2024_03_05_abstract_replay_buffer

Add AbstractReplayBuffer
This commit is contained in:
Remi 2024-03-06 11:25:24 +01:00 committed by GitHub
commit 49c0955f97
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 351 additions and 395 deletions

View File

@ -0,0 +1,158 @@
import abc
import logging
from pathlib import Path
from typing import Callable
import einops
import torch
import torchrl
import tqdm
from tensordict import TensorDict
from torchrl.data.datasets.utils import _get_root_dir
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
from torchrl.data.replay_buffers.samplers import SliceSampler
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
class AbstractExperienceReplay(TensorDictReplayBuffer):
def __init__(
self,
dataset_id: str,
batch_size: int = None,
*,
shuffle: bool = True,
root: Path = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: SliceSampler = None,
collate_fn: Callable = None,
writer: Writer = None,
transform: "torchrl.envs.Transform" = None,
):
self.dataset_id = dataset_id
self.shuffle = shuffle
self.root = _get_root_dir(self.dataset_id) if root is None else root
self.root = Path(self.root)
self.data_dir = self.root / self.dataset_id
storage = self._download_or_load_storage()
super().__init__(
storage=storage,
sampler=sampler,
writer=ImmutableDatasetWriter() if writer is None else writer,
collate_fn=_collate_id if collate_fn is None else collate_fn,
pin_memory=pin_memory,
prefetch=prefetch,
batch_size=batch_size,
transform=transform,
)
@property
def stats_patterns(self) -> dict:
return {
("observation", "state"): "b c -> 1 c",
("observation", "image"): "b c h w -> 1 c 1 1",
("action"): "b c -> 1 c",
}
@property
def image_keys(self) -> list:
return [("observation", "image")]
@property
def num_cameras(self) -> int:
return len(self.image_keys)
@property
def num_samples(self) -> int:
return len(self)
@property
def num_episodes(self) -> int:
return len(self._storage._storage["episode"].unique())
def set_transform(self, transform):
self.transform = transform
def compute_or_load_stats(self, num_batch=100, batch_size=32) -> TensorDict:
stats_path = self.data_dir / "stats.pth"
if stats_path.exists():
stats = torch.load(stats_path)
else:
logging.info(f"compute_stats and save to {stats_path}")
stats = self._compute_stats(num_batch, batch_size)
torch.save(stats, stats_path)
return stats
@abc.abstractmethod
def _download_and_preproc(self) -> torch.StorageBase:
raise NotImplementedError()
def _download_or_load_storage(self):
if not self._is_downloaded():
storage = self._download_and_preproc()
else:
storage = TensorStorage(TensorDict.load_memmap(self.data_dir))
return storage
def _is_downloaded(self) -> bool:
return self.data_dir.is_dir()
def _compute_stats(self, num_batch=100, batch_size=32):
rb = TensorDictReplayBuffer(
storage=self._storage,
batch_size=batch_size,
prefetch=True,
)
mean, std, max, min = {}, {}, {}, {}
# compute mean, min, max
for _ in tqdm.tqdm(range(num_batch)):
batch = rb.sample()
for key, pattern in self.stats_patterns.items():
batch[key] = batch[key].float()
if key not in mean:
# first batch initialize mean, min, max
mean[key] = einops.reduce(batch[key], pattern, "mean")
max[key] = einops.reduce(batch[key], pattern, "max")
min[key] = einops.reduce(batch[key], pattern, "min")
else:
mean[key] += einops.reduce(batch[key], pattern, "mean")
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
batch = rb.sample()
for key in self.stats_patterns:
mean[key] /= num_batch
# compute std, min, max
for _ in tqdm.tqdm(range(num_batch)):
batch = rb.sample()
for key, pattern in self.stats_patterns.items():
batch[key] = batch[key].float()
batch_mean = einops.reduce(batch[key], pattern, "mean")
if key not in std:
# first batch initialize std
std[key] = (batch_mean - mean[key]) ** 2
else:
std[key] += (batch_mean - mean[key]) ** 2
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
for key in self.stats_patterns:
std[key] = torch.sqrt(std[key] / num_batch)
stats = TensorDict({}, batch_size=[])
for key in self.stats_patterns:
stats[(*key, "mean")] = mean[key]
stats[(*key, "std")] = std[key]
stats[(*key, "max")] = max[key]
stats[(*key, "min")] = min[key]
if key[0] == "observation":
# use same stats for the next observations
stats[("next", *key)] = stats[key]
return stats

