fix train.py, stats, eval.py (training is running)
This commit is contained in:
parent
c93ce35d8c
commit
5af00d0c1e
|
@ -91,15 +91,17 @@ class AlohaDataset(torch.utils.data.Dataset):
|
|||
self.transform = transform
|
||||
self.delta_timestamps = delta_timestamps
|
||||
|
||||
data_dir = self.root / f"{self.dataset_id}"
|
||||
if (data_dir / "data_dict.pth").exists() and (data_dir / "data_ids_per_episode.pth").exists():
|
||||
self.data_dict = torch.load(data_dir / "data_dict.pth")
|
||||
self.data_ids_per_episode = torch.load(data_dir / "data_ids_per_episode.pth")
|
||||
self.data_dir = self.root / f"{self.dataset_id}"
|
||||
if (self.data_dir / "data_dict.pth").exists() and (
|
||||
self.data_dir / "data_ids_per_episode.pth"
|
||||
).exists():
|
||||
self.data_dict = torch.load(self.data_dir / "data_dict.pth")
|
||||
self.data_ids_per_episode = torch.load(self.data_dir / "data_ids_per_episode.pth")
|
||||
else:
|
||||
self._download_and_preproc_obsolete()
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.data_dict, data_dir / "data_dict.pth")
|
||||
torch.save(self.data_ids_per_episode, data_dir / "data_ids_per_episode.pth")
|
||||
self.data_dir.mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.data_dict, self.data_dir / "data_dict.pth")
|
||||
torch.save(self.data_ids_per_episode, self.data_dir / "data_ids_per_episode.pth")
|
||||
|
||||
@property
|
||||
def num_samples(self) -> int:
|
||||
|
|
|
@ -105,15 +105,17 @@ class PushtDataset(torch.utils.data.Dataset):
|
|||
self.transform = transform
|
||||
self.delta_timestamps = delta_timestamps
|
||||
|
||||
data_dir = self.root / f"{self.dataset_id}"
|
||||
if (data_dir / "data_dict.pth").exists() and (data_dir / "data_ids_per_episode.pth").exists():
|
||||
self.data_dict = torch.load(data_dir / "data_dict.pth")
|
||||
self.data_ids_per_episode = torch.load(data_dir / "data_ids_per_episode.pth")
|
||||
self.data_dir = self.root / f"{self.dataset_id}"
|
||||
if (self.data_dir / "data_dict.pth").exists() and (
|
||||
self.data_dir / "data_ids_per_episode.pth"
|
||||
).exists():
|
||||
self.data_dict = torch.load(self.data_dir / "data_dict.pth")
|
||||
self.data_ids_per_episode = torch.load(self.data_dir / "data_ids_per_episode.pth")
|
||||
else:
|
||||
self._download_and_preproc_obsolete()
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.data_dict, data_dir / "data_dict.pth")
|
||||
torch.save(self.data_ids_per_episode, data_dir / "data_ids_per_episode.pth")
|
||||
self.data_dir.mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.data_dict, self.data_dir / "data_dict.pth")
|
||||
torch.save(self.data_ids_per_episode, self.data_dir / "data_ids_per_episode.pth")
|
||||
|
||||
@property
|
||||
def num_samples(self) -> int:
|
||||
|
|
|
@ -46,15 +46,17 @@ class SimxarmDataset(torch.utils.data.Dataset):
|
|||
self.transform = transform
|
||||
self.delta_timestamps = delta_timestamps
|
||||
|
||||
data_dir = self.root / f"{self.dataset_id}"
|
||||
if (data_dir / "data_dict.pth").exists() and (data_dir / "data_ids_per_episode.pth").exists():
|
||||
self.data_dict = torch.load(data_dir / "data_dict.pth")
|
||||
self.data_ids_per_episode = torch.load(data_dir / "data_ids_per_episode.pth")
|
||||
self.data_dir = self.root / f"{self.dataset_id}"
|
||||
if (self.data_dir / "data_dict.pth").exists() and (
|
||||
self.data_dir / "data_ids_per_episode.pth"
|
||||
).exists():
|
||||
self.data_dict = torch.load(self.data_dir / "data_dict.pth")
|
||||
self.data_ids_per_episode = torch.load(self.data_dir / "data_ids_per_episode.pth")
|
||||
else:
|
||||
self._download_and_preproc_obsolete()
|
||||
data_dir.mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.data_dict, data_dir / "data_dict.pth")
|
||||
torch.save(self.data_ids_per_episode, data_dir / "data_ids_per_episode.pth")
|
||||
self.data_dir.mkdir(parents=True, exist_ok=True)
|
||||
torch.save(self.data_dict, self.data_dir / "data_dict.pth")
|
||||
torch.save(self.data_ids_per_episode, self.data_dir / "data_ids_per_episode.pth")
|
||||
|
||||
@property
|
||||
def num_samples(self) -> int:
|
||||
|
|
|
@ -112,16 +112,19 @@ def compute_or_load_stats(dataset, batch_size=32, max_num_samples=None):
|
|||
|
||||
if max_num_samples is None:
|
||||
max_num_samples = len(dataset)
|
||||
else:
|
||||
raise NotImplementedError("We need to set shuffle=True, but this violate an assert for now.")
