Add grasp critic

- Implemented grasp critic to evaluate gripper actions
- Added corresponding config parameters for tuning
This commit is contained in:
s1lent4gnt 2025-03-31 17:35:59 +02:00
parent 0f706ce543
commit 4a1c26d9ee
2 changed files with 132 additions and 0 deletions

View File

@ -42,6 +42,14 @@ class CriticNetworkConfig:
final_activation: str | None = None
@dataclass
class GraspCriticNetworkConfig:
hidden_dims: list[int] = field(default_factory=lambda: [256, 256])
activate_final: bool = True
final_activation: str | None = None
output_dim: int = 3
@dataclass
class ActorNetworkConfig:
hidden_dims: list[int] = field(default_factory=lambda: [256, 256])

View File

@ -112,6 +112,26 @@ class SACPolicy(
self.critic_ensemble = torch.compile(self.critic_ensemble)
self.critic_target = torch.compile(self.critic_target)
# Create grasp critic
self.grasp_critic = GraspCritic(
encoder=encoder_critic,
input_dim=encoder_critic.output_dim,
**config.grasp_critic_network_kwargs,
)
# Create target grasp critic
self.grasp_critic_target = GraspCritic(
encoder=encoder_critic,
input_dim=encoder_critic.output_dim,
**config.grasp_critic_network_kwargs,
)
self.grasp_critic_target.load_state_dict(self.grasp_critic.state_dict())
self.grasp_critic = torch.compile(self.grasp_critic)
self.grasp_critic_target = torch.compile(self.grasp_critic_target)
self.actor = Policy(
encoder=encoder_actor,
network=MLP(input_dim=encoder_actor.output_dim, **asdict(config.actor_network_kwargs)),
@ -176,6 +196,21 @@ class SACPolicy(
q_values = critics(observations, actions, observation_features)
return q_values
def grasp_critic_forward(self, observations, use_target=False, observation_features=None):
"""Forward pass through a grasp critic network
Args:
observations: Dictionary of observations
use_target: If True, use target critics, otherwise use ensemble critics
observation_features: Optional pre-computed observation features to avoid recomputing encoder output
Returns:
Tensor of Q-values from the grasp critic network
"""
grasp_critic = self.grasp_critic_target if use_target else self.grasp_critic
q_values = grasp_critic(observations, observation_features)
return q_values
def forward(
self,
batch: dict[str, Tensor | dict[str, Tensor]],
@ -246,6 +281,18 @@ class SACPolicy(
+ target_param.data * (1.0 - self.config.critic_target_update_weight)
)
def update_grasp_target_networks(self):
"""Update grasp target networks with exponential moving average"""
for target_param, param in zip(
self.grasp_critic_target.parameters(),
self.grasp_critic.parameters(),
strict=False,
):
target_param.data.copy_(
param.data * self.config.critic_target_update_weight
+ target_param.data * (1.0 - self.config.critic_target_update_weight)
)
def update_temperature(self):
self.temperature = self.log_alpha.exp().item()
@ -307,6 +354,32 @@ class SACPolicy(
).sum()
return critics_loss
def compute_loss_grasp_critic(self, observations, actions, rewards, next_observations, done, observation_features=None, next_observation_features=None, complementary_info=None):
batch_size = rewards.shape[0]
grasp_actions = torch.clip(actions[:, -1].long() + 1, 0, 2) # Map [-1, 0, 1] -> [0, 1, 2]
with torch.no_grad():
next_grasp_qs = self.grasp_critic_forward(next_observations, use_target=False)
best_next_grasp_action = torch.argmax(next_grasp_qs, dim=-1)
target_next_grasp_qs = self.grasp_critic_forward(next_observations, use_target=True)
target_next_grasp_q = target_next_grasp_qs[torch.arange(batch_size), best_next_grasp_action]
# Get the grasp penalty from complementary_info
grasp_penalty = torch.zeros_like(rewards)
if complementary_info is not None and "grasp_penalty" in complementary_info:
grasp_penalty = complementary_info["grasp_penalty"]
grasp_rewards = rewards + grasp_penalty
target_grasp_q = grasp_rewards + (1 - done) * self.config.discount * target_next_grasp_q
predicted_grasp_qs = self.grasp_critic_forward(observations, use_target=False)
predicted_grasp_q = predicted_grasp_qs[torch.arange(batch_size), grasp_actions]
grasp_critic_loss = F.mse_loss(input=predicted_grasp_q, target=target_grasp_q, reduction="mean")
return grasp_critic_loss
def compute_loss_temperature(self, observations, observation_features: Tensor | None = None) -> Tensor:
"""Compute the temperature loss"""
# calculate temperature loss
@ -509,6 +582,57 @@ class CriticEnsemble(nn.Module):
return q_values
class GraspCritic(nn.Module):
def __init__(
self,
encoder: Optional[nn.Module],
network: nn.Module,
output_dim: int = 3,
init_final: Optional[float] = None,
encoder_is_shared: bool = False,
):
super().__init__()
self.encoder = encoder
self.network = network
self.output_dim = output_dim
# Find the last Linear layer's output dimension
for layer in reversed(network.net):
if isinstance(layer, nn.Linear):
out_features = layer.out_features
break
self.parameters_to_optimize += list(self.network.parameters())
if self.encoder is not None and not encoder_is_shared:
self.parameters_to_optimize += list(self.encoder.parameters())
self.output_layer = nn.Linear(in_features=out_features, out_features=self.output_dim)
if init_final is not None:
nn.init.uniform_(self.output_layer.weight, -init_final, init_final)
nn.init.uniform_(self.output_layer.bias, -init_final, init_final)
else:
orthogonal_init()(self.output_layer.weight)
self.parameters_to_optimize += list(self.output_layer.parameters())
def forward(
self,
observations: torch.Tensor,
observation_features: torch.Tensor | None = None
) -> torch.Tensor:
device = get_device_from_parameters(self)
# Move each tensor in observations to device
observations = {k: v.to(device) for k, v in observations.items()}
# Encode observations if encoder exists
obs_enc = (
observation_features
if observation_features is not None
else (observations if self.encoder is None else self.encoder(observations))
)
return self.output_layer(self.network(obs_enc))
class Policy(nn.Module):
def __init__(
self,