View File

@ -5,33 +5,14 @@ from pathlib import Path
import torch
from torchrl.data.replay_buffers import PrioritizedSliceSampler, SliceSampler
from lerobot.common.datasets.pusht import PushtExperienceReplay
from lerobot.common.datasets.simxarm import SimxarmExperienceReplay
from lerobot.common.envs.transforms import NormalizeTransform
DATA_DIR = Path(os.environ.get("DATA_DIR", "data"))
# TODO(rcadene): implement
# dataset_d4rl = D4RLExperienceReplay(
# dataset_id="maze2d-umaze-v1",
# split_trajs=False,
# batch_size=1,
# sampler=SamplerWithoutReplacement(drop_last=False),
# prefetch=4,
# direct_download=True,
# )
# dataset_openx = OpenXExperienceReplay(
# "cmu_stretch",
# batch_size=1,
# num_slices=1,
# #download="force",
# streaming=False,
# root="data",
# )
def make_offline_buffer(cfg, sampler=None):
def make_offline_buffer(
cfg, overwrite_sampler=None, normalize=True, overwrite_batch_size=None, overwrite_prefetch=None
):
if cfg.policy.balanced_sampling:
assert cfg.online_steps > 0
batch_size = None
@ -44,9 +25,13 @@ def make_offline_buffer(cfg, sampler=None):
pin_memory = cfg.device == "cuda"
prefetch = cfg.prefetch
overwrite_sampler = sampler is not None
if overwrite_batch_size is not None:
batch_size = overwrite_batch_size
if not overwrite_sampler:
if overwrite_prefetch is not None:
prefetch = overwrite_prefetch
if overwrite_sampler is None:
# TODO(rcadene): move batch_size outside
num_traj_per_batch = cfg.policy.batch_size # // cfg.horizon
# TODO(rcadene): Sampler outputs a batch_size <= cfg.batch_size.
@ -67,36 +52,57 @@ def make_offline_buffer(cfg, sampler=None):
num_slices=num_traj_per_batch,
strict_length=False,
)
else:
sampler = overwrite_sampler
if cfg.env.name == "simxarm":
# TODO(rcadene): add PrioritizedSliceSampler inside Simxarm to not have to `sampler.extend(index)` here
offline_buffer = SimxarmExperienceReplay(
f"xarm_{cfg.env.task}_medium",
# download="force",
download=True,
streaming=False,
root=str(DATA_DIR),
sampler=sampler,
batch_size=batch_size,
pin_memory=pin_memory,
prefetch=prefetch if isinstance(prefetch, int) else None,
)
from lerobot.common.datasets.simxarm import SimxarmExperienceReplay
clsfunc = SimxarmExperienceReplay
dataset_id = f"xarm_{cfg.env.task}_medium"
elif cfg.env.name == "pusht":
offline_buffer = PushtExperienceReplay(
"pusht",
streaming=False,
root=DATA_DIR,
sampler=sampler,
batch_size=batch_size,
pin_memory=pin_memory,
prefetch=prefetch if isinstance(prefetch, int) else None,
)
from lerobot.common.datasets.pusht import PushtExperienceReplay
clsfunc = PushtExperienceReplay
dataset_id = "pusht"
else:
raise ValueError(cfg.env.name)
offline_buffer = clsfunc(
dataset_id=dataset_id,
root=DATA_DIR,
sampler=sampler,
batch_size=batch_size,
pin_memory=pin_memory,
prefetch=prefetch if isinstance(prefetch, int) else None,
)
if normalize:
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec
stats = offline_buffer.compute_or_load_stats()
in_keys = [("observation", "state"), ("action")]
if cfg.policy == "tdmpc":
for key in offline_buffer.image_keys:
# TODO(rcadene): imagenet normalization is applied inside diffusion policy, but no normalization inside tdmpc
in_keys.append(key)
# since we use next observations in tdmpc
in_keys.append(("next", *key))
in_keys.append(("next", "observation", "state"))
if cfg.policy == "diffusion" and cfg.env.name == "pusht":
# TODO(rcadene): we overwrite stats to have the same as pretrained model, but we should remove this
stats["observation", "state", "min"] = torch.tensor([13.456424, 32.938293], dtype=torch.float32)
stats["observation", "state", "max"] = torch.tensor([496.14618, 510.9579], dtype=torch.float32)
stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
transform = NormalizeTransform(stats, in_keys, mode="min_max")
offline_buffer.set_transform(transform)
if not overwrite_sampler:
num_steps = len(offline_buffer)
index = torch.arange(0, num_steps, 1)
index = torch.arange(0, offline_buffer.num_samples, 1)
sampler.extend(index)
return offline_buffer