|
||||
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=4,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
shuffle=False,
|
||||
# pin_memory=cfg.device != "cpu",
|
||||
drop_last=False,
|
||||
)
|
||||
|
||||
# these einops patterns will be used to aggregate batches and compute statistics
|
||||
stats_patterns = {
|
||||
"action": "b c -> c",
|
||||
"observation.state": "b c -> c",
|
||||
|
@ -142,9 +145,9 @@ def compute_or_load_stats(dataset, batch_size=32, max_num_samples=None):
|
|||
first_batch = None
|
||||
running_item_count = 0 # for online mean computation
|
||||
for i, batch in enumerate(
|
||||
tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute mean, min, max")
|
||||
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute mean, min, max")
|
||||
):
|
||||
this_batch_size = batch.batch_size[0]
|
||||
this_batch_size = len(batch["index"])
|
||||
running_item_count += this_batch_size
|
||||
if first_batch is None:
|
||||
first_batch = deepcopy(batch)
|
||||
|
@ -166,8 +169,10 @@ def compute_or_load_stats(dataset, batch_size=32, max_num_samples=None):
|
|||
|
||||
first_batch_ = None
|
||||
running_item_count = 0 # for online std computation
|
||||
for i, batch in enumerate(tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std")):
|
||||
this_batch_size = batch.batch_size[0]
|
||||
for i, batch in enumerate(
|
||||
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std")
|
||||
):
|
||||
this_batch_size = len(batch["index"])
|
||||
running_item_count += this_batch_size
|
||||
# Sanity check to make sure the batches are still in the same order as before.
|
||||
if first_batch_ is None:
|
||||
|
|
|
@ -243,10 +243,9 @@ class DiffusionUnetImagePolicy(BaseImagePolicy):
|
|||
result = {"action": action, "action_pred": action_pred}
|
||||
return result
|
||||
|
||||
def compute_loss(self, batch):
|
||||
assert "valid_mask" not in batch
|
||||
nobs = batch["obs"]
|
||||
nactions = batch["action"]
|
||||
def compute_loss(self, obs_dict, action):
|
||||
nobs = obs_dict
|
||||
nactions = action
|
||||
batch_size = nactions.shape[0]
|
||||
horizon = nactions.shape[1]
|
||||
|
||||
|
|
|
@ -157,7 +157,8 @@ class DiffusionPolicy(nn.Module):
|
|||
"image": batch["observation.image"],
|
||||
"agent_pos": batch["observation.state"],
|
||||
}
|
||||
loss = self.diffusion.compute_loss(obs_dict)
|
||||
action = batch["action"]
|
||||
loss = self.diffusion.compute_loss(obs_dict, action)
|
||||
loss.backward()
|
||||
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
|
|
|
@ -72,12 +72,12 @@ class NormalizeTransform(Transform):
|
|||
if inkey not in item:
|
||||
continue
|
||||
if self.mode == "mean_std":
|
||||
mean = self.stats[f"{inkey}.mean"]
|
||||
std = self.stats[f"{inkey}.std"]
|
||||
mean = self.stats[inkey]["mean"]
|
||||
std = self.stats[inkey]["std"]
|
||||
item[outkey] = (item[inkey] - mean) / (std + 1e-8)
|
||||
else:
|
||||
min = self.stats[f"{inkey}.min"]
|
||||
max = self.stats[f"{inkey}.max"]
|
||||
min = self.stats[inkey]["min"]
|
||||
max = self.stats[inkey]["max"]
|
||||
# normalize to [0,1]
|
||||
item[outkey] = (item[inkey] - min) / (max - min)
|
||||
# normalize to [-1, 1]
|
||||
|
@ -89,12 +89,12 @@ class NormalizeTransform(Transform):
|
|||
if inkey not in item:
|
||||
