Merge pull request #64 from huggingface/user/rcadene/2024_03_31_remove_torchrl

Remove torchrl
This commit is contained in:
Remi 2024-04-11 16:45:16 +02:00 committed by GitHub
commit 5bd953e8e7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
215 changed files with 2939 additions and 7585 deletions

171
.github/poetry/cpu/poetry.lock generated vendored
View File

@ -517,21 +517,11 @@ files = [
{file = "distlib-0.3.8.tar.gz", hash = "sha256:1530ea13e350031b6312d8580ddb6b27a104275a31106523b8f123787f494f64"},
]
[[package]]
name = "dm"
version = "1.3"
description = "Dict to Data mapper"
optional = false
python-versions = "*"
files = [
{file = "dm-1.3.tar.gz", hash = "sha256:ce77537bf346b5d8c0dc0b5d679cfc4a946faadcd5315e6c80ef6f3af824130d"},
]
[[package]]
name = "dm-control"
version = "1.0.14"
description = "Continuous control environments and MuJoCo Python bindings."
optional = false
optional = true
python-versions = ">=3.8"
files = [
{file = "dm_control-1.0.14-py3-none-any.whl", hash = "sha256:883c63244a7ebf598700a97564ed19fffd3479ca79efd090aed881609cdb9fc6"},
@ -562,7 +552,7 @@ hdf5 = ["h5py"]
name = "dm-env"
version = "1.6"
description = "A Python interface for Reinforcement Learning environments."
optional = false
optional = true
python-versions = ">=3.7"
files = [
{file = "dm-env-1.6.tar.gz", hash = "sha256:a436eb1c654c39e0c986a516cee218bea7140b510fceff63f97eb4fcff3d93de"},
@ -578,7 +568,7 @@ numpy = "*"
name = "dm-tree"
version = "0.1.8"
description = "Tree is a library for working with nested data structures."
optional = false
optional = true
python-versions = "*"
files = [
{file = "dm-tree-0.1.8.tar.gz", hash = "sha256:0fcaabbb14e7980377439e7140bd05552739ca5e515ecb3119f234acee4b9430"},
@ -806,7 +796,7 @@ test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre
name = "glfw"
version = "2.7.0"
description = "A ctypes-based wrapper for GLFW3."
optional = false
optional = true
python-versions = "*"
files = [
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-macosx_10_6_intel.whl", hash = "sha256:bd82849edcceda4e262bd1227afaa74b94f9f0731c1197863cd25c15bfc613fc"},
@ -889,6 +879,69 @@ files = [
[package.extras]
protobuf = ["grpcio-tools (>=1.62.1)"]
[[package]]
name = "gym-aloha"
version = "0.1.0"
description = "A gym environment for ALOHA"
optional = true
python-versions = "^3.10"
files = []
develop = false
[package.dependencies]
dm-control = "1.0.14"
gymnasium = "^0.29.1"
mujoco = "^2.3.7"
[package.source]
type = "git"
url = "git@github.com:huggingface/gym-aloha.git"
reference = "HEAD"
resolved_reference = "c636f05ba0d1760df94537da84c860be1487e17f"
[[package]]
name = "gym-pusht"
version = "0.1.0"
description = "A gymnasium environment for PushT."
optional = true
python-versions = "^3.10"
files = []
develop = false
[package.dependencies]
gymnasium = "^0.29.1"
opencv-python = "^4.9.0.80"
pygame = "^2.5.2"
pymunk = "^6.6.0"
scikit-image = "^0.22.0"
shapely = "^2.0.3"
[package.source]
type = "git"
url = "git@github.com:huggingface/gym-pusht.git"
reference = "HEAD"
resolved_reference = "6c9893504f670ff069d0f759a733e971ea1efdbf"
[[package]]
name = "gym-xarm"
version = "0.1.0"
description = "A gym environment for xArm"
optional = true
python-versions = "^3.10"
files = []
develop = false
[package.dependencies]
gymnasium = "^0.29.1"
gymnasium-robotics = "^1.2.4"
mujoco = "^2.3.7"
[package.source]
type = "git"
url = "git@github.com:huggingface/gym-xarm.git"
reference = "HEAD"
resolved_reference = "6a88f7d63833705dfbec4b997bf36cac6b4a448c"
[[package]]
name = "gymnasium"
version = "0.29.1"
@ -923,7 +976,7 @@ toy-text = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
name = "gymnasium-robotics"
version = "1.2.4"
description = "Robotics environments for the Gymnasium repo."
optional = false
optional = true
python-versions = ">=3.8"
files = [
{file = "gymnasium-robotics-1.2.4.tar.gz", hash = "sha256:d304192b066f8b800599dfbe3d9d90bba9b761ee884472bdc4d05968a8bc61cb"},
@ -1155,7 +1208,7 @@ i18n = ["Babel (>=2.7)"]
name = "labmaze"
version = "1.0.6"
description = "LabMaze: DeepMind Lab's text maze generator."
optional = false
optional = true
python-versions = "*"
files = [
{file = "labmaze-1.0.6-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b2ddef976dfd8d992b19cfa6c633f2eba7576d759c2082da534e3f727479a84a"},
@ -1199,7 +1252,7 @@ setuptools = "!=50.0.0"
name = "lazy-loader"
version = "0.3"
description = "lazy_loader"
optional = false
optional = true
python-versions = ">=3.7"
files = [
{file = "lazy_loader-0.3-py3-none-any.whl", hash = "sha256:1e9e76ee8631e264c62ce10006718e80b2cfc74340d17d1031e0f84af7478554"},
@ -1244,7 +1297,7 @@ files = [
name = "lxml"
version = "5.1.0"
description = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API."
optional = false
optional = true
python-versions = ">=3.6"
files = [
{file = "lxml-5.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:704f5572ff473a5f897745abebc6df40f22d4133c1e0a1f124e4f2bd3330ff7e"},
@ -1462,7 +1515,7 @@ tests = ["pytest (>=4.6)"]
name = "mujoco"
version = "2.3.7"
description = "MuJoCo Physics Simulator"
optional = false
optional = true
python-versions = ">=3.8"
files = [
{file = "mujoco-2.3.7-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:e8714a5ff6a1561b364b7b4648d4c0c8d13e751874cf7401c309b9d23fa9598b"},
@ -1776,7 +1829,7 @@ xml = ["lxml (>=4.9.2)"]
name = "pettingzoo"
version = "1.24.3"
description = "Gymnasium for multi-agent reinforcement learning."
optional = false
optional = true
python-versions = ">=3.8"
files = [
{file = "pettingzoo-1.24.3-py3-none-any.whl", hash = "sha256:23ed90517d2e8a7098bdaf5e31234b3a7f7b73ca578d70d1ca7b9d0cb0e37982"},
@ -2144,7 +2197,7 @@ dev = ["aafigure", "matplotlib", "pygame", "pyglet (<2.0.0)", "sphinx", "wheel"]
name = "pyopengl"
version = "3.1.7"
description = "Standard OpenGL bindings for Python"
optional = false
optional = true
python-versions = "*"
files = [
{file = "PyOpenGL-3.1.7-py3-none-any.whl", hash = "sha256:a6ab19cf290df6101aaf7470843a9c46207789855746399d0af92521a0a92b7a"},
@ -2155,7 +2208,7 @@ files = [
name = "pyparsing"
version = "3.1.2"
description = "pyparsing module - Classes and methods to define and execute parsing grammars"
optional = false
optional = true
python-versions = ">=3.6.8"
files = [
{file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"},
@ -2586,7 +2639,7 @@ torch = ["safetensors[numpy]", "torch (>=1.10)"]
name = "scikit-image"
version = "0.22.0"
description = "Image processing in Python"
optional = false
optional = true
python-versions = ">=3.9"
files = [
{file = "scikit_image-0.22.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:74ec5c1d4693506842cc7c9487c89d8fc32aed064e9363def7af08b8f8cbb31d"},
@ -2634,7 +2687,7 @@ test = ["asv", "matplotlib (>=3.5)", "numpydoc (>=1.5)", "pooch (>=1.6.0)", "pyt
name = "scipy"
version = "1.12.0"
description = "Fundamental algorithms for scientific computing in Python"
optional = false
optional = true
python-versions = ">=3.9"
files = [
{file = "scipy-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:78e4402e140879387187f7f25d91cc592b3501a2e51dfb320f48dfb73565f10b"},
@ -2839,7 +2892,7 @@ testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jar
name = "shapely"
version = "2.0.3"
description = "Manipulation and analysis of geometric objects"
optional = false
optional = true
python-versions = ">=3.7"
files = [
{file = "shapely-2.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:af7e9abe180b189431b0f490638281b43b84a33a960620e6b2e8d3e3458b61a1"},
@ -2988,31 +3041,6 @@ numpy = "*"
packaging = "*"
protobuf = ">=3.20"
[[package]]
name = "tensordict"
version = "0.4.0+b4c91e8"
description = ""
optional = false
python-versions = "*"
files = []
develop = false
[package.dependencies]
cloudpickle = "*"
numpy = "*"
torch = ">=2.1.0"
[package.extras]
checkpointing = ["torchsnapshot-nightly"]
h5 = ["h5py (>=3.8)"]
tests = ["pytest", "pytest-benchmark", "pytest-instafail", "pytest-rerunfailures", "pyyaml"]
[package.source]
type = "git"
url = "https://github.com/pytorch/tensordict"
reference = "HEAD"
resolved_reference = "b4c91e8828c538ca0a50d8383fd99311a9afb078"
[[package]]
name = "termcolor"
version = "2.4.0"
@ -3031,7 +3059,7 @@ tests = ["pytest", "pytest-cov"]
name = "tifffile"
version = "2024.2.12"
description = "Read and write TIFF files"
optional = false
optional = true
python-versions = ">=3.9"
files = [
{file = "tifffile-2024.2.12-py3-none-any.whl", hash = "sha256:870998f82fbc94ff7c3528884c1b0ae54863504ff51dbebea431ac3fa8fb7c21"},
@ -3091,40 +3119,6 @@ type = "legacy"
url = "https://download.pytorch.org/whl/cpu"
reference = "torch-cpu"
[[package]]
name = "torchrl"
version = "0.4.0+13bef42"
description = ""
optional = false
python-versions = "*"
files = []
develop = false
[package.dependencies]
cloudpickle = "*"
numpy = "*"
packaging = "*"
tensordict = ">=0.4.0"
torch = ">=2.1.0"
[package.extras]
all = ["ale-py", "atari-py", "dm_control", "git", "gym", "gym[accept-rom-license]", "gymnasium", "h5py", "huggingface_hub", "hydra-core (>=1.1)", "hydra-submitit-launcher", "minari", "moviepy", "mujoco", "pandas", "pettingzoo (>=1.24.1)", "pillow", "pygame", "pytest", "pytest-instafail", "pyyaml", "requests", "scikit-learn", "scipy", "tensorboard", "torchsnapshot", "torchvision", "tqdm", "vmas (>=1.2.10)", "wandb"]
atari = ["ale-py", "atari-py", "gym", "gym[accept-rom-license]", "pygame"]
checkpointing = ["torchsnapshot"]
dm-control = ["dm_control"]
gym-continuous = ["gymnasium", "mujoco"]
marl = ["pettingzoo (>=1.24.1)", "vmas (>=1.2.10)"]
offline-data = ["h5py", "huggingface_hub", "minari", "pandas", "pillow", "requests", "scikit-learn", "torchvision", "tqdm"]
rendering = ["moviepy"]
tests = ["pytest", "pytest-instafail", "pyyaml", "scipy"]
utils = ["git", "hydra-core (>=1.1)", "hydra-submitit-launcher", "tensorboard", "tqdm", "wandb"]
[package.source]
type = "git"
url = "https://github.com/pytorch/rl"
reference = "13bef426dcfa5887c6e5034a6e9697993fa92c37"
resolved_reference = "13bef426dcfa5887c6e5034a6e9697993fa92c37"
[[package]]
name = "torchvision"
version = "0.17.1+cpu"
@ -3327,7 +3321,12 @@ files = [
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[extras]
aloha = ["gym-aloha"]
pusht = ["gym-pusht"]
xarm = ["gym-xarm"]
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "8800bb8b24312d17b765cd2ce2799f49436171dd5fbf1bec3b07f853cfa9befd"
content-hash = "8fa6dfc30e605741c24f5de58b89125d5b02153f550e5af7a44356956d6bb167"