View File

@ -1,6 +1,3 @@
import logging
import math
import os
from pathlib import Path
from typing import Callable
@ -12,16 +9,14 @@ import torch
import torchrl
import tqdm
from tensordict import TensorDict
from torchrl.data.datasets.utils import _get_root_dir
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
from torchrl.data.replay_buffers.samplers import Sampler
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
from torchrl.data.replay_buffers.samplers import SliceSampler
from torchrl.data.replay_buffers.storages import TensorStorage
from torchrl.data.replay_buffers.writers import Writer
from diffusion_policy.common.replay_buffer import ReplayBuffer as DiffusionPolicyReplayBuffer
from diffusion_policy.env.pusht.pusht_env import pymunk_to_shapely
from lerobot.common.datasets.abstract import AbstractExperienceReplay
from lerobot.common.datasets.utils import download_and_extract_zip
from lerobot.common.envs.transforms import NormalizeTransform
# as define in env
SUCCESS_THRESHOLD = 0.95 # 95% coverage,
@ -87,114 +82,36 @@ def add_tee(
return body
class PushtExperienceReplay(TensorDictReplayBuffer):
class PushtExperienceReplay(AbstractExperienceReplay):
def __init__(
self,
dataset_id: str,
batch_size: int = None,
*,
shuffle: bool = True,
num_slices: int = None,
slice_len: int = None,
pad: float = None,
replacement: bool = None,
streaming: bool = False,
root: Path = None,
sampler: Sampler = None,
writer: Writer = None,
collate_fn: Callable = None,
pin_memory: bool = False,
prefetch: int = None,
transform: "torchrl.envs.Transform" = None, # noqa: F821
split_trajs: bool = False,
strict_length: bool = True,
sampler: SliceSampler = None,
collate_fn: Callable = None,
writer: Writer = None,
transform: "torchrl.envs.Transform" = None,
):
if streaming:
raise NotImplementedError
self.streaming = streaming
self.dataset_id = dataset_id
self.split_trajs = split_trajs
self.shuffle = shuffle
self.num_slices = num_slices
self.slice_len = slice_len
self.pad = pad
self.strict_length = strict_length
if (self.num_slices is not None) and (self.slice_len is not None):
raise ValueError("num_slices or slice_len can be not None, but not both.")
if split_trajs:
raise NotImplementedError
if root is None:
root = _get_root_dir("pusht")
os.makedirs(root, exist_ok=True)
self.root = root
if not self._is_downloaded():
storage = self._download_and_preproc()
else:
storage = TensorStorage(TensorDict.load_memmap(self.root / dataset_id))
stats = self._compute_or_load_stats(storage)
transform = NormalizeTransform(
stats,
in_keys=[
# TODO(rcadene): imagenet normalization is applied inside diffusion policy
# We need to automate this for tdmpc and others
# ("observation", "image"),
("observation", "state"),
# TODO(rcadene): for tdmpc, we might want next image and state
# ("next", "observation", "image"),
# ("next", "observation", "state"),
("action"),
],
mode="min_max",
)
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max, min_max_from_spec
transform.stats["observation", "state", "min"] = torch.tensor(
[13.456424, 32.938293], dtype=torch.float32
)
transform.stats["observation", "state", "max"] = torch.tensor(
[496.14618, 510.9579], dtype=torch.float32
)
