experimental rlds to hg format convert and uploader
Signed-off-by: youliangtan <tan_you_liang@hotmail.com>
This commit is contained in:
parent
b72d574891
commit
4ab4950da8
|
@ -0,0 +1,239 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
"""
|
||||
For https://github.com/google-deepmind/open_x_embodiment (OXE) datasets.
|
||||
|
||||
Example:
|
||||
python lerobot/scripts/push_dataset_to_hub.py \
|
||||
--raw-dir /hdd/tensorflow_datasets/bridge_dataset/1.0.0/ \
|
||||
--repo-id youliangtan/sampled_bridge_data_v2 \
|
||||
--raw-format oxe_rlds \
|
||||
--episodes 3 4 5 8 9
|
||||
"""
|
||||
|
||||
import gc
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import h5py
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
from datasets import Dataset, Features, Image, Sequence, Value
|
||||
from PIL import Image as PILImage
|
||||
import tensorflow_datasets as tfds
|
||||
import cv2
|
||||
|
||||
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
|
||||
from lerobot.common.datasets.utils import (
|
||||
calculate_episode_data_index,
|
||||
hf_transform_to_torch,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
||||
|
||||
np.set_printoptions(precision=2)
|
||||
|
||||
|
||||
def get_cameras_keys(obs_keys):
|
||||
return [key for key in obs_keys if "image" in key]
|
||||
|
||||
|
||||
def tf_to_torch(data):
|
||||
return torch.from_numpy(data.numpy())
|
||||
|
||||
|
||||
def load_from_raw(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int,
|
||||
video: bool,
|
||||
episodes: list[int] | None = None
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
raw_dir (Path): _description_
|
||||
videos_dir (Path): _description_
|
||||
fps (int): _description_
|
||||
video (bool): _description_
|
||||
episodes (list[int] | None, optional): _description_. Defaults to None.
|
||||
"""
|
||||
ds_builder = tfds.builder_from_directory(str(raw_dir))
|
||||
dataset = ds_builder.as_dataset(split='all')
|
||||
dataset_info = ds_builder.info
|
||||
print("dataset_info: ", dataset_info)
|
||||
|
||||
image_keys = get_cameras_keys(
|
||||
dataset_info.features["steps"]["observation"].keys())
|
||||
print("image_keys: ", image_keys)
|
||||
|
||||
ds_length = len(dataset)
|
||||
dataset = dataset.take(ds_length)
|
||||
it = iter(dataset)
|
||||
|
||||
ep_dicts = []
|
||||
|
||||
# if we user specified episodes, skip the ones not in the list
|
||||
if episodes is not None:
|
||||
if ds_length == 0:
|
||||
raise ValueError("No episodes found.")
|
||||
# convert episodes index to sorted list
|
||||
episodes = sorted(episodes)
|
||||
|
||||
for ep_idx in tqdm.tqdm(range(ds_length)):
|
||||
episode = next(it)
|
||||
|
||||
# if we user specified episodes, skip the ones not in the list
|
||||
if episodes is not None:
|
||||
if len(episodes) == 0:
|
||||
break
|
||||
if ep_idx == episodes[0]:
|
||||
# process this episode
|
||||
print(" selecting episode: ", ep_idx)
|
||||
episodes.pop(0)
|
||||
else:
|
||||
continue # skip
|
||||
|
||||
steps = episode['steps']
|
||||
eps_len = len(steps)
|
||||
num_frames = eps_len # TODO: check if this is correct
|
||||
|
||||
# last step of demonstration is considered done
|
||||
done = torch.zeros(num_frames, dtype=torch.bool)
|
||||
done[-1] = True
|
||||
|
||||
states = []
|
||||
actions = []
|
||||
ep_dict = {}
|
||||
|
||||
image_array_dict = {key: [] for key in image_keys}
|
||||
|
||||
###########################################################
|
||||
# loop through all steps in the episode
|
||||
for j, step in enumerate(steps):
|
||||
states.append(tf_to_torch(step['observation']['state']))
|
||||
actions.append(tf_to_torch(step['action']))
|
||||
|
||||
# if "language_text" in step:
|
||||
# print(" - lang: ", step["language_text"])
|
||||
|
||||
for im_key in image_keys:
|
||||
if im_key not in step['observation']:
|
||||
continue
|
||||
|
||||
img = step['observation'][im_key]
|
||||
img = np.array(img)
|
||||
image_array_dict[im_key].append(img)
|
||||
|
||||
###########################################################
|
||||
|
||||
# loop through all cameras
|
||||
for im_key in image_keys:
|
||||
img_key = f"observation.images.{im_key}"
|
||||
imgs_array = image_array_dict[im_key]
|
||||
imgs_array = np.array(imgs_array)
|
||||
if video:
|
||||
# save png images in temporary directory
|
||||
tmp_imgs_dir = videos_dir / "tmp_images"
|
||||