View File

@ -23,7 +23,6 @@ packages = [{include = "lerobot"}]
python = "^3.10"
termcolor = "^2.4.0"
omegaconf = "^2.3.0"
dm-env = "^1.6"
pandas = "^2.2.1"
wandb = "^0.16.3"
moviepy = "^1.0.3"
@ -34,30 +33,41 @@ einops = "^0.7.0"
pygame = "^2.5.2"
pymunk = "^6.6.0"
zarr = "^2.17.0"
shapely = "^2.0.3"
scikit-image = "^0.22.0"
numba = "^0.59.0"
mpmath = "^1.3.0"
torch = {version = "^2.2.1", source = "torch-cpu"}
tensordict = {git = "https://github.com/pytorch/tensordict"}
torchrl = {git = "https://github.com/pytorch/rl", rev = "13bef426dcfa5887c6e5034a6e9697993fa92c37"}
mujoco = "^2.3.7"
opencv-python = "^4.9.0.80"
diffusers = "^0.26.3"
torchvision = {version = "^0.17.1", source = "torch-cpu"}
h5py = "^3.10.0"
dm = "^1.3"
dm-control = "1.0.14"
robomimic = "0.2.0"
huggingface-hub = "^0.21.4"
gymnasium-robotics = "^1.2.4"
gymnasium = "^0.29.1"
cmake = "^3.29.0.1"
gym-pusht = { git = "git@github.com:huggingface/gym-pusht.git", optional = true}
gym-xarm = { git = "git@github.com:huggingface/gym-xarm.git", optional = true}
gym-aloha = { git = "git@github.com:huggingface/gym-aloha.git", optional = true}
# gym-pusht = { path = "../gym-pusht", develop = true, optional = true}
# gym-xarm = { path = "../gym-xarm", develop = true, optional = true}
# gym-aloha = { path = "../gym-aloha", develop = true, optional = true}
[tool.poetry.extras]
pusht = ["gym-pusht"]
xarm = ["gym-xarm"]
aloha = ["gym-aloha"]
[tool.poetry.group.dev]
optional = true
[tool.poetry.group.dev.dependencies]
pre-commit = "^3.6.2"
debugpy = "^1.8.1"
[tool.poetry.group.test.dependencies]
pytest = "^8.1.0"
pytest-cov = "^5.0.0"

View File

@ -34,6 +34,11 @@ jobs:
with:
python-version: '3.10'
- name: Add SSH key for installing envs
uses: webfactory/ssh-agent@v0.9.0
with:
ssh-private-key: ${{ secrets.SSH_PRIVATE_KEY }}
#----------------------------------------------
# install & configure poetry
#----------------------------------------------
@ -87,7 +92,7 @@ jobs:
TMP: ~/tmp
run: |
mkdir ~/tmp
poetry install --no-interaction --no-root
poetry install --no-interaction --no-root --all-extras
- name: Save cached venv
if: |
@ -106,7 +111,7 @@ jobs:
# install project
#----------------------------------------------
- name: Install project
run: poetry install --no-interaction
run: poetry install --no-interaction --all-extras
#----------------------------------------------
# run tests & coverage
@ -137,6 +142,7 @@ jobs:
wandb.enable=False \
offline_steps=2 \
online_steps=0 \
eval_episodes=1 \
device=cpu \
save_model=true \
save_freq=2 \
@ -154,17 +160,6 @@ jobs:
device=cpu \
policy.pretrained_model_path=tests/outputs/act/models/2.pt
# TODO(aliberts): This takes ~2mn to run, needs to be improved
# - name: Test eval ACT on ALOHA end-to-end (policy is None)
# run: |
# source .venv/bin/activate
# python lerobot/scripts/eval.py \
# --config lerobot/configs/default.yaml \
# policy=act \
# env=aloha \
# eval_episodes=1 \
# device=cpu
- name: Test train Diffusion on PushT end-to-end
run: |
source .venv/bin/activate
@ -174,9 +169,11 @@ jobs:
wandb.enable=False \
offline_steps=2 \
online_steps=0 \
eval_episodes=1 \
device=cpu \
save_model=true \
save_freq=2 \
policy.batch_size=2 \
hydra.run.dir=tests/outputs/diffusion/
- name: Test eval Diffusion on PushT end-to-end
@ -189,28 +186,20 @@ jobs:
device=cpu \
policy.pretrained_model_path=tests/outputs/diffusion/models/2.pt
- name: Test eval Diffusion on PushT end-to-end (policy is None)
run: |
source .venv/bin/activate
python lerobot/scripts/eval.py \
--config lerobot/configs/default.yaml \
policy=diffusion \
env=pusht \
eval_episodes=1 \
device=cpu
- name: Test train TDMPC on Simxarm end-to-end
run: |
source .venv/bin/activate
python lerobot/scripts/train.py \
policy=tdmpc \
env=simxarm \
env=xarm \
wandb.enable=False \
offline_steps=1 \
online_steps=1 \
eval_episodes=1 \
device=cpu \
save_model=true \
save_freq=2 \
policy.batch_size=2 \
hydra.run.dir=tests/outputs/tdmpc/
- name: Test eval TDMPC on Simxarm end-to-end
@ -222,13 +211,3 @@ jobs:
env.episode_length=8 \
device=cpu \
policy.pretrained_model_path=tests/outputs/tdmpc/models/2.pt
- name: Test eval TDPMC on Simxarm end-to-end (policy is None)
run: |
source .venv/bin/activate
python lerobot/scripts/eval.py \
--config lerobot/configs/default.yaml \
policy=tdmpc \
env=simxarm \
eval_episodes=1 \
device=cpu

3
.gitignore vendored
View File

@ -11,6 +11,9 @@ rl
nautilus/*.yaml
*.key
# Slurm
sbatch*.sh
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]

View File

@ -62,21 +62,29 @@
Download our source code:
```bash
git clone https://github.com/huggingface/lerobot.git
cd lerobot
git clone https://github.com/huggingface/lerobot.git && cd lerobot
```
Create a virtual environment with Python 3.10 and activate it, e.g. with [`miniconda`](https://docs.anaconda.com/free/miniconda/index.html):
```bash
conda create -y -n lerobot python=3.10
conda activate lerobot
conda create -y -n lerobot python=3.10 && conda activate lerobot
```
Then, install 🤗 LeRobot:
Install 🤗 LeRobot:
```bash
python -m pip install .
```
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
- [aloha](https://github.com/huggingface/gym-aloha)
- [xarm](https://github.com/huggingface/gym-xarm)
- [pusht](https://github.com/huggingface/gym-pusht)
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
python -m pip install ".[aloha, pusht]"
```
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiments tracking, log in with
```bash
wandb login
@ -89,11 +97,11 @@ wandb login
├── lerobot
| ├── configs # contains hydra yaml files with all options that you can override in the command line
| | ├── default.yaml # selected by default, it loads pusht environment and diffusion policy
| | ├── env # various sim environments and their datasets: aloha.yaml, pusht.yaml, simxarm.yaml
| | ├── env # various sim environments and their datasets: aloha.yaml, pusht.yaml, xarm.yaml
| | └── policy # various policies: act.yaml, diffusion.yaml, tdmpc.yaml
| ├── common # contains classes and utilities
| | ├── datasets # various datasets of human demonstrations: aloha, pusht, simxarm
| | ├── envs # various sim environments: aloha, pusht, simxarm
| | ├── datasets # various datasets of human demonstrations: aloha, pusht, xarm
| | ├── envs # various sim environments: aloha, pusht, xarm
| | └── policies # various policies: act, diffusion, tdmpc
| └── scripts # contains functions to execute via command line
| ├── visualize_dataset.py # load a dataset and render its demonstrations
@ -112,34 +120,32 @@ wandb login
You can import our dataset class, download the data from the HuggingFace hub and use our rendering utilities:
```python
""" Copy pasted from `examples/1_visualize_dataset.py` """
import os
from pathlib import Path
import lerobot
from lerobot.common.datasets.aloha import AlohaDataset
from torchrl.data.replay_buffers import SamplerWithoutReplacement
from lerobot.scripts.visualize_dataset import render_dataset
print(lerobot.available_datasets)
# >>> ['aloha_sim_insertion_human', 'aloha_sim_insertion_scripted', 'aloha_sim_transfer_cube_human', 'aloha_sim_transfer_cube_scripted', 'pusht', 'xarm_lift_medium']
# we use this sampler to sample 1 frame after the other
sampler = SamplerWithoutReplacement(shuffle=False)
dataset = AlohaDataset("aloha_sim_transfer_cube_human", sampler=sampler)
# TODO(rcadene): remove DATA_DIR
dataset = AlohaDataset("pusht", root=Path(os.environ.get("DATA_DIR")))
video_paths = render_dataset(
dataset,
out_dir="outputs/visualize_dataset/example",
max_num_samples=300,
fps=50,
max_num_episodes=1,
)
print(video_paths)
# >>> ['outputs/visualize_dataset/example/episode_0.mp4']
# ['outputs/visualize_dataset/example/episode_0.mp4']
```
Or you can achieve the same result by executing our script from the command line:
```bash
python lerobot/scripts/visualize_dataset.py \
env=aloha \
task=sim_sim_transfer_cube_human \
env=pusht \
hydra.run.dir=outputs/visualize_dataset/example
# >>> ['outputs/visualize_dataset/example/episode_0.mp4']
```
@ -198,21 +204,33 @@ pre-commit install
pre-commit
```
### Add dependencies
### Dependencies
Instead of using `pip` directly, we use `poetry` for development purposes to easily track our dependencies.
If you don't have it already, follow the [instructions](https://python-poetry.org/docs/#installation) to install it.
Install the project with:
Install the project with dev dependencies and all environments:
```bash
poetry install
poetry install --sync --with dev --all-extras
```
This command should be run when pulling code with and updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the dependencies.
To selectively install environments (for example aloha and pusht) use:
```bash
poetry install --sync --with dev --extras "aloha pusht"
```
Then, the equivalent of `pip install some-package`, would just be:
The equivalent of `pip install some-package`, would just be:
```bash
poetry add some-package
```
When changes are made to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
```bash
poetry lock --no-update
```
**NOTE:** Currently, to ensure the CI works properly, any new package must also be added in the CPU-only environment dedicated to the CI. To do this, you should create a separate environment and add the new package there as well. For example:
```bash
# Add the new package to your main poetry env

View File

@ -1,24 +1,20 @@
import os
from torchrl.data.replay_buffers import SamplerWithoutReplacement
from pathlib import Path
import lerobot
from lerobot.common.datasets.aloha import AlohaDataset
from lerobot.common.datasets.pusht import PushtDataset
from lerobot.scripts.visualize_dataset import render_dataset
print(lerobot.available_datasets)
# >>> ['aloha_sim_insertion_human', 'aloha_sim_insertion_scripted', 'aloha_sim_transfer_cube_human', 'aloha_sim_transfer_cube_scripted', 'pusht', 'xarm_lift_medium']
# we use this sampler to sample 1 frame after the other
sampler = SamplerWithoutReplacement(shuffle=False)
dataset = AlohaDataset("aloha_sim_transfer_cube_human", sampler=sampler, root=os.environ.get("DATA_DIR"))
# TODO(rcadene): remove DATA_DIR
dataset = PushtDataset("pusht", root=Path(os.environ.get("DATA_DIR")))
video_paths = render_dataset(
dataset,
out_dir="outputs/visualize_dataset/example",
max_num_samples=300,
fps=50,
max_num_episodes=1,
)
print(video_paths)
# ['outputs/visualize_dataset/example/episode_0.mp4']