transform.stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
transform.stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
if writer is None:
writer = ImmutableDatasetWriter()
if collate_fn is None:
collate_fn = _collate_id
super().__init__(
storage=storage,
sampler=sampler,
writer=writer,
collate_fn=collate_fn,
dataset_id,
batch_size,
shuffle=shuffle,
root=root,
pin_memory=pin_memory,
prefetch=prefetch,
batch_size=batch_size,
sampler=sampler,
collate_fn=collate_fn,
writer=writer,
transform=transform,
)
@property
def num_samples(self) -> int:
return len(self)
@property
def num_episodes(self) -> int:
return len(self._storage._storage["episode"].unique())
@property
def data_path_root(self) -> Path:
return None if self.streaming else self.root / self.dataset_id
def _is_downloaded(self) -> bool:
return self.data_path_root.is_dir()
def _download_and_preproc(self):
# download
raw_dir = self.root / "raw"
raw_dir = self.data_dir / "raw"
zarr_path = (raw_dir / PUSHT_ZARR).resolve()
if not zarr_path.is_dir():
raw_dir.mkdir(parents=True, exist_ok=True)
@ -266,8 +183,7 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
# last step of demonstration is considered done
done[-1] = True
print("before " + """episode = TensorDict(""")
episode = TensorDict(
ep_td = TensorDict(
{
("observation", "image"): image[:-1],
("observation", "state"): agent_pos[:-1],
@ -286,120 +202,11 @@ class PushtExperienceReplay(TensorDictReplayBuffer):
if episode_id == 0:
# hack to initialize tensordict data structure to store episodes
td_data = episode[0].expand(total_frames).memmap_like(self.root / self.dataset_id)
td_data = ep_td[0].expand(total_frames).memmap_like(self.data_dir)
td_data[idxtd : idxtd + len(episode)] = episode
td_data[idxtd : idxtd + len(ep_td)] = ep_td
idx0 = idx1
idxtd = idxtd + len(episode)
idxtd = idxtd + len(ep_td)
return TensorStorage(td_data.lock_())
def _compute_stats(self, storage, num_batch=100, batch_size=32):
rb = TensorDictReplayBuffer(
storage=storage,
batch_size=batch_size,
prefetch=True,
)
batch = rb.sample()
image_channels = batch["observation", "image"].shape[1]
image_mean = torch.zeros(image_channels)
image_std = torch.zeros(image_channels)
image_max = torch.tensor([-math.inf] * image_channels)
image_min = torch.tensor([math.inf] * image_channels)
state_channels = batch["observation", "state"].shape[1]
state_mean = torch.zeros(state_channels)
state_std = torch.zeros(state_channels)
state_max = torch.tensor([-math.inf] * state_channels)
state_min = torch.tensor([math.inf] * state_channels)
action_channels = batch["action"].shape[1]
action_mean = torch.zeros(action_channels)
action_std = torch.zeros(action_channels)
action_max = torch.tensor([-math.inf] * action_channels)
action_min = torch.tensor([math.inf] * action_channels)
for _ in tqdm.tqdm(range(num_batch)):
image_mean += einops.reduce(batch["observation", "image"], "b c h w -> c", "mean")
state_mean += einops.reduce(batch["observation", "state"], "b c -> c", "mean")
action_mean += einops.reduce(batch["action"], "b c -> c", "mean")
b_image_max = einops.reduce(batch["observation", "image"], "b c h w -> c", "max")
b_image_min = einops.reduce(batch["observation", "image"], "b c h w -> c", "min")