save_images_concurrently(imgs_array, tmp_imgs_dir)
|
||||
|
||||
# encode images to a mp4 video
|
||||
fname = f"{img_key}_episode_{ep_idx:06d}.mp4"
|
||||
video_path = videos_dir / fname
|
||||
encode_video_frames(tmp_imgs_dir, video_path, fps)
|
||||
|
||||
# clean temporary images directory
|
||||
shutil.rmtree(tmp_imgs_dir)
|
||||
|
||||
# store the reference to the video frame
|
||||
ep_dict[img_key] = [
|
||||
{"path": f"videos/{fname}", "timestamp": i / fps} for i in range(num_frames)
|
||||
]
|
||||
else:
|
||||
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
|
||||
|
||||
ep_dict["observation.state"] = torch.stack(states) # TODO better way
|
||||
ep_dict["action"] = torch.stack(actions)
|
||||
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
||||
ep_dict["episode_index"] = torch.tensor([ep_idx] * num_frames)
|
||||
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
||||
ep_dict["next.done"] = done
|
||||
|
||||
ep_dicts.append(ep_dict)
|
||||
|
||||
data_dict = concatenate_episodes(ep_dicts)
|
||||
|
||||
total_frames = data_dict["frame_index"].shape[0]
|
||||
data_dict["index"] = torch.arange(0, total_frames, 1)
|
||||
return data_dict
|
||||
|
||||
|
||||
def to_hf_dataset(data_dict, video) -> Dataset:
|
||||
features = {}
|
||||
|
||||
keys = [key for key in data_dict if "observation.images." in key]
|
||||
for key in keys:
|
||||
if video:
|
||||
features[key] = VideoFrame()
|
||||
else:
|
||||
features[key] = Image()
|
||||
|
||||
features["observation.state"] = Sequence(
|
||||
length=data_dict["observation.state"].shape[1], feature=Value(
|
||||
dtype="float32", id=None)
|
||||
)
|
||||
if "observation.velocity" in data_dict:
|
||||
features["observation.velocity"] = Sequence(
|
||||
length=data_dict["observation.velocity"].shape[1], feature=Value(
|
||||
dtype="float32", id=None)
|
||||
)
|
||||
if "observation.effort" in data_dict:
|
||||
features["observation.effort"] = Sequence(
|
||||
length=data_dict["observation.effort"].shape[1], feature=Value(
|
||||
dtype="float32", id=None)
|
||||
)
|
||||
features["action"] = Sequence(
|
||||
length=data_dict["action"].shape[1], feature=Value(
|
||||
dtype="float32", id=None)
|
||||
)
|
||||
features["episode_index"] = Value(dtype="int64", id=None)
|
||||
features["frame_index"] = Value(dtype="int64", id=None)
|
||||
features["timestamp"] = Value(dtype="float32", id=None)
|
||||
features["next.done"] = Value(dtype="bool", id=None)
|
||||
features["index"] = Value(dtype="int64", id=None)
|
||||
|
||||
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
||||
hf_dataset.set_transform(hf_transform_to_torch)
|
||||
return hf_dataset
|
||||
|
||||
|
||||
def from_raw_to_lerobot_format(
|
||||
raw_dir: Path,
|
||||
videos_dir: Path,
|
||||
fps: int | None = None,
|
||||
video: bool = True,
|
||||
episodes: list[int] | None = None,
|
||||
):
|
||||
"""This is a test impl for rlds conversion"""
|
||||
if fps is None:
|
||||
fps = 5
|
||||
|
||||
data_dict = load_from_raw(raw_dir, videos_dir, fps, video, episodes)
|
||||
hf_dataset = to_hf_dataset(data_dict, video)
|
||||
episode_data_index = calculate_episode_data_index(hf_dataset)
|
||||
info = {
|
||||
"fps": fps,
|
||||
"video": video,
|
||||
}
|
||||
return hf_dataset, episode_data_index, info
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# TODO (YL) remove this
|
||||
raw_dir = Path("/hdd/serl/serl_task1_combine_13jun/")
|
||||
videos_dir = Path("/hdd/serl/tmp/")
|
||||
hf_dataset, episode_data_index, info = from_raw_to_lerobot_format(
|
||||
raw_dir, videos_dir, fps=5, video=True, episodes=None,
|
||||
)
|
||||
print(hf_dataset)
|
||||
print(episode_data_index)
|
||||
print(info)
|
|
@ -66,6 +66,8 @@ def get_from_raw_to_lerobot_format_fn(raw_format: str):
|
|||
from lerobot.common.datasets.push_dataset_to_hub.umi_zarr_format import from_raw_to_lerobot_format
|
||||
elif raw_format == "aloha_hdf5":
|
||||
from lerobot.common.datasets.push_dataset_to_hub.aloha_hdf5_format import from_raw_to_lerobot_format
|
||||
elif raw_format == "oxe_rlds":
|
||||
from lerobot.common.datasets.push_dataset_to_hub.oxe_rlds_format import from_raw_to_lerobot_format
|
||||
elif raw_format == "dora_parquet":
|
||||
from lerobot.common.datasets.push_dataset_to_hub.dora_parquet_format import from_raw_to_lerobot_format
|
||||
elif raw_format == "xarm_pkl":
|
||||
|
|
Loading…
Reference in New Issue