View File

@ -9,9 +9,8 @@ from pathlib import Path
import torch
from omegaconf import OmegaConf
from tqdm import trange
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.policies.diffusion.policy import DiffusionPolicy
from lerobot.common.utils import init_hydra_config
@ -37,19 +36,33 @@ policy = DiffusionPolicy(
cfg_obs_encoder=cfg.obs_encoder,
cfg_optimizer=cfg.optimizer,
cfg_ema=cfg.ema,
n_action_steps=cfg.n_action_steps + cfg.n_latency_steps,
**cfg.policy,
)
policy.train()
offline_buffer = make_offline_buffer(cfg)
dataset = make_dataset(cfg)
# create dataloader for offline training
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=4,
batch_size=cfg.policy.batch_size,
shuffle=True,
pin_memory=cfg.device != "cpu",
drop_last=True,
)
for step, batch in enumerate(dataloader):
info = policy(batch, step)
if step % cfg.log_freq == 0:
num_samples = (step + 1) * cfg.policy.batch_size
loss = info["loss"]
update_s = info["update_s"]
print(f"step:{step} samples:{num_samples} loss:{loss:.3f} update_time:{update_s:.3f}(seconds)")
for offline_step in trange(cfg.offline_steps):
train_info = policy.update(offline_buffer, offline_step)
if offline_step % cfg.log_freq == 0:
print(train_info)
# Save the policy, configuration, and normalization stats for later use.
policy.save(output_directory / "model.pt")
OmegaConf.save(cfg, output_directory / "config.yaml")
torch.save(offline_buffer.transform[-1].stats, output_directory / "stats.pth")
torch.save(dataset.transform.transforms[-1].stats, output_directory / "stats.pth")