b_state_max = einops.reduce(batch["observation", "state"], "b c -> c", "max")
b_state_min = einops.reduce(batch["observation", "state"], "b c -> c", "min")
b_action_max = einops.reduce(batch["action"], "b c -> c", "max")
b_action_min = einops.reduce(batch["action"], "b c -> c", "min")
image_max = torch.maximum(image_max, b_image_max)
image_min = torch.maximum(image_min, b_image_min)
state_max = torch.maximum(state_max, b_state_max)
state_min = torch.maximum(state_min, b_state_min)
action_max = torch.maximum(action_max, b_action_max)
action_min = torch.maximum(action_min, b_action_min)
batch = rb.sample()
image_mean /= num_batch
state_mean /= num_batch
action_mean /= num_batch
for i in tqdm.tqdm(range(num_batch)):
b_image_mean = einops.reduce(batch["observation", "image"], "b c h w -> c", "mean")
b_state_mean = einops.reduce(batch["observation", "state"], "b c -> c", "mean")
b_action_mean = einops.reduce(batch["action"], "b c -> c", "mean")
image_std += (b_image_mean - image_mean) ** 2
state_std += (b_state_mean - state_mean) ** 2
action_std += (b_action_mean - action_mean) ** 2
b_image_max = einops.reduce(batch["observation", "image"], "b c h w -> c", "max")
b_image_min = einops.reduce(batch["observation", "image"], "b c h w -> c", "min")
b_state_max = einops.reduce(batch["observation", "state"], "b c -> c", "max")
b_state_min = einops.reduce(batch["observation", "state"], "b c -> c", "min")
b_action_max = einops.reduce(batch["action"], "b c -> c", "max")
b_action_min = einops.reduce(batch["action"], "b c -> c", "min")
image_max = torch.maximum(image_max, b_image_max)
image_min = torch.maximum(image_min, b_image_min)
state_max = torch.maximum(state_max, b_state_max)
state_min = torch.maximum(state_min, b_state_min)
action_max = torch.maximum(action_max, b_action_max)
action_min = torch.maximum(action_min, b_action_min)
if i < num_batch - 1:
batch = rb.sample()
image_std = torch.sqrt(image_std / num_batch)
state_std = torch.sqrt(state_std / num_batch)
action_std = torch.sqrt(action_std / num_batch)
stats = TensorDict(
{
("observation", "image", "mean"): image_mean[None, :, None, None],
("observation", "image", "std"): image_std[None, :, None, None],
("observation", "image", "max"): image_max[None, :, None, None],
("observation", "image", "min"): image_min[None, :, None, None],
("observation", "state", "mean"): state_mean[None, :],
("observation", "state", "std"): state_std[None, :],
("observation", "state", "max"): state_max[None, :],
("observation", "state", "min"): state_min[None, :],
("action", "mean"): action_mean[None, :],
("action", "std"): action_std[None, :],
("action", "max"): action_max[None, :],
("action", "min"): action_min[None, :],
},
batch_size=[],
)
stats["next", "observation", "image"] = stats["observation", "image"]
stats["next", "observation", "state"] = stats["observation", "state"]
return stats
def _compute_or_load_stats(self, storage) -> TensorDict:
stats_path = self.root / self.dataset_id / "stats.pth"
if stats_path.exists():
stats = torch.load(stats_path)
else:
logging.info(f"compute_stats and save to {stats_path}")
stats = self._compute_stats(storage)
torch.save(stats, stats_path)
return stats