continue
|
||||
if self.mode == "mean_std":
|
||||
mean = self.stats[f"{inkey}.mean"]
|
||||
std = self.stats[f"{inkey}.std"]
|
||||
mean = self.stats[inkey]["mean"]
|
||||
std = self.stats[inkey]["std"]
|
||||
item[outkey] = item[inkey] * std + mean
|
||||
else:
|
||||
min = self.stats[f"{inkey}.min"]
|
||||
max = self.stats[f"{inkey}.max"]
|
||||
min = self.stats[inkey]["min"]
|
||||
max = self.stats[inkey]["max"]
|
||||
item[outkey] = (item[inkey] + 1) / 2
|
||||
item[outkey] = item[outkey] * (max - min) + min
|
||||
return item
|
||||
|
|
|
@ -37,7 +37,6 @@ from pathlib import Path
|
|||
|
||||
import einops
|
||||
import gymnasium as gym
|
||||
import hydra
|
||||
import imageio
|
||||
import numpy as np
|
||||
import torch
|
||||
|
@ -47,8 +46,8 @@ from lerobot.common.datasets.factory import make_dataset
|
|||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.logger import log_output_dir
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils import get_safe_torch_device, init_hydra_config, init_logging, set_global_seed
|
||||
from lerobot.common.transforms import apply_inverse_transform
|
||||
from lerobot.common.utils import get_safe_torch_device, init_hydra_config, init_logging, set_global_seed
|
||||
|
||||
|
||||
def write_video(video_path, stacked_frames, fps):
|
||||
|
@ -92,9 +91,12 @@ def eval_policy(
|
|||
fps: int = 15,
|
||||
return_first_video: bool = False,
|
||||
transform: callable = None,
|
||||
seed=None,
|
||||
):
|
||||
if policy is not None:
|
||||
policy.eval()
|
||||
device = "cpu" if policy is None else next(policy.parameters()).device
|
||||
|
||||
start = time.time()
|
||||
sum_rewards = []
|
||||
max_rewards = []
|
||||
|
@ -125,11 +127,11 @@ def eval_policy(
|
|||
policy.reset()
|
||||
else:
|
||||
logging.warning(
|
||||
f"Policy {policy} doesnt have a `reset` method. This find if the policy doesnt rely on an internal state during rollout."
|
||||
f"Policy {policy} doesnt have a `reset` method. It is required if the policy relies on an internal state during rollout."
|
||||
)
|
||||
|
||||
# reset the environment
|
||||
observation, info = env.reset(seed=cfg.seed)
|
||||
observation, info = env.reset(seed=seed)
|
||||
maybe_render_frame(env)
|
||||
|
||||
rewards = []
|
||||
|
@ -138,13 +140,12 @@ def eval_policy(
|
|||
|
||||
done = torch.tensor([False for _ in env.envs])
|
||||
step = 0
|
||||
do_rollout = True
|
||||
while do_rollout:
|
||||
while not done.all():
|
||||
# apply transform to normalize the observations
|
||||
observation = preprocess_observation(observation, transform)
|
||||
|
||||
# send observation to device/gpu
|
||||
observation = {key: observation[key].to(cfg.device, non_blocking=True) for key in observation}
|
||||
observation = {key: observation[key].to(device, non_blocking=True) for key in observation}
|
||||
|
||||
# get the next action for the environment
|
||||
with torch.inference_mode():
|
||||
|
@ -180,10 +181,6 @@ def eval_policy(
|
|||
|
||||
step += 1
|
||||
|
||||
if done.all():
|
||||
do_rollout = False
|
||||
break
|
||||
|
||||
rewards = torch.stack(rewards, dim=1)
|
||||
successes = torch.stack(successes, dim=1)
|
||||
dones = torch.stack(dones, dim=1)
|
||||
|
@ -295,6 +292,7 @@ def eval(cfg: dict, out_dir=None, stats_path=None):