View File

@ -12,14 +12,11 @@ Example:
print(lerobot.available_policies)
```
Note:
When implementing a concrete class (e.g. `AlohaDataset`, `PushtEnv`, `DiffusionPolicy`), you need to:
1. set the required class attributes:
- for classes inheriting from `AbstractDataset`: `available_datasets`
- for classes inheriting from `AbstractEnv`: `name`, `available_tasks`
- for classes inheriting from `AbstractPolicy`: `name`
2. update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
3. update variables in `tests/test_available.py` by importing your new class
When implementing a new dataset (e.g. `AlohaDataset`), policy (e.g. `DiffusionPolicy`), or environment, follow these steps:
- Set the required class attributes: `available_datasets`.
- Set the required class attributes: `name`.
- Update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
- Update variables in `tests/test_available.py` by importing your new class
"""
from lerobot.__version__ import __version__ # noqa: F401
@ -27,16 +24,16 @@ from lerobot.__version__ import __version__ # noqa: F401
available_envs = [
"aloha",
"pusht",
"simxarm",
"xarm",
]
available_tasks_per_env = {
"aloha": [
"sim_insertion",
"sim_transfer_cube",
"AlohaInsertion-v0",
"AlohaTransferCube-v0",
],
"pusht": ["pusht"],
"simxarm": ["lift"],
"pusht": ["PushT-v0"],
"xarm": ["XarmLift-v0"],
}
available_datasets_per_env = {
@ -47,7 +44,7 @@ available_datasets_per_env = {
"aloha_sim_transfer_cube_scripted",
],
"pusht": ["pusht"],
"simxarm": ["xarm_lift_medium"],
"xarm": ["xarm_lift_medium"],
}
available_datasets = [dataset for env in available_envs for dataset in available_datasets_per_env[env]]

View File

@ -1,234 +0,0 @@
import logging
from copy import deepcopy
from math import ceil
from pathlib import Path
from typing import Callable
import einops
import torch
import torchrl
import tqdm
from huggingface_hub import snapshot_download
from tensordict import TensorDict
from torchrl.data.replay_buffers.replay_buffers import TensorDictReplayBuffer
from torchrl.data.replay_buffers.samplers import Sampler, SamplerWithoutReplacement
from torchrl.data.replay_buffers.storages import TensorStorage, _collate_id
from torchrl.data.replay_buffers.writers import ImmutableDatasetWriter, Writer
from torchrl.envs.transforms.transforms import Compose
HF_USER = "lerobot"
class AbstractDataset(TensorDictReplayBuffer):
"""
AbstractDataset represents a dataset in the context of imitation learning or reinforcement learning.
This class is designed to be subclassed by concrete implementations that specify particular types of datasets.
These implementations can vary based on the source of the data, the environment the data pertains to,
or the specific kind of data manipulation applied.
Note:
- `TensorDictReplayBuffer` is the base class from which `AbstractDataset` inherits. It provides the foundational
functionality for storing and retrieving `TensorDict`-like data.
- `available_datasets` should be overridden by concrete subclasses to list the specific dataset variants supported.
It is expected that these variants correspond to a HuggingFace dataset on the hub.
For instance, the `AlohaDataset` which inherites from `AbstractDataset` has 4 available dataset variants:
- [aloha_sim_transfer_cube_scripted](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_scripted)
- [aloha_sim_insertion_scripted](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_scripted)
- [aloha_sim_transfer_cube_human](https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_human)
- [aloha_sim_insertion_human](https://huggingface.co/datasets/lerobot/aloha_sim_insertion_human)
- When implementing a concrete class (e.g. `AlohaDataset`, `PushtEnv`, `DiffusionPolicy`), you need to:
1. set the required class attributes:
- for classes inheriting from `AbstractDataset`: `available_datasets`
- for classes inheriting from `AbstractEnv`: `name`, `available_tasks`
- for classes inheriting from `AbstractPolicy`: `name`
2. update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
3. update variables in `tests/test_available.py` by importing your new class
"""
available_datasets: list[str] | None = None
def __init__(
self,
dataset_id: str,
version: str | None = None,
batch_size: int | None = None,
*,
shuffle: bool = True,
root: Path | None = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: Sampler | None = None,
collate_fn: Callable | None = None,
writer: Writer | None = None,
transform: "torchrl.envs.Transform" = None,
):
assert (
self.available_datasets is not None
), "Subclasses of `AbstractDataset` should set the `available_datasets` class attribute."
assert (
dataset_id in self.available_datasets
), f"The provided dataset ({dataset_id}) is not on the list of available datasets {self.available_datasets}."
self.dataset_id = dataset_id
self.version = version
self.shuffle = shuffle
self.root = root if root is None else Path(root)
if self.root is not None and self.version is not None:
logging.warning(
f"The version of the dataset ({self.version}) is not enforced when root is provided ({self.root})."
)
storage = self._download_or_load_dataset()
super().__init__(
storage=storage,
sampler=sampler,
writer=ImmutableDatasetWriter() if writer is None else writer,
collate_fn=_collate_id if collate_fn is None else collate_fn,
pin_memory=pin_memory,
prefetch=prefetch,
batch_size=batch_size,
transform=transform,
)
@property
def stats_patterns(self) -> dict:
return {
("observation", "state"): "b c -> c",
("observation", "image"): "b c h w -> c 1 1",
("action",): "b c -> c",
}
@property
def image_keys(self) -> list:
return [("observation", "image")]
@property
def num_cameras(self) -> int:
return len(self.image_keys)
@property
def num_samples(self) -> int:
return len(self)
@property
def num_episodes(self) -> int:
return len(self._storage._storage["episode"].unique())
@property
def transform(self):
return self._transform
def set_transform(self, transform):
if not isinstance(transform, Compose):
# required since torchrl calls `len(self._transform)` downstream
if isinstance(transform, list):
self._transform = Compose(*transform)
else:
self._transform = Compose(transform)
else:
self._transform = transform
def compute_or_load_stats(self, batch_size: int = 32) -> TensorDict:
stats_path = self.data_dir / "stats.pth"
if stats_path.exists():
stats = torch.load(stats_path)
else:
logging.info(f"compute_stats and save to {stats_path}")
stats = self._compute_stats(batch_size)
torch.save(stats, stats_path)
return stats
def _download_or_load_dataset(self) -> torch.StorageBase:
if self.root is None:
self.data_dir = Path(
snapshot_download(
repo_id=f"{HF_USER}/{self.dataset_id}", repo_type="dataset", revision=self.version
)
)
else:
self.data_dir = self.root / self.dataset_id
return TensorStorage(TensorDict.load_memmap(self.data_dir / "replay_buffer"))
def _compute_stats(self, batch_size: int = 32):
"""Compute dataset statistics including minimum, maximum, mean, and standard deviation.
TODO(alexander-soare): Add a num_batches argument which essentially allows one to use a subset of the
full dataset (for handling very large datasets). The sampling would then have to be random
(preferably without replacement). Both stats computation loops would ideally sample the same
items.
"""
rb = TensorDictReplayBuffer(
storage=self._storage,
batch_size=32,
prefetch=True,
# Note: Due to be refactored soon. The point is that we should go through the whole dataset.
sampler=SamplerWithoutReplacement(drop_last=False, shuffle=False),
)
# mean and std will be computed incrementally while max and min will track the running value.
mean, std, max, min = {}, {}, {}, {}
for key in self.stats_patterns:
mean[key] = torch.tensor(0.0).float()
std[key] = torch.tensor(0.0).float()
max[key] = torch.tensor(-float("inf")).float()
min[key] = torch.tensor(float("inf")).float()
# Compute mean, min, max.
# Note: Due to be refactored soon. The point of storing `first_batch` is to make sure we don't get
# surprises when rerunning the sampler.
first_batch = None
running_item_count = 0 # for online mean computation
for _ in tqdm.tqdm(range(ceil(len(rb) / batch_size))):
batch = rb.sample()
this_batch_size = batch.batch_size[0]
running_item_count += this_batch_size
if first_batch is None:
first_batch = deepcopy(batch)
for key, pattern in self.stats_patterns.items():
batch[key] = batch[key].float()
# Numerically stable update step for mean computation.
batch_mean = einops.reduce(batch[key], pattern, "mean")
# Hint: to update the mean we need x̄ₙ = (Nₙ₋₁x̄ₙ₋₁ + Bₙxₙ) / Nₙ, where the subscript represents
# the update step, N is the running item count, B is this batch size, x̄ is the running mean,
# and x is the current batch mean. Some rearrangement is then required to avoid risking
# numerical overflow. Another hint: Nₙ₋₁ = Nₙ - Bₙ. Rearrangement yields
# x̄ₙ = x̄ₙ₋₁ + Bₙ * (xₙ - x̄ₙ₋₁) / Nₙ
mean[key] = mean[key] + this_batch_size * (batch_mean - mean[key]) / running_item_count
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
# Compute std.
first_batch_ = None
running_item_count = 0 # for online std computation
for _ in tqdm.tqdm(range(ceil(len(rb) / batch_size))):
batch = rb.sample()
this_batch_size = batch.batch_size[0]
running_item_count += this_batch_size
# Sanity check to make sure the batches are still in the same order as before.
if first_batch_ is None:
first_batch_ = deepcopy(batch)
for key in self.stats_patterns:
assert torch.equal(first_batch_[key], first_batch[key])
for key, pattern in self.stats_patterns.items():
batch[key] = batch[key].float()
# Numerically stable update step for mean computation (where the mean is over squared
# residuals).See notes in the mean computation loop above.
batch_std = einops.reduce((batch[key] - mean[key]) ** 2, pattern, "mean")
std[key] = std[key] + this_batch_size * (batch_std - std[key]) / running_item_count
for key in self.stats_patterns:
std[key] = torch.sqrt(std[key])
stats = TensorDict({}, batch_size=[])
for key in self.stats_patterns:
stats[(*key, "mean")] = mean[key]
stats[(*key, "std")] = std[key]
stats[(*key, "max")] = max[key]
stats[(*key, "min")] = min[key]
if key[0] == "observation":
# use same stats for the next observations
stats[("next", *key)] = stats[key]
return stats

View File

@ -1,26 +1,13 @@
import logging
from pathlib import Path
from typing import Callable
import einops
import gdown
import h5py
import torch
import torchrl
import tqdm
from tensordict import TensorDict
from torchrl.data.replay_buffers.samplers import Sampler
from torchrl.data.replay_buffers.storages import TensorStorage
from torchrl.data.replay_buffers.writers import Writer
from lerobot.common.datasets.abstract import AbstractDataset
DATASET_IDS = [
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
]
from lerobot.common.datasets.utils import load_data_with_delta_timestamps
FOLDER_URLS = {
"aloha_sim_insertion_human": "https://drive.google.com/drive/folders/1RgyD0JgTX30H4IM5XZn8I3zSV_mr8pyF",
@ -66,7 +53,6 @@ CAMERAS = {
def download(data_dir, dataset_id):
assert dataset_id in DATASET_IDS
assert dataset_id in FOLDER_URLS
assert dataset_id in EP48_URLS
assert dataset_id in EP49_URLS
@ -80,51 +66,80 @@ def download(data_dir, dataset_id):
gdown.download(EP49_URLS[dataset_id], output=str(data_dir / "episode_49.hdf5"), fuzzy=True)
class AlohaDataset(AbstractDataset):
available_datasets = DATASET_IDS
class AlohaDataset(torch.utils.data.Dataset):
available_datasets = [
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
]
fps = 50
image_keys = ["observation.images.top"]
def __init__(
self,
dataset_id: str,
version: str | None = "v1.2",
batch_size: int | None = None,
*,
shuffle: bool = True,
root: Path | None = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: Sampler | None = None,
collate_fn: Callable | None = None,
writer: Writer | None = None,
transform: "torchrl.envs.Transform" = None,
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
):
super().__init__(
dataset_id,
version,
batch_size,
shuffle=shuffle,
root=root,
pin_memory=pin_memory,
prefetch=prefetch,
sampler=sampler,
collate_fn=collate_fn,
writer=writer,
transform=transform,
)
super().__init__()
self.dataset_id = dataset_id
self.version = version
self.root = root
self.transform = transform
self.delta_timestamps = delta_timestamps
self.data_dir = self.root / f"{self.dataset_id}"
if (self.data_dir / "data_dict.pth").exists() and (
self.data_dir / "data_ids_per_episode.pth"
).exists():
self.data_dict = torch.load(self.data_dir / "data_dict.pth")
self.data_ids_per_episode = torch.load(self.data_dir / "data_ids_per_episode.pth")
else:
self._download_and_preproc_obsolete()
self.data_dir.mkdir(parents=True, exist_ok=True)
torch.save(self.data_dict, self.data_dir / "data_dict.pth")
torch.save(self.data_ids_per_episode, self.data_dir / "data_ids_per_episode.pth")
@property
def stats_patterns(self) -> dict:
d = {
("observation", "state"): "b c -> c",
("action",): "b c -> c",
}
for cam in CAMERAS[self.dataset_id]:
d[("observation", "image", cam)] = "b c h w -> c 1 1"
return d
def num_samples(self) -> int:
return len(self.data_dict["index"]) if "index" in self.data_dict else 0
@property
def image_keys(self) -> list:
return [("observation", "image", cam) for cam in CAMERAS[self.dataset_id]]
def num_episodes(self) -> int:
return len(self.data_ids_per_episode)
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
item = {}
# get episode id and timestamp of the sampled frame
current_ts = self.data_dict["timestamp"][idx].item()