View File

@ -1,4 +1,3 @@
import os
import pickle
from pathlib import Path
from typing import Callable
@ -7,130 +6,52 @@ import torch
import torchrl
import tqdm
from tensordict import TensorDict
from torchrl.data.datasets.utils import _get_root_dir
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
from torchrl.data.replay_buffers.samplers import (
Sampler,
SliceSampler,
SliceSamplerWithoutReplacement,
)
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
from torchrl.data.replay_buffers.storages import TensorStorage
from torchrl.data.replay_buffers.writers import Writer
from lerobot.common.datasets.abstract import AbstractExperienceReplay
class SimxarmExperienceReplay(TensorDictReplayBuffer):
class SimxarmExperienceReplay(AbstractExperienceReplay):
available_datasets = [
"xarm_lift_medium",
]
def __init__(
self,
dataset_id,
dataset_id: str,
batch_size: int = None,
*,
shuffle: bool = True,
num_slices: int = None,
slice_len: int = None,
pad: float = None,
replacement: bool = None,
streaming: bool = False,
root: Path = None,
download: bool = False,
sampler: Sampler = None,
writer: Writer = None,
collate_fn: Callable = None,
pin_memory: bool = False,
prefetch: int = None,
transform: "torchrl.envs.Transform" = None, # noqa-F821
split_trajs: bool = False,
strict_length: bool = True,
sampler: SliceSampler = None,
collate_fn: Callable = None,
writer: Writer = None,
transform: "torchrl.envs.Transform" = None,
):
self.download = download
if streaming:
raise NotImplementedError
self.streaming = streaming
self.dataset_id = dataset_id
self.split_trajs = split_trajs
self.shuffle = shuffle
self.num_slices = num_slices
self.slice_len = slice_len
self.pad = pad
self.strict_length = strict_length
if (self.num_slices is not None) and (self.slice_len is not None):
raise ValueError("num_slices or slice_len can be not None, but not both.")
if split_trajs:
raise NotImplementedError
if root is None:
root = _get_root_dir("simxarm")
os.makedirs(root, exist_ok=True)
self.root = Path(root)
if self.download == "force" or (self.download and not self._is_downloaded()):
storage = self._download_and_preproc()
else:
storage = TensorStorage(TensorDict.load_memmap(self.root / dataset_id))
if num_slices is not None or slice_len is not None:
if sampler is not None:
raise ValueError("`num_slices` and `slice_len` are exclusive with the `sampler` argument.")
if replacement:
if not self.shuffle:
raise RuntimeError("shuffle=False can only be used when replacement=False.")
sampler = SliceSampler(
num_slices=num_slices,
slice_len=slice_len,
strict_length=strict_length,
)
else:
sampler = SliceSamplerWithoutReplacement(
num_slices=num_slices,
slice_len=slice_len,
strict_length=strict_length,
shuffle=self.shuffle,
)
if writer is None:
writer = ImmutableDatasetWriter()
if collate_fn is None:
collate_fn = _collate_id
super().__init__(
storage=storage,
sampler=sampler,
writer=writer,
collate_fn=collate_fn,
dataset_id,
batch_size,
shuffle=shuffle,
root=root,
pin_memory=pin_memory,
prefetch=prefetch,
batch_size=batch_size,
sampler=sampler,
collate_fn=collate_fn,
writer=writer,
transform=transform,
)
@property
def num_samples(self):
return len(self)
@property
def num_episodes(self):
return len(self._storage._storage["episode"].unique())
@property
def data_path_root(self):
if self.streaming:
return None
return self.root / self.dataset_id
def _is_downloaded(self):
return os.path.exists(self.data_path_root)
def _download_and_preproc(self):
# download
# TODO(rcadene)
# load
dataset_dir = Path("data") / self.dataset_id
dataset_path = dataset_dir / "buffer.pkl"
dataset_path = self.data_dir / "buffer.pkl"
print(f"Using offline dataset '{dataset_path}'")
with open(dataset_path, "rb") as f:
dataset_dict = pickle.load(f)
@ -172,7 +93,7 @@ class SimxarmExperienceReplay(TensorDictReplayBuffer):
if episode_id == 0:
# hack to initialize tensordict data structure to store episodes
td_data = episode[0].expand(total_frames).memmap_like(self.root / self.dataset_id)
td_data = episode[0].expand(total_frames).memmap_like(self.data_dir)
td_data[idx0:idx1] = episode