|
|||
fps=cfg.env.fps,
|
||||
# TODO(rcadene): what should we do with the transform?
|
||||
transform=dataset.transform,
|
||||
seed=cfg.seed,
|
||||
)
|
||||
print(info["aggregated"])
|
||||
|
||||
|
|
|
@ -145,7 +145,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
|||
# )
|
||||
|
||||
logging.info("make_env")
|
||||
env = make_env(cfg)
|
||||
env = make_env(cfg, num_parallel_envs=cfg.eval_episodes)
|
||||
|
||||
logging.info("make_policy")
|
||||
policy = make_policy(cfg)
|
||||
|
@ -173,12 +173,11 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
|||
eval_info, first_video = eval_policy(
|
||||
env,
|
||||
policy,
|
||||
num_episodes=cfg.eval_episodes,
|
||||
max_steps=cfg.env.episode_length,
|
||||
return_first_video=True,
|
||||
video_dir=Path(out_dir) / "eval",
|
||||
save_video=True,
|
||||
transform=dataset.transform,
|
||||
seed=cfg.seed,
|
||||
)
|
||||
log_eval_info(logger, eval_info["aggregated"], step, cfg, dataset, is_offline)
|
||||
if cfg.wandb.enable:
|
||||
|
@ -211,7 +210,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
|||
for key in batch:
|
||||
batch[key] = batch[key].to(cfg.device, non_blocking=True)
|
||||
|
||||
train_info = policy.update(batch, step)
|
||||
train_info = policy(batch, step)
|
||||
|
||||
# TODO(rcadene): is it ok if step_t=0 = 0 and not 1 as previously done?
|
||||
if step % cfg.log_freq == 0:
|
||||
|
@ -223,6 +222,8 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
|||
|
||||
step += 1
|
||||
|
||||
raise NotImplementedError()
|
||||
|
||||
demo_buffer = dataset if cfg.policy.balanced_sampling else None
|
||||
online_step = 0
|
||||
is_offline = False
|
||||
|
|
|
@ -18,28 +18,26 @@ Example:
|
|||
import argparse
|
||||
import shutil
|
||||
|
||||
from tensordict import TensorDict
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def mock_dataset(in_data_dir, out_data_dir, num_frames):
|
||||
in_data_dir = Path(in_data_dir)
|
||||
out_data_dir = Path(out_data_dir)
|
||||
|
||||
# load full dataset as a tensor dict
|
||||
in_td_data = TensorDict.load_memmap(in_data_dir / "replay_buffer")
|
||||
# copy the first `n` frames for each data key so that we have real data
|
||||
in_data_dict = torch.load(in_data_dir / "data_dict.pth")
|
||||
out_data_dict = {key: in_data_dict[key][:num_frames].clone() for key in in_data_dict}
|
||||
torch.save(out_data_dict, out_data_dir / "data_dict.pth")
|
||||
|
||||
# use 1 frame to know the specification of the dataset
|
||||
# and copy it over `n` frames in the test artifact directory
|
||||
out_td_data = in_td_data[0].expand(num_frames).memmap_like(out_data_dir / "replay_buffer")
|
||||
# copy the full mapping between data_id and episode since it's small
|
||||
in_ids_per_ep_path = in_data_dir / "data_ids_per_episode.pth"
|
||||
out_ids_per_ep_path = out_data_dir / "data_ids_per_episode.pth"
|
||||
shutil.copy(in_ids_per_ep_path, out_ids_per_ep_path)
|
||||
|
||||
# copy the first `n` frames so that we have real data
|
||||
out_td_data[:num_frames] = in_td_data[:num_frames].clone()
|
||||
|
||||
# make sure everything has been properly written
|
||||
out_td_data.lock_()
|
||||
|
||||
# copy the full statistics of dataset since it's pretty small
|
||||
# copy the full statistics of dataset since it's small
|
||||
in_stats_path = in_data_dir / "stats.pth"
|
||||
out_stats_path = out_data_dir / "stats.pth"
|
||||
shutil.copy(in_stats_path, out_stats_path)
|
||||
|
|
|
@ -59,11 +59,7 @@ def test_factory(env_name, dataset_id):
|
|||
# )
|
||||
# dataset = make_dataset(cfg)
|
||||
# # Get all of the data.
|
||||
# all_data = TensorDictReplayBuffer(
|
||||
# storage=buffer._storage,
|
||||
# batch_size=len(buffer),
|
||||
# sampler=SamplerWithoutReplacement(),
|
||||
# ).sample().float()
|
||||
# all_data = dataset.data_dict
|
||||
# # Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
||||
# # computation of the statistics. While doing this, we also make sure it works when we don't divide the
|
||||
# # dataset into even batches.
|
||||
|
|
Loading…
Reference in New Issue