episode = self.data_dict["episode"][idx].item()
for key in self.data_dict:
if self.delta_timestamps is not None and key in self.delta_timestamps:
data, is_pad = load_data_with_delta_timestamps(
self.data_dict,
self.data_ids_per_episode,
self.delta_timestamps,
key,
current_ts,
episode,
)
item[key] = data
item[f"{key}_is_pad"] = is_pad
else:
item[key] = self.data_dict[key][idx]
if self.transform is not None:
item = self.transform(item)
return item
def _download_and_preproc_obsolete(self):
assert self.root is not None
@ -132,54 +147,61 @@ class AlohaDataset(AbstractDataset):
if not raw_dir.is_dir():
download(raw_dir, self.dataset_id)
total_num_frames = 0
total_frames = 0
logging.info("Compute total number of frames to initialize offline buffer")
for ep_id in range(NUM_EPISODES[self.dataset_id]):
ep_path = raw_dir / f"episode_{ep_id}.hdf5"
with h5py.File(ep_path, "r") as ep:
total_num_frames += ep["/action"].shape[0] - 1
logging.info(f"{total_num_frames=}")
total_frames += ep["/action"].shape[0] - 1
logging.info(f"{total_frames=}")
logging.info("Initialize and feed offline buffer")
idxtd = 0
self.data_ids_per_episode = {}
ep_dicts = []
frame_idx = 0
for ep_id in tqdm.tqdm(range(NUM_EPISODES[self.dataset_id])):
ep_path = raw_dir / f"episode_{ep_id}.hdf5"
with h5py.File(ep_path, "r") as ep:
ep_num_frames = ep["/action"].shape[0]
num_frames = ep["/action"].shape[0]
# last step of demonstration is considered done
done = torch.zeros(ep_num_frames, 1, dtype=torch.bool)
done = torch.zeros(num_frames, dtype=torch.bool)
done[-1] = True
state = torch.from_numpy(ep["/observations/qpos"][:])
action = torch.from_numpy(ep["/action"][:])
ep_td = TensorDict(
{
("observation", "state"): state[:-1],
"action": action[:-1],
"episode": torch.tensor([ep_id] * (ep_num_frames - 1)),
"frame_id": torch.arange(0, ep_num_frames - 1, 1),
("next", "observation", "state"): state[1:],
# TODO: compute reward and success
# ("next", "reward"): reward[1:],
("next", "done"): done[1:],
# ("next", "success"): success[1:],
},
batch_size=ep_num_frames - 1,
)
ep_dict = {
"observation.state": state,
"action": action,
"episode": torch.tensor([ep_id] * num_frames),
"frame_id": torch.arange(0, num_frames, 1),
"timestamp": torch.arange(0, num_frames, 1) / self.fps,
# "next.observation.state": state,
# TODO(rcadene): compute reward and success
# "next.reward": reward[1:],
"next.done": done[1:],
# "next.success": success[1:],
}
for cam in CAMERAS[self.dataset_id]:
image = torch.from_numpy(ep[f"/observations/images/{cam}"][:])
image = einops.rearrange(image, "b h w c -> b c h w").contiguous()
ep_td["observation", "image", cam] = image[:-1]
ep_td["next", "observation", "image", cam] = image[1:]
ep_dict[f"observation.images.{cam}"] = image[:-1]
# ep_dict[f"next.observation.images.{cam}"] = image[1:]
if ep_id == 0:
# hack to initialize tensordict data structure to store episodes
td_data = ep_td[0].expand(total_num_frames).memmap_like(self.root / f"{self.dataset_id}")
assert isinstance(ep_id, int)
self.data_ids_per_episode[ep_id] = torch.arange(frame_idx, frame_idx + num_frames, 1)
assert len(self.data_ids_per_episode[ep_id]) == num_frames
td_data[idxtd : idxtd + len(ep_td)] = ep_td
idxtd = idxtd + len(ep_td)
ep_dicts.append(ep_dict)
return TensorStorage(td_data.lock_())
frame_idx += num_frames
self.data_dict = {}
keys = ep_dicts[0].keys()
for key in keys:
self.data_dict[key] = torch.cat([x[key] for x in ep_dicts])
self.data_dict["index"] = torch.arange(0, total_frames, 1)

View File

@ -3,8 +3,9 @@ import os
from pathlib import Path
import torch
from torchrl.data.replay_buffers import PrioritizedSliceSampler, SliceSampler
from torchvision.transforms import v2
from lerobot.common.datasets.utils import compute_stats
from lerobot.common.transforms import NormalizeTransform, Prod
# DATA_DIR specifies to location where datasets are loaded. By default, DATA_DIR is None and
@ -13,61 +14,16 @@ from lerobot.common.transforms import NormalizeTransform, Prod
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
def make_offline_buffer(
def make_dataset(
cfg,
overwrite_sampler=None,
# set normalize=False to remove all transformations and keep images unnormalized in [0,255]
normalize=True,
overwrite_batch_size=None,
overwrite_prefetch=None,
stats_path=None,
):
if cfg.policy.balanced_sampling:
assert cfg.online_steps > 0
batch_size = None
pin_memory = False
prefetch = None
else:
assert cfg.online_steps == 0
num_slices = cfg.policy.batch_size
batch_size = cfg.policy.horizon * num_slices
pin_memory = cfg.device == "cuda"
prefetch = cfg.prefetch
if cfg.env.name == "xarm":
from lerobot.common.datasets.xarm import XarmDataset
if overwrite_batch_size is not None:
batch_size = overwrite_batch_size
if overwrite_prefetch is not None:
prefetch = overwrite_prefetch
if overwrite_sampler is None:
# TODO(rcadene): move batch_size outside
num_traj_per_batch = cfg.policy.batch_size # // cfg.horizon
# TODO(rcadene): Sampler outputs a batch_size <= cfg.batch_size.
# We would need to add a transform to pad the tensordict to ensure batch_size == cfg.batch_size.
if cfg.offline_prioritized_sampler:
logging.info("use prioritized sampler for offline dataset")
sampler = PrioritizedSliceSampler(
max_capacity=100_000,
alpha=cfg.policy.per_alpha,
beta=cfg.policy.per_beta,
num_slices=num_traj_per_batch,
strict_length=False,
)
else:
logging.info("use simple sampler for offline dataset")
sampler = SliceSampler(
num_slices=num_traj_per_batch,
strict_length=False,
)
else:
sampler = overwrite_sampler
if cfg.env.name == "simxarm":
from lerobot.common.datasets.simxarm import SimxarmDataset
clsfunc = SimxarmDataset
clsfunc = XarmDataset
elif cfg.env.name == "pusht":
from lerobot.common.datasets.pusht import PushtDataset
@ -81,56 +37,66 @@ def make_offline_buffer(
else:
raise ValueError(cfg.env.name)
offline_buffer = clsfunc(
dataset_id=cfg.dataset_id,
sampler=sampler,
batch_size=batch_size,
root=DATA_DIR,
pin_memory=pin_memory,
prefetch=prefetch if isinstance(prefetch, int) else None,
)
if cfg.policy.name == "tdmpc":
img_keys = []
for key in offline_buffer.image_keys:
img_keys.append(("next", *key))
img_keys += offline_buffer.image_keys
else:
img_keys = offline_buffer.image_keys
transforms = None
if normalize:
transforms = [Prod(in_keys=img_keys, prod=1 / 255)]
# TODO(rcadene): make normalization strategy configurable between mean_std, min_max, manual_min_max,
# min_max_from_spec
stats = offline_buffer.compute_or_load_stats() if stats_path is None else torch.load(stats_path)
# we only normalize the state and action, since the images are usually normalized inside the model for
# now (except for tdmpc: see the following)
in_keys = [("observation", "state"), ("action")]
if cfg.policy.name == "tdmpc":
# TODO(rcadene): we add img_keys to the keys to normalize for tdmpc only, since diffusion and act policies normalize the image inside the model for now
in_keys += img_keys
# TODO(racdene): since we use next observations in tdmpc, we also add them to the normalization. We are wasting a bit of compute on this for now.
in_keys += [("next", *key) for key in img_keys]
in_keys.append(("next", "observation", "state"))
if cfg.policy.name == "diffusion" and cfg.env.name == "pusht":
# TODO(rcadene): we overwrite stats to have the same as pretrained model, but we should remove this
stats["observation", "state", "min"] = torch.tensor([13.456424, 32.938293], dtype=torch.float32)
stats["observation", "state", "max"] = torch.tensor([496.14618, 510.9579], dtype=torch.float32)
stats["action", "min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
stats["action", "max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
# TODO(rcadene): remove this and put it in config. Ideally we want to reproduce SOTA results just with mean_std
normalization_mode = "mean_std" if cfg.env.name == "aloha" else "min_max"
transforms.append(NormalizeTransform(stats, in_keys, mode=normalization_mode))
offline_buffer.set_transform(transforms)
if cfg.policy.name == "diffusion" and cfg.env.name == "pusht":
stats = {}
# TODO(rcadene): we overwrite stats to have the same as pretrained model, but we should remove this
stats["observation.state"] = {}
stats["observation.state"]["min"] = torch.tensor([13.456424, 32.938293], dtype=torch.float32)
stats["observation.state"]["max"] = torch.tensor([496.14618, 510.9579], dtype=torch.float32)
stats["action"] = {}
stats["action"]["min"] = torch.tensor([12.0, 25.0], dtype=torch.float32)
stats["action"]["max"] = torch.tensor([511.0, 511.0], dtype=torch.float32)
elif stats_path is None:
# instantiate a one frame dataset with light transform
stats_dataset = clsfunc(
dataset_id=cfg.dataset_id,
root=DATA_DIR,
transform=Prod(in_keys=clsfunc.image_keys, prod=1 / 255.0),
)
if not overwrite_sampler:
index = torch.arange(0, offline_buffer.num_samples, 1)
sampler.extend(index)
# load stats if the file exists already or compute stats and save it
precomputed_stats_path = stats_dataset.data_dir / "stats.pth"
if precomputed_stats_path.exists():
stats = torch.load(precomputed_stats_path)
else:
logging.info(f"compute_stats and save to {precomputed_stats_path}")
stats = compute_stats(stats_dataset)
torch.save(stats, stats_path)
else:
stats = torch.load(stats_path)
return offline_buffer
transforms = v2.Compose(
[
Prod(in_keys=clsfunc.image_keys, prod=1 / 255.0),
NormalizeTransform(
stats,
in_keys=[
"observation.state",
"action",
],
mode=normalization_mode,
),
]
)
delta_timestamps = cfg.policy.get("delta_timestamps")
if delta_timestamps is not None:
for key in delta_timestamps:
if isinstance(delta_timestamps[key], str):
delta_timestamps[key] = eval(delta_timestamps[key])
dataset = clsfunc(
dataset_id=cfg.dataset_id,
root=DATA_DIR,
delta_timestamps=delta_timestamps,
transform=transforms,
)
return dataset

View File

@ -1,21 +1,11 @@
from pathlib import Path
from typing import Callable
import einops
import numpy as np
import pygame
import pymunk
import torch
import torchrl
import tqdm
from tensordict import TensorDict
from torchrl.data.replay_buffers.samplers import Sampler
from torchrl.data.replay_buffers.storages import TensorStorage
from torchrl.data.replay_buffers.writers import Writer
from lerobot.common.datasets.abstract import AbstractDataset
from lerobot.common.datasets.utils import download_and_extract_zip
from lerobot.common.envs.pusht.pusht_env import pymunk_to_shapely
from lerobot.common.datasets.utils import download_and_extract_zip, load_data_with_delta_timestamps
from lerobot.common.policies.diffusion.replay_buffer import ReplayBuffer as DiffusionPolicyReplayBuffer
# as define in env
@ -25,97 +15,93 @@ PUSHT_URL = "https://diffusion-policy.cs.columbia.edu/data/training/pusht.zip"
PUSHT_ZARR = Path("pusht/pusht_cchi_v7_replay.zarr")
def get_goal_pose_body(pose):
mass = 1
inertia = pymunk.moment_for_box(mass, (50, 100))
body = pymunk.Body(mass, inertia)
# preserving the legacy assignment order for compatibility
# the order here doesn't matter somehow, maybe because CoM is aligned with body origin
body.position = pose[:2].tolist()
body.angle = pose[2]
return body
class PushtDataset(torch.utils.data.Dataset):
"""
Arguments
----------
delta_timestamps : dict[list[float]] | None, optional
Loads data from frames with a shift in timestamps with a different strategy for each data key (e.g. state, action or image)
If `None`, no shift is applied to current timestamp and the data from the current frame is loaded.
"""
def add_segment(space, a, b, radius):
shape = pymunk.Segment(space.static_body, a, b, radius)
shape.color = pygame.Color("LightGray") # https://htmlcolorcodes.com/color-names
return shape
def add_tee(
space,
position,
angle,
scale=30,
color="LightSlateGray",
mask=None,
):
if mask is None:
mask = pymunk.ShapeFilter.ALL_MASKS()
mass = 1
length = 4
vertices1 = [
(-length * scale / 2, scale),
(length * scale / 2, scale),
(length * scale / 2, 0),
(-length * scale / 2, 0),
]
inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
vertices2 = [
(-scale / 2, scale),
(-scale / 2, length * scale),
(scale / 2, length * scale),
(scale / 2, scale),
]
inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
body = pymunk.Body(mass, inertia1 + inertia2)
shape1 = pymunk.Poly(body, vertices1)
shape2 = pymunk.Poly(body, vertices2)
shape1.color = pygame.Color(color)
shape2.color = pygame.Color(color)
shape1.filter = pymunk.ShapeFilter(mask=mask)
shape2.filter = pymunk.ShapeFilter(mask=mask)
body.center_of_gravity = (shape1.center_of_gravity + shape2.center_of_gravity) / 2
body.position = position
body.angle = angle
body.friction = 1
space.add(body, shape1, shape2)
return body
class PushtDataset(AbstractDataset):
available_datasets = ["pusht"]
fps = 10
image_keys = ["observation.image"]
def __init__(
self,
dataset_id: str,
version: str | None = "v1.2",
batch_size: int | None = None,
*,
shuffle: bool = True,
root: Path | None = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: Sampler | None = None,
collate_fn: Callable | None = None,
writer: Writer | None = None,
transform: "torchrl.envs.Transform" = None,
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
):
super().__init__(
dataset_id,
version,
batch_size,
shuffle=shuffle,
root=root,
pin_memory=pin_memory,
prefetch=prefetch,
sampler=sampler,
collate_fn=collate_fn,
writer=writer,
transform=transform,
)
super().__init__()
self.dataset_id = dataset_id
self.version = version
self.root = root
self.transform = transform