View File

@ -6,6 +6,10 @@ from omegaconf import OmegaConf
from termcolor import colored
def log_output_dir(out_dir):
logging.info(colored("Output dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
def cfg_to_group(cfg, return_list=False):
"""Return a wandb-safe group name for logging. Optionally returns group name as list."""
# lst = [cfg.task, cfg.modality, re.sub("[^0-9a-zA-Z]+", "-", cfg.exp_name)]

View File

@ -9,13 +9,13 @@ import numpy as np
import torch
import tqdm
from tensordict.nn import TensorDictModule
from termcolor import colored
from torchrl.envs import EnvBase
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.envs.factory import make_env
from lerobot.common.logger import log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.utils import set_seed
from lerobot.common.utils import init_logging, set_seed
def write_video(video_path, stacked_frames, fps):
@ -109,10 +109,18 @@ def eval(cfg: dict, out_dir=None):
if out_dir is None:
raise NotImplementedError()
assert torch.cuda.is_available()
init_logging()
if cfg.device == "cuda":
assert torch.cuda.is_available()
else:
logging.warning("Using CPU, this will be slow.")
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
set_seed(cfg.seed)
print(colored("Log dir:", "yellow", attrs=["bold"]), out_dir)
log_output_dir(out_dir)
logging.info("make_offline_buffer")
offline_buffer = make_offline_buffer(cfg)
@ -142,6 +150,8 @@ def eval(cfg: dict, out_dir=None):
)
print(metrics)
logging.info("End of eval")
if __name__ == "__main__":
eval_cli()

View File

@ -4,13 +4,12 @@ import hydra
import numpy as np
import torch
from tensordict.nn import TensorDictModule
from termcolor import colored
from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer
from torchrl.data.replay_buffers import PrioritizedSliceSampler
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.envs.factory import make_env
from lerobot.common.logger import Logger
from lerobot.common.logger import Logger, log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.utils import format_big_number, init_logging, set_seed
from lerobot.scripts.eval import eval_policy
@ -164,7 +163,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
# log metrics to terminal and wandb
logger = Logger(out_dir, job_name, cfg)
logging.info(colored("Work dir:", "yellow", attrs=["bold"]) + f" {out_dir}")
log_output_dir(out_dir)
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.offline_steps=} ({format_big_number(cfg.offline_steps)})")
logging.info(f"{cfg.online_steps=}")
@ -212,7 +211,6 @@ def train(cfg: dict, out_dir=None, job_name=None):
for env_step in range(cfg.online_steps):
if env_step == 0:
logging.info("Start online training by interacting with environment")
# TODO: use SyncDataCollector for that?
# TODO: add configurable number of rollout? (default=1)
with torch.no_grad():
rollout = env.rollout(
@ -268,6 +266,8 @@ def train(cfg: dict, out_dir=None, job_name=None):
step += 1
online_step += 1
logging.info("End of training")
if __name__ == "__main__":
train_cli()

