remove abstracmethods, fix online training

This commit is contained in:
Alexander Soare 2024-03-20 14:49:41 +00:00
parent 5332766a82
commit 4b7ec81dde
3 changed files with 13 additions and 19 deletions

View File

@ -1,4 +1,3 @@
import abc
from collections import deque
from typing import Optional
@ -44,26 +43,20 @@ class AbstractEnv(EnvBase):
raise NotImplementedError()
# self._prev_action_queue = deque(maxlen=self.num_prev_action)
@abc.abstractmethod
def render(self, mode="rgb_array", width=640, height=480):
raise NotImplementedError()
raise NotImplementedError("Abstract method")
@abc.abstractmethod
def _reset(self, tensordict: Optional[TensorDict] = None):
raise NotImplementedError()
raise NotImplementedError("Abstract method")
@abc.abstractmethod
def _step(self, tensordict: TensorDict):
raise NotImplementedError()
raise NotImplementedError("Abstract method")
@abc.abstractmethod
def _make_env(self):
raise NotImplementedError()
raise NotImplementedError("Abstract method")
@abc.abstractmethod
def _make_spec(self):
raise NotImplementedError()
raise NotImplementedError("Abstract method")
@abc.abstractmethod
def _set_seed(self, seed: Optional[int]):
raise NotImplementedError()
raise NotImplementedError("Abstract method")

View File

@ -1,11 +1,10 @@
from abc import ABC, abstractmethod
from collections import deque
import torch
from torch import Tensor, nn
class AbstractPolicy(nn.Module, ABC):
class AbstractPolicy(nn.Module):
"""Base policy which all policies should be derived from.
The forward method should generally not be overriden as it plays the role of handling multi-step policies. See its
@ -22,9 +21,9 @@ class AbstractPolicy(nn.Module, ABC):
self.n_action_steps = n_action_steps
self.clear_action_queue()
@abstractmethod
def update(self, replay_buffer, step):
"""One step of the policy's learning algorithm."""
raise NotImplementedError("Abstract method")
def save(self, fp):
torch.save(self.state_dict(), fp)
@ -33,13 +32,13 @@ class AbstractPolicy(nn.Module, ABC):
d = torch.load(fp)
self.load_state_dict(d)
@abstractmethod
def select_actions(self, observation) -> Tensor:
"""Select an action (or trajectory of actions) based on an observation during rollout.
If n_action_steps was provided at initialization, this should return a (batch_size, n_action_steps, *) tensor of
actions. Otherwise if n_actions_steps is None, this should return a (batch_size, *) tensor of actions.
"""
raise NotImplementedError("Abstract method")
def clear_action_queue(self):
"""This should be called whenever the environment is reset."""

View File

@ -112,6 +112,8 @@ def train(cfg: dict, out_dir=None, job_name=None):
raise NotImplementedError()
if job_name is None:
raise NotImplementedError()
if cfg.online_steps > 0:
assert cfg.rollout_batch_size == 1, "rollout_batch_size > 1 not supported for online training steps"
init_logging()
@ -218,11 +220,11 @@ def train(cfg: dict, out_dir=None, job_name=None):
# TODO: add configurable number of rollout? (default=1)
with torch.no_grad():
rollout = env.rollout(
max_steps=cfg.env.episode_length // cfg.n_action_steps,
max_steps=cfg.env.episode_length,
policy=td_policy,
auto_cast_to_device=True,
)
assert len(rollout) <= cfg.env.episode_length // cfg.n_action_steps
assert len(rollout) <= cfg.env.episode_length
# set same episode index for all time steps contained in this rollout
rollout["episode"] = torch.tensor([env_step] * len(rollout), dtype=torch.int)
online_buffer.extend(rollout)