self.delta_timestamps = delta_timestamps
self.data_dir = self.root / f"{self.dataset_id}"
if (self.data_dir / "data_dict.pth").exists() and (
self.data_dir / "data_ids_per_episode.pth"
).exists():
self.data_dict = torch.load(self.data_dir / "data_dict.pth")
self.data_ids_per_episode = torch.load(self.data_dir / "data_ids_per_episode.pth")
else:
self._download_and_preproc_obsolete()
self.data_dir.mkdir(parents=True, exist_ok=True)
torch.save(self.data_dict, self.data_dir / "data_dict.pth")
torch.save(self.data_ids_per_episode, self.data_dir / "data_ids_per_episode.pth")
@property
def num_samples(self) -> int:
return len(self.data_dict["index"]) if "index" in self.data_dict else 0
@property
def num_episodes(self) -> int:
return len(self.data_ids_per_episode)
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
item = {}
# get episode id and timestamp of the sampled frame
current_ts = self.data_dict["timestamp"][idx].item()
episode = self.data_dict["episode"][idx].item()
for key in self.data_dict:
if self.delta_timestamps is not None and key in self.delta_timestamps:
data, is_pad = load_data_with_delta_timestamps(
self.data_dict,
self.data_ids_per_episode,
self.delta_timestamps,
key,
current_ts,
episode,
)
item[key] = data
item[f"{key}_is_pad"] = is_pad
else:
item[key] = self.data_dict[key][idx]
if self.transform is not None:
item = self.transform(item)
return item
def _download_and_preproc_obsolete(self):
try:
import pymunk
from gym_pusht.envs.pusht import PushTEnv, pymunk_to_shapely
except ModuleNotFoundError as e:
print("`gym_pusht` is not installed. Please install it with `pip install 'lerobot[gym_pusht]'`")
raise e
assert self.root is not None
raw_dir = self.root / f"{self.dataset_id}_raw"
zarr_path = (raw_dir / PUSHT_ZARR).resolve()
@ -140,34 +126,37 @@ class PushtDataset(AbstractDataset):
# TODO: verify that goal pose is expected to be fixed
goal_pos_angle = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
goal_body = get_goal_pose_body(goal_pos_angle)
goal_body = PushTEnv.get_goal_pose_body(goal_pos_angle)
imgs = torch.from_numpy(dataset_dict["img"])
imgs = einops.rearrange(imgs, "b h w c -> b c h w")
states = torch.from_numpy(dataset_dict["state"])
actions = torch.from_numpy(dataset_dict["action"])
self.data_ids_per_episode = {}
ep_dicts = []
idx0 = 0
idxtd = 0
for episode_id in tqdm.tqdm(range(num_episodes)):
idx1 = dataset_dict.meta["episode_ends"][episode_id]
# to create test artifact
# idx1 = 51
num_frames = idx1 - idx0
assert (episode_ids[idx0:idx1] == episode_id).all()
image = imgs[idx0:idx1]
assert image.min() >= 0.0
assert image.max() <= 255.0
image = image.type(torch.uint8)
state = states[idx0:idx1]
agent_pos = state[:, :2]
block_pos = state[:, 2:4]
block_angle = state[:, 4]
reward = torch.zeros(num_frames, 1)
success = torch.zeros(num_frames, 1, dtype=torch.bool)
done = torch.zeros(num_frames, 1, dtype=torch.bool)
reward = torch.zeros(num_frames)
success = torch.zeros(num_frames, dtype=torch.bool)
done = torch.zeros(num_frames, dtype=torch.bool)
for i in range(num_frames):
space = pymunk.Space()
space.gravity = 0, 0
@ -175,14 +164,14 @@ class PushtDataset(AbstractDataset):
# Add walls.
walls = [
add_segment(space, (5, 506), (5, 5), 2),
add_segment(space, (5, 5), (506, 5), 2),
add_segment(space, (506, 5), (506, 506), 2),
add_segment(space, (5, 506), (506, 506), 2),
PushTEnv.add_segment(space, (5, 506), (5, 5), 2),
PushTEnv.add_segment(space, (5, 5), (506, 5), 2),
PushTEnv.add_segment(space, (506, 5), (506, 506), 2),
PushTEnv.add_segment(space, (5, 506), (506, 506), 2),
]
space.add(*walls)
block_body = add_tee(space, block_pos[i].tolist(), block_angle[i].item())
block_body = PushTEnv.add_tee(space, block_pos[i].tolist(), block_angle[i].item())
goal_geom = pymunk_to_shapely(goal_body, block_body.shapes)
block_geom = pymunk_to_shapely(block_body, block_body.shapes)
intersection_area = goal_geom.intersection(block_geom).area
@ -194,30 +183,32 @@ class PushtDataset(AbstractDataset):
# last step of demonstration is considered done
done[-1] = True
ep_td = TensorDict(
{
("observation", "image"): image[:-1],
("observation", "state"): agent_pos[:-1],
"action": actions[idx0:idx1][:-1],
"episode": episode_ids[idx0:idx1][:-1],
"frame_id": torch.arange(0, num_frames - 1, 1),
("next", "observation", "image"): image[1:],
("next", "observation", "state"): agent_pos[1:],
# TODO: verify that reward and done are aligned with image and agent_pos
("next", "reward"): reward[1:],
("next", "done"): done[1:],
("next", "success"): success[1:],
},
batch_size=num_frames - 1,
)
ep_dict = {
"observation.image": image,
"observation.state": agent_pos,
"action": actions[idx0:idx1],
"episode": torch.tensor([episode_id] * num_frames, dtype=torch.int),
"frame_id": torch.arange(0, num_frames, 1),
"timestamp": torch.arange(0, num_frames, 1) / self.fps,
# "next.observation.image": image[1:],
# "next.observation.state": agent_pos[1:],
# TODO(rcadene): verify that reward and done are aligned with image and agent_pos
"next.reward": torch.cat([reward[1:], reward[[-1]]]),
"next.done": torch.cat([done[1:], done[[-1]]]),
"next.success": torch.cat([success[1:], success[[-1]]]),
}
ep_dicts.append(ep_dict)
if episode_id == 0:
# hack to initialize tensordict data structure to store episodes
td_data = ep_td[0].expand(total_frames).memmap_like(self.root / f"{self.dataset_id}")
td_data[idxtd : idxtd + len(ep_td)] = ep_td
assert isinstance(episode_id, int)
self.data_ids_per_episode[episode_id] = torch.arange(idx0, idx1, 1)
assert len(self.data_ids_per_episode[episode_id]) == num_frames
idx0 = idx1
idxtd = idxtd + len(ep_td)
return TensorStorage(td_data.lock_())
self.data_dict = {}
keys = ep_dicts[0].keys()
for key in keys:
self.data_dict[key] = torch.cat([x[key] for x in ep_dicts])
self.data_dict["index"] = torch.arange(0, total_frames, 1)

View File

@ -1,127 +0,0 @@
import pickle
import zipfile
from pathlib import Path
from typing import Callable
import torch
import torchrl
import tqdm
from tensordict import TensorDict
from torchrl.data.replay_buffers.samplers import (
Sampler,
)
from torchrl.data.replay_buffers.storages import TensorStorage
from torchrl.data.replay_buffers.writers import Writer
from lerobot.common.datasets.abstract import AbstractDataset
def download():
raise NotImplementedError()
import gdown
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
download_path = "data.zip"
gdown.download(url, download_path, quiet=False)
print("Extracting...")
with zipfile.ZipFile(download_path, "r") as zip_f:
for member in zip_f.namelist():
if member.startswith("data/xarm") and member.endswith(".pkl"):
print(member)
zip_f.extract(member=member)
Path(download_path).unlink()
class SimxarmDataset(AbstractDataset):
available_datasets = [
"xarm_lift_medium",
]
def __init__(
self,
dataset_id: str,
version: str | None = "v1.1",
batch_size: int | None = None,
*,
shuffle: bool = True,
root: Path | None = None,
pin_memory: bool = False,
prefetch: int = None,
sampler: Sampler | None = None,
collate_fn: Callable | None = None,
writer: Writer | None = None,
transform: "torchrl.envs.Transform" = None,
):
super().__init__(
dataset_id,
version,
batch_size,
shuffle=shuffle,
root=root,
pin_memory=pin_memory,
prefetch=prefetch,
sampler=sampler,
collate_fn=collate_fn,
writer=writer,
transform=transform,
)
def _download_and_preproc_obsolete(self):
# assert self.root is not None
# TODO(rcadene): finish download
# download()
dataset_path = self.root / f"{self.dataset_id}" / "buffer.pkl"
print(f"Using offline dataset '{dataset_path}'")
with open(dataset_path, "rb") as f:
dataset_dict = pickle.load(f)
total_frames = dataset_dict["actions"].shape[0]
idx0 = 0
idx1 = 0
episode_id = 0
for i in tqdm.tqdm(range(total_frames)):
idx1 += 1
if not dataset_dict["dones"][i]:
continue
num_frames = idx1 - idx0
image = torch.tensor(dataset_dict["observations"]["rgb"][idx0:idx1])
state = torch.tensor(dataset_dict["observations"]["state"][idx0:idx1])
next_image = torch.tensor(dataset_dict["next_observations"]["rgb"][idx0:idx1])
next_state = torch.tensor(dataset_dict["next_observations"]["state"][idx0:idx1])
next_reward = torch.tensor(dataset_dict["rewards"][idx0:idx1])
next_done = torch.tensor(dataset_dict["dones"][idx0:idx1])
episode = TensorDict(
{
("observation", "image"): image,
("observation", "state"): state,
"action": torch.tensor(dataset_dict["actions"][idx0:idx1]),
"episode": torch.tensor([episode_id] * num_frames, dtype=torch.int),
"frame_id": torch.arange(0, num_frames, 1),
("next", "observation", "image"): next_image,
("next", "observation", "state"): next_state,
("next", "reward"): next_reward,
("next", "done"): next_done,
},
batch_size=num_frames,
)
if episode_id == 0:
# hack to initialize tensordict data structure to store episodes
td_data = (
episode[0]
.expand(total_frames)
.memmap_like(self.root / f"{self.dataset_id}" / "replay_buffer")
)
td_data[idx0:idx1] = episode
episode_id += 1
idx0 = idx1
return TensorStorage(td_data.lock_())

View File

@ -1,8 +1,12 @@
import io
import zipfile
from copy import deepcopy
from math import ceil
from pathlib import Path
import einops
import requests
import torch
import tqdm
@ -28,3 +32,185 @@ def download_and_extract_zip(url: str, destination_folder: Path) -> bool:
return True
else:
return False
def load_data_with_delta_timestamps(
data_dict: dict[torch.Tensor],
data_ids_per_episode: dict[torch.Tensor],
delta_timestamps: list[float],
key: str,
current_ts: float,
episode: int,
tol: float = 0.04,
):
"""
Given a current timestamp (e.g. current_ts=0.6) and a list of timestamps differences (e.g. delta_timestamps=[-0.8, -0.2, 0, 0.2]),
this function compute the query timestamps (e.g. [-0.2, 0.4, 0.6, 0.8]) and loads the closest frames of the specified modality (e.g. key="observation.image").
Importantly, when no frame can be found around a query timestamp within a specified tolerance window (e.g. tol=0.04), this function raises an AssertionError.
When a timestamp is queried before the first available timestamp of the episode or after the last available timestamp,
the violation of the tolerance doesnt raise an AssertionError, and the function populates a boolean array indicating which frames are outside of the episode range.
For instance, this boolean array is useful during batched training to not supervise actions associated to timestamps coming after the end of the episode,
or to pad the observations in a specific way. Note that by default the observation frames before the start of the episode are the same as the first frame of the episode.
Parameters:
- data_dict (dict): A dictionary containing the data, where each key corresponds to a different modality (e.g., "timestamp", "observation.image", "action").
- data_ids_per_episode (dict): A dictionary where keys are episode identifiers and values are lists of indices corresponding to frames associated with each episode.
- delta_timestamps (dict): A dictionary containing lists of delta timestamps for each possible key to be retrieved. These deltas are added to the current_ts to form the query timestamps.
- key (str): The key specifying which data modality is to be retrieved from the data_dict.
- current_ts (float): The current timestamp to which the delta timestamps are added to form the query timestamps.
- episode (int): The identifier of the episode from which frames are to be retrieved.
- tol (float, optional): The tolerance level used to determine if a data point is close enough to the query timestamp. Defaults to 0.04.
Returns:
- tuple: A tuple containing two elements:
- The first element is the data retrieved from the specified modality based on the closest match to the query timestamps.
- The second element is a boolean array indicating which frames were considered as padding (True if the distance to the closest timestamp was greater than the tolerance level).
Raises:
- AssertionError: If any of the frames unexpectedly violate the tolerance level. This could indicate synchronization issues with timestamps during data collection.
"""
# get indices of the frames associated to the episode, and their timestamps
ep_data_ids = data_ids_per_episode[episode]
ep_timestamps = data_dict["timestamp"][ep_data_ids]
# we make the assumption that the timestamps are sorted
ep_first_ts = ep_timestamps[0]
ep_last_ts = ep_timestamps[-1]
# get timestamps used as query to retrieve data of previous/future frames
delta_ts = delta_timestamps[key]
query_ts = current_ts + torch.tensor(delta_ts)
# compute distances between each query timestamp and all timestamps of all the frames belonging to the episode
dist = torch.cdist(query_ts[:, None], ep_timestamps[:, None], p=1)
min_, argmin_ = dist.min(1)
# get the indices of the data that are closest to the query timestamps
data_ids = ep_data_ids[argmin_]
# closest_ts = ep_timestamps[argmin_]
# get the data
data = data_dict[key][data_ids].clone()
# TODO(rcadene): synchronize timestamps + interpolation if needed
is_pad = min_ > tol
# check violated query timestamps are all outside the episode range
assert ((query_ts[is_pad] < ep_first_ts) | (ep_last_ts < query_ts[is_pad])).all(), (
f"One or several timestamps unexpectedly violate the tolerance ({min_} > {tol=}) inside episode range."
"This might be due to synchronization issues with timestamps during data collection."
)
return data, is_pad
def get_stats_einops_patterns(dataset):
"""These einops patterns will be used to aggregate batches and compute statistics."""
stats_patterns = {
"action": "b c -> c",