View File

@ -1,13 +1,20 @@
import logging
import threading
from pathlib import Path
import einops
import hydra
import imageio
import torch
from torchrl.data.replay_buffers import SliceSamplerWithoutReplacement
from torchrl.data.replay_buffers import (
SamplerWithoutReplacement,
)
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.logger import log_output_dir
from lerobot.common.utils import init_logging
NUM_EPISODES_TO_RENDER = 10
NUM_EPISODES_TO_RENDER = 50
MAX_NUM_STEPS = 1000
FIRST_FRAME = 0
@ -17,45 +24,88 @@ def visualize_dataset_cli(cfg: dict):
visualize_dataset(cfg, out_dir=hydra.core.hydra_config.HydraConfig.get().runtime.output_dir)
def cat_and_write_video(video_path, frames, fps):
frames = torch.cat(frames)
assert frames.dtype == torch.uint8
frames = einops.rearrange(frames, "b c h w -> b h w c").numpy()
imageio.mimsave(video_path, frames, fps=fps)
def visualize_dataset(cfg: dict, out_dir=None):
if out_dir is None:
raise NotImplementedError()
sampler = SliceSamplerWithoutReplacement(
num_slices=1,
strict_length=False,
init_logging()
log_output_dir(out_dir)
# we expect frames of each episode to be stored next to each others sequentially
sampler = SamplerWithoutReplacement(
shuffle=False,
)
offline_buffer = make_offline_buffer(cfg, sampler)
logging.info("make_offline_buffer")
offline_buffer = make_offline_buffer(
cfg, overwrite_sampler=sampler, normalize=False, overwrite_batch_size=1, overwrite_prefetch=12
)
for _ in range(NUM_EPISODES_TO_RENDER):
episode = offline_buffer.sample(MAX_NUM_STEPS)
logging.info("Start rendering episodes from offline buffer")
ep_idx = episode["episode"][FIRST_FRAME].item()
ep_frames = torch.cat(
[
episode["observation"]["image"][FIRST_FRAME][None, ...],
episode["next", "observation"]["image"],
],
dim=0,
)
threads = []
frames = {}
current_ep_idx = 0
logging.info(f"Visualizing episode {current_ep_idx}")
for _ in range(MAX_NUM_STEPS * NUM_EPISODES_TO_RENDER):
# TODO(rcadene): make it work with bsize > 1
ep_td = offline_buffer.sample(1)
ep_idx = ep_td["episode"][FIRST_FRAME].item()
video_dir = Path(out_dir) / "visualize_dataset"
video_dir.mkdir(parents=True, exist_ok=True)
# TODO(rcadene): make fps configurable
video_path = video_dir / f"episode_{ep_idx}.mp4"
# TODO(rcaene): modify offline_buffer._sampler._sample_list or sampler to randomly sample an episode, but sequentially sample frames
no_more_frames = offline_buffer._sampler._sample_list.numel() == 0
new_episode = ep_idx != current_ep_idx
assert ep_frames.min().item() >= 0
assert ep_frames.max().item() > 1, "Not mendatory, but sanity check"
assert ep_frames.max().item() <= 255
ep_frames = ep_frames.type(torch.uint8)
imageio.mimsave(video_path, ep_frames.numpy().transpose(0, 2, 3, 1), fps=cfg.fps)
if new_episode:
logging.info(f"Visualizing episode {current_ep_idx}")
# ran out of episodes
if offline_buffer._sampler._sample_list.numel() == 0:
for im_key in offline_buffer.image_keys:
if new_episode or no_more_frames:
# append last observed frames (the ones after last action taken)
frames[im_key].append(ep_td[("next", *im_key)])
video_dir = Path(out_dir) / "visualize_dataset"
video_dir.mkdir(parents=True, exist_ok=True)
if len(offline_buffer.image_keys) > 1:
camera = im_key[-1]
video_path = video_dir / f"episode_{current_ep_idx}_{camera}.mp4"
else:
video_path = video_dir / f"episode_{current_ep_idx}.mp4"
thread = threading.Thread(
target=cat_and_write_video,
args=(str(video_path), frames[im_key], cfg.fps),
)
thread.start()
threads.append(thread)
current_ep_idx = ep_idx
# reset list of frames
del frames[im_key]
# append current cameras images to list of frames
if im_key not in frames:
frames[im_key] = []
frames[im_key].append(ep_td[im_key])
if no_more_frames:
logging.info("Ran out of frames")
break
for thread in threads:
thread.join()
logging.info("End of visualize_dataset")
if __name__ == "__main__":
visualize_dataset_cli()