"observation.state": "b c -> c",
}
for key in dataset.image_keys:
stats_patterns[key] = "b c h w -> c 1 1"
return stats_patterns
def compute_stats(dataset, batch_size=32, max_num_samples=None):
if max_num_samples is None:
max_num_samples = len(dataset)
else:
raise NotImplementedError("We need to set shuffle=True, but this violate an assert for now.")
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=4,
batch_size=batch_size,
shuffle=False,
# pin_memory=cfg.device != "cpu",
drop_last=False,
)
# get einops patterns to aggregate batches and compute statistics
stats_patterns = get_stats_einops_patterns(dataset)
# mean and std will be computed incrementally while max and min will track the running value.
mean, std, max, min = {}, {}, {}, {}
for key in stats_patterns:
mean[key] = torch.tensor(0.0).float()
std[key] = torch.tensor(0.0).float()
max[key] = torch.tensor(-float("inf")).float()
min[key] = torch.tensor(float("inf")).float()
# Note: Due to be refactored soon. The point of storing `first_batch` is to make sure we don't get
# surprises when rerunning the sampler.
first_batch = None
running_item_count = 0 # for online mean computation
for i, batch in enumerate(
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute mean, min, max")
):
this_batch_size = len(batch["index"])
running_item_count += this_batch_size
if first_batch is None:
first_batch = deepcopy(batch)
for key, pattern in stats_patterns.items():
batch[key] = batch[key].float()
# Numerically stable update step for mean computation.
batch_mean = einops.reduce(batch[key], pattern, "mean")
# Hint: to update the mean we need x̄ₙ = (Nₙ₋₁x̄ₙ₋₁ + Bₙxₙ) / Nₙ, where the subscript represents
# the update step, N is the running item count, B is this batch size, x̄ is the running mean,
# and x is the current batch mean. Some rearrangement is then required to avoid risking
# numerical overflow. Another hint: Nₙ₋₁ = Nₙ - Bₙ. Rearrangement yields
# x̄ₙ = x̄ₙ₋₁ + Bₙ * (xₙ - x̄ₙ₋₁) / Nₙ
mean[key] = mean[key] + this_batch_size * (batch_mean - mean[key]) / running_item_count
max[key] = torch.maximum(max[key], einops.reduce(batch[key], pattern, "max"))
min[key] = torch.minimum(min[key], einops.reduce(batch[key], pattern, "min"))
if i == ceil(max_num_samples / batch_size) - 1:
break
first_batch_ = None
running_item_count = 0 # for online std computation
for i, batch in enumerate(
tqdm.tqdm(dataloader, total=ceil(max_num_samples / batch_size), desc="Compute std")
):
this_batch_size = len(batch["index"])
running_item_count += this_batch_size
# Sanity check to make sure the batches are still in the same order as before.
if first_batch_ is None:
first_batch_ = deepcopy(batch)
for key in stats_patterns:
assert torch.equal(first_batch_[key], first_batch[key])
for key, pattern in stats_patterns.items():
batch[key] = batch[key].float()
# Numerically stable update step for mean computation (where the mean is over squared
# residuals).See notes in the mean computation loop above.
batch_std = einops.reduce((batch[key] - mean[key]) ** 2, pattern, "mean")
std[key] = std[key] + this_batch_size * (batch_std - std[key]) / running_item_count
if i == ceil(max_num_samples / batch_size) - 1:
break
for key in stats_patterns:
std[key] = torch.sqrt(std[key])
stats = {}
for key in stats_patterns:
stats[key] = {
"mean": mean[key],
"std": std[key],
"max": max[key],
"min": min[key],
}
return stats
def cycle(iterable):
iterator = iter(iterable)
while True:
try:
yield next(iterator)
except StopIteration:
iterator = iter(iterable)

View File

@ -0,0 +1,163 @@
import pickle
import zipfile
from pathlib import Path
import torch
import tqdm
from lerobot.common.datasets.utils import load_data_with_delta_timestamps
def download(raw_dir):
import gdown
raw_dir.mkdir(parents=True, exist_ok=True)
url = "https://drive.google.com/uc?id=1nhxpykGtPDhmQKm-_B8zBSywVRdgeVya"
zip_path = raw_dir / "data.zip"
gdown.download(url, str(zip_path), quiet=False)
print("Extracting...")
with zipfile.ZipFile(str(zip_path), "r") as zip_f:
for member in zip_f.namelist():
if member.startswith("data/xarm") and member.endswith(".pkl"):
print(member)
zip_f.extract(member=member)
zip_path.unlink()
class XarmDataset(torch.utils.data.Dataset):
available_datasets = [
"xarm_lift_medium",
]
fps = 15
image_keys = ["observation.image"]
def __init__(
self,
dataset_id: str,
version: str | None = "v1.1",
root: Path | None = None,
transform: callable = None,
delta_timestamps: dict[list[float]] | None = None,
):
super().__init__()
self.dataset_id = dataset_id
self.version = version
self.root = root
self.transform = transform
self.delta_timestamps = delta_timestamps
self.data_dir = self.root / f"{self.dataset_id}"
if (self.data_dir / "data_dict.pth").exists() and (
self.data_dir / "data_ids_per_episode.pth"
).exists():
self.data_dict = torch.load(self.data_dir / "data_dict.pth")
self.data_ids_per_episode = torch.load(self.data_dir / "data_ids_per_episode.pth")
else:
self._download_and_preproc_obsolete()
self.data_dir.mkdir(parents=True, exist_ok=True)
torch.save(self.data_dict, self.data_dir / "data_dict.pth")
torch.save(self.data_ids_per_episode, self.data_dir / "data_ids_per_episode.pth")
@property
def num_samples(self) -> int:
return len(self.data_dict["index"]) if "index" in self.data_dict else 0
@property
def num_episodes(self) -> int:
return len(self.data_ids_per_episode)
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
item = {}
# get episode id and timestamp of the sampled frame
current_ts = self.data_dict["timestamp"][idx].item()
episode = self.data_dict["episode"][idx].item()
for key in self.data_dict:
if self.delta_timestamps is not None and key in self.delta_timestamps:
data, is_pad = load_data_with_delta_timestamps(
self.data_dict,
self.data_ids_per_episode,
self.delta_timestamps,
key,
current_ts,
episode,
)
item[key] = data
item[f"{key}_is_pad"] = is_pad
else:
item[key] = self.data_dict[key][idx]
if self.transform is not None:
item = self.transform(item)
return item
def _download_and_preproc_obsolete(self):
assert self.root is not None
raw_dir = self.root / f"{self.dataset_id}_raw"
if not raw_dir.exists():
download(raw_dir)
dataset_path = self.root / f"{self.dataset_id}" / "buffer.pkl"
print(f"Using offline dataset '{dataset_path}'")
with open(dataset_path, "rb") as f:
dataset_dict = pickle.load(f)
total_frames = dataset_dict["actions"].shape[0]
self.data_ids_per_episode = {}
ep_dicts = []
idx0 = 0
idx1 = 0
episode_id = 0
for i in tqdm.tqdm(range(total_frames)):
idx1 += 1
if not dataset_dict["dones"][i]:
continue
num_frames = idx1 - idx0
image = torch.tensor(dataset_dict["observations"]["rgb"][idx0:idx1])
state = torch.tensor(dataset_dict["observations"]["state"][idx0:idx1])
action = torch.tensor(dataset_dict["actions"][idx0:idx1])
# TODO(rcadene): we have a missing last frame which is the observation when the env is done
# it is critical to have this frame for tdmpc to predict a "done observation/state"
# next_image = torch.tensor(dataset_dict["next_observations"]["rgb"][idx0:idx1])
# next_state = torch.tensor(dataset_dict["next_observations"]["state"][idx0:idx1])
next_reward = torch.tensor(dataset_dict["rewards"][idx0:idx1])
next_done = torch.tensor(dataset_dict["dones"][idx0:idx1])
ep_dict = {
"observation.image": image,
"observation.state": state,
"action": action,
"episode": torch.tensor([episode_id] * num_frames, dtype=torch.int),
"frame_id": torch.arange(0, num_frames, 1),
"timestamp": torch.arange(0, num_frames, 1) / self.fps,
# "next.observation.image": next_image,
# "next.observation.state": next_state,
"next.reward": next_reward,
"next.done": next_done,
}
ep_dicts.append(ep_dict)
assert isinstance(episode_id, int)
self.data_ids_per_episode[episode_id] = torch.arange(idx0, idx1, 1)
assert len(self.data_ids_per_episode[episode_id]) == num_frames
idx0 = idx1
episode_id += 1
self.data_dict = {}
keys = ep_dicts[0].keys()
for key in keys:
self.data_dict[key] = torch.cat([x[key] for x in ep_dicts])
self.data_dict["index"] = torch.arange(0, total_frames, 1)

View File

@ -1,92 +0,0 @@
from collections import deque
from typing import Optional
from tensordict import TensorDict
from torchrl.envs import EnvBase
from lerobot.common.utils import set_global_seed
class AbstractEnv(EnvBase):
"""
Note:
When implementing a concrete class (e.g. `AlohaDataset`, `PushtEnv`, `DiffusionPolicy`), you need to:
1. set the required class attributes:
- for classes inheriting from `AbstractDataset`: `available_datasets`
- for classes inheriting from `AbstractEnv`: `name`, `available_tasks`
- for classes inheriting from `AbstractPolicy`: `name`
2. update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
3. update variables in `tests/test_available.py` by importing your new class
"""
name: str | None = None # same name should be used to instantiate the environment in factory.py
available_tasks: list[str] | None = None # for instance: sim_insertion, sim_transfer_cube, pusht, lift
def __init__(
self,
task,
frame_skip: int = 1,
from_pixels: bool = False,
pixels_only: bool = False,
image_size=None,
seed=1337,
device="cpu",
num_prev_obs=1,
num_prev_action=0,
):
super().__init__(device=device, batch_size=[])
assert self.name is not None, "Subclasses of `AbstractEnv` should set the `name` class attribute."
assert (
self.available_tasks is not None
), "Subclasses of `AbstractEnv` should set the `available_tasks` class attribute."
assert (
task in self.available_tasks
), f"The provided task ({task}) is not on the list of available tasks {self.available_tasks}."
self.task = task
self.frame_skip = frame_skip
self.from_pixels = from_pixels
self.pixels_only = pixels_only
self.image_size = image_size
self.num_prev_obs = num_prev_obs
self.num_prev_action = num_prev_action
if pixels_only:
assert from_pixels
if from_pixels:
assert image_size
self._make_env()
self._make_spec()
# self._next_seed will be used for the next reset. It is recommended that when self.set_seed is called
# you store the return value in self._next_seed (it will be a new randomly generated seed).
self._next_seed = seed
# Don't store the result of this in self._next_seed, as we want to make sure that the first time
# self._reset is called, we use seed.
self.set_seed(seed)
if self.num_prev_obs > 0:
self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs)
self._prev_obs_state_queue = deque(maxlen=self.num_prev_obs)
if self.num_prev_action > 0:
raise NotImplementedError()
# self._prev_action_queue = deque(maxlen=self.num_prev_action)
def render(self, mode="rgb_array", width=640, height=480):
raise NotImplementedError("Abstract method")
def _reset(self, tensordict: Optional[TensorDict] = None):
raise NotImplementedError("Abstract method")
def _step(self, tensordict: TensorDict):
raise NotImplementedError("Abstract method")
def _make_env(self):
raise NotImplementedError("Abstract method")
def _make_spec(self):
raise NotImplementedError("Abstract method")
def _set_seed(self, seed: Optional[int]):
set_global_seed(seed)

View File

@ -1,59 +0,0 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<equality>
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
</equality>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
</body>
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
</body>
<body name="peg" pos="0.2 0.5 0.05">
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
</body>
<body name="socket" pos="-0.2 0.5 0.05">
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@ -1,48 +0,0 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<equality>
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
</equality>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
</body>
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
</body>
<body name="box" pos="0.2 0.5 0.05">
<joint name="red_box_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@ -1,53 +0,0 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body name="peg" pos="0.2 0.5 0.05">
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
</body>
<body name="socket" pos="-0.2 0.5 0.05">
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@ -1,42 +0,0 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body name="box" pos="0.2 0.5 0.05">
<joint name="red_box_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@ -1,38 +0,0 @@
<mujocoinclude>
<!-- <option timestep='0.0025' iterations="50" tolerance="1e-10" solver="Newton" jacobian="dense" cone="elliptic"/>-->
<asset>
<mesh file="tabletop.stl" name="tabletop" scale="0.001 0.001 0.001"/>
</asset>
<visual>
<map fogstart="1.5" fogend="5" force="0.1" znear="0.1"/>
<quality shadowsize="4096" offsamples="4"/>
<headlight ambient="0.4 0.4 0.4"/>
</visual>
<worldbody>
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='-1 -1 1'
dir='1 1 -1'/>
<light directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='1 -1 1' dir='-1 1 -1'/>
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='0 1 1'
dir='0 -1 -1'/>
<body name="table" pos="0 .6 0">
<geom group="1" mesh="tabletop" pos="0 0 0" type="mesh" conaffinity="1" contype="1" name="table" rgba="0.2 0.2 0.2 1" />
</body>
<body name="midair" pos="0 .6 0.2">
<site pos="0 0 0" size="0.01" type="sphere" name="midair" rgba="1 0 0 0"/>
</body>
<camera name="left_pillar" pos="-0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
<camera name="right_pillar" pos="0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
<camera name="top" pos="0 0.6 0.8" fovy="78" mode="targetbody" target="table"/>
<camera name="angle" pos="0 0 0.6" fovy="78" mode="targetbody" target="table"/>
<camera name="front_close" pos="0 0.2 0.4" fovy="78" mode="targetbody" target="vx300s_left/camera_focus"/>
</worldbody>
</mujocoinclude>

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:76a1571d1aa36520f2bd81c268991b99816c2a7819464d718e0fd9976fe30dce
size 684

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:df73ae5b9058e5d50a6409ac2ab687dade75053a86591bb5e23ab051dbf2d659
size 83384

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:56fb3cc1236d4193106038adf8e457c7252ae9e86c7cee6dabf0578c53666358
size 83384

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a4baacd9a64df1be60ea5e98f50f3c660e1b7a1fe9684aace6004c5058c09483
size 42884

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a18a1601074d29ed1d546ead70cd18fbb063f1db7b5b96b9f0365be714f3136a
size 3884

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:d100cafe656671ca8fde98fb6a4cf2d1b746995c51c61c25ad9ea2715635d146
size 99984

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:139745a74055cb0b23430bb5bc032bf68cf7bea5e4975c8f4c04107ae005f7f0
size 63884

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:900f236320dd3d500870c5fde763b2d47502d51e043a5c377875e70237108729
size 102984

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:4104fc54bbfb8a9b533029f1e7e3ade3d54d638372b3195daa0c98f57e0295b5
size 49584

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:66814e27fa728056416e25e02e89eb7d34c51d51c51e7c3df873829037ddc6b8
size 99884

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:90eb145c85627968c3776ae6de23ccff7e112c9dd713c46bc9acdfdaa859a048
size 70784

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:786c1077bfd226f14219581b11d5f19464ca95b17132e0bb7532503568f5af90
size 450084

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:d1275a93fe2157c83dbc095617fb7e672888bdd48ec070a35ef4ab9ebd9755b0
size 31684

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a4de62c9a2ed2c78433010e4c05530a1254b1774a7651967f406120c9bf8973e
size 379484

View File

@ -1,17 +0,0 @@
<mujocoinclude>
<compiler angle="radian" inertiafromgeom="auto" inertiagrouprange="4 5"/>
<asset>
<mesh name="vx300s_1_base" file="vx300s_1_base.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_2_shoulder" file="vx300s_2_shoulder.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_3_upper_arm" file="vx300s_3_upper_arm.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_4_upper_forearm" file="vx300s_4_upper_forearm.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_5_lower_forearm" file="vx300s_5_lower_forearm.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_6_wrist" file="vx300s_6_wrist.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_7_gripper" file="vx300s_7_gripper.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_8_gripper_prop" file="vx300s_8_gripper_prop.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_9_gripper_bar" file="vx300s_9_gripper_bar.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_10_gripper_finger_left" file="vx300s_10_custom_finger_left.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_10_gripper_finger_right" file="vx300s_10_custom_finger_right.stl" scale="0.001 0.001 0.001" />
</asset>
</mujocoinclude>

View File

@ -1,59 +0,0 @@
<mujocoinclude>
<body name="vx300s_left" pos="-0.469 0.5 0">
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_left/1_base" contype="0" conaffinity="0"/>
<body name="vx300s_left/shoulder_link" pos="0 0 0.079">
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
<joint name="vx300s_left/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_left/2_shoulder" />
<body name="vx300s_left/upper_arm_link" pos="0 0 0.04805">
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
<joint name="vx300s_left/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_left/3_upper_arm"/>
<body name="vx300s_left/upper_forearm_link" pos="0.05955 0 0.3">
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
<joint name="vx300s_left/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_left/4_upper_forearm" />
<body name="vx300s_left/lower_forearm_link" pos="0.2 0 0">
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
<joint name="vx300s_left/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_left/5_lower_forearm"/>
<body name="vx300s_left/wrist_link" pos="0.1 0 0">
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
<joint name="vx300s_left/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_left/6_wrist" />
<body name="vx300s_left/gripper_link" pos="0.069744 0 0">
<body name="vx300s_left/camera_focus" pos="0.15 0 0.01">
<site pos="0 0 0" size="0.01" type="sphere" name="left_cam_focus" rgba="0 0 1 0"/>
</body>
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_left_site1" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_left_site2" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_left_site3" rgba="0 0 1 0"/>
<camera name="left_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_left/camera_focus"/>
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
<joint name="vx300s_left/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_left/7_gripper" />
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_left/9_gripper_bar" />
<body name="vx300s_left/gripper_prop_link" pos="0.0485 0 0">
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
<!-- <joint name="vx300s_left/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_left/8_gripper_prop" />
</body>
<body name="vx300s_left/left_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
<joint name="vx300s_left/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_left/10_left_gripper_finger"/>
</body>
<body name="vx300s_left/right_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
<joint name="vx300s_left/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_left/10_right_gripper_finger"/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</mujocoinclude>

View File

@ -1,59 +0,0 @@
<mujocoinclude>
<body name="vx300s_right" pos="0.469 0.5 0" euler="0 0 3.1416">
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_right/1_base" contype="0" conaffinity="0"/>
<body name="vx300s_right/shoulder_link" pos="0 0 0.079">
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
<joint name="vx300s_right/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_right/2_shoulder" />
<body name="vx300s_right/upper_arm_link" pos="0 0 0.04805">
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
<joint name="vx300s_right/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_right/3_upper_arm"/>
<body name="vx300s_right/upper_forearm_link" pos="0.05955 0 0.3">
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
<joint name="vx300s_right/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_right/4_upper_forearm" />
<body name="vx300s_right/lower_forearm_link" pos="0.2 0 0">
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
<joint name="vx300s_right/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_right/5_lower_forearm"/>
<body name="vx300s_right/wrist_link" pos="0.1 0 0">
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
<joint name="vx300s_right/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_right/6_wrist" />
<body name="vx300s_right/gripper_link" pos="0.069744 0 0">
<body name="vx300s_right/camera_focus" pos="0.15 0 0.01">
<site pos="0 0 0" size="0.01" type="sphere" name="right_cam_focus" rgba="0 0 1 0"/>
</body>
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_right_site1" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_right_site2" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_right_site3" rgba="0 0 1 0"/>
<camera name="right_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_right/camera_focus"/>
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
<joint name="vx300s_right/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_right/7_gripper" />
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_right/9_gripper_bar" />
<body name="vx300s_right/gripper_prop_link" pos="0.0485 0 0">
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
<!-- <joint name="vx300s_right/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_right/8_gripper_prop" />
</body>
<body name="vx300s_right/left_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
<joint name="vx300s_right/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_right/10_left_gripper_finger"/>
</body>
<body name="vx300s_right/right_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
<joint name="vx300s_right/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_right/10_right_gripper_finger"/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</mujocoinclude>

View File

@ -1,163 +0,0 @@
from pathlib import Path
### Simulation envs fixed constants
DT = 0.02 # 0.02 ms -> 1/0.2 = 50 hz
FPS = 50
JOINTS = [
# absolute joint position
"left_arm_waist",
"left_arm_shoulder",
"left_arm_elbow",
"left_arm_forearm_roll",
"left_arm_wrist_angle",
"left_arm_wrist_rotate",
# normalized gripper position 0: close, 1: open
"left_arm_gripper",
# absolute joint position
"right_arm_waist",
"right_arm_shoulder",
"right_arm_elbow",
"right_arm_forearm_roll",
"right_arm_wrist_angle",
"right_arm_wrist_rotate",
# normalized gripper position 0: close, 1: open
"right_arm_gripper",
]
ACTIONS = [
# position and quaternion for end effector
"left_arm_waist",
"left_arm_shoulder",
"left_arm_elbow",
"left_arm_forearm_roll",
"left_arm_wrist_angle",
"left_arm_wrist_rotate",
# normalized gripper position (0: close, 1: open)
"left_arm_gripper",
"right_arm_waist",
"right_arm_shoulder",
"right_arm_elbow",
"right_arm_forearm_roll",
"right_arm_wrist_angle",
"right_arm_wrist_rotate",
# normalized gripper position (0: close, 1: open)
"right_arm_gripper",
]
START_ARM_POSE = [
0,
-0.96,
1.16,
0,
-0.3,
0,
0.02239,
-0.02239,
0,
-0.96,
1.16,
0,
-0.3,
0,
0.02239,
-0.02239,
]
ASSETS_DIR = Path(__file__).parent.resolve() / "assets" # note: absolute path
# Left finger position limits (qpos[7]), right_finger = -1 * left_finger
MASTER_GRIPPER_POSITION_OPEN = 0.02417
MASTER_GRIPPER_POSITION_CLOSE = 0.01244
PUPPET_GRIPPER_POSITION_OPEN = 0.05800
PUPPET_GRIPPER_POSITION_CLOSE = 0.01844
# Gripper joint limits (qpos[6])
MASTER_GRIPPER_JOINT_OPEN = 0.3083
MASTER_GRIPPER_JOINT_CLOSE = -0.6842
PUPPET_GRIPPER_JOINT_OPEN = 1.4910
PUPPET_GRIPPER_JOINT_CLOSE = -0.6213
MASTER_GRIPPER_JOINT_MID = (MASTER_GRIPPER_JOINT_OPEN + MASTER_GRIPPER_JOINT_CLOSE) / 2
############################ Helper functions ############################
def normalize_master_gripper_position(x):
return (x - MASTER_GRIPPER_POSITION_CLOSE) / (
MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE
)
def normalize_puppet_gripper_position(x):
return (x - PUPPET_GRIPPER_POSITION_CLOSE) / (
PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE
)
def unnormalize_master_gripper_position(x):
return x * (MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE) + MASTER_GRIPPER_POSITION_CLOSE
def unnormalize_puppet_gripper_position(x):
return x * (PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE) + PUPPET_GRIPPER_POSITION_CLOSE
def convert_position_from_master_to_puppet(x):
return unnormalize_puppet_gripper_position(normalize_master_gripper_position(x))
def normalizer_master_gripper_joint(x):
return (x - MASTER_GRIPPER_JOINT_CLOSE) / (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
def normalize_puppet_gripper_joint(x):
return (x - PUPPET_GRIPPER_JOINT_CLOSE) / (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
def unnormalize_master_gripper_joint(x):
return x * (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE) + MASTER_GRIPPER_JOINT_CLOSE
def unnormalize_puppet_gripper_joint(x):
return x * (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE) + PUPPET_GRIPPER_JOINT_CLOSE
def convert_join_from_master_to_puppet(x):
return unnormalize_puppet_gripper_joint(normalizer_master_gripper_joint(x))
def normalize_master_gripper_velocity(x):
return x / (MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE)
def normalize_puppet_gripper_velocity(x):
return x / (PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE)
def convert_master_from_position_to_joint(x):
return (
normalize_master_gripper_position(x) * (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
+ MASTER_GRIPPER_JOINT_CLOSE
)
def convert_master_from_joint_to_position(x):
return unnormalize_master_gripper_position(
(x - MASTER_GRIPPER_JOINT_CLOSE) / (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
)
def convert_puppet_from_position_to_join(x):
return (
normalize_puppet_gripper_position(x) * (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
+ PUPPET_GRIPPER_JOINT_CLOSE
)
def convert_puppet_from_joint_to_position(x):
return unnormalize_puppet_gripper_position(
(x - PUPPET_GRIPPER_JOINT_CLOSE) / (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
)

View File

@ -1,298 +0,0 @@
import importlib
import logging
from collections import deque
from typing import Optional
import einops
import numpy as np
import torch
from dm_control import mujoco
from dm_control.rl import control
from tensordict import TensorDict
from torchrl.data.tensor_specs import (
BoundedTensorSpec,
CompositeSpec,
DiscreteTensorSpec,
UnboundedContinuousTensorSpec,
)
from lerobot.common.envs.abstract import AbstractEnv
from lerobot.common.envs.aloha.constants import (
ACTIONS,
ASSETS_DIR,
DT,
JOINTS,
)
from lerobot.common.envs.aloha.tasks.sim import BOX_POSE, InsertionTask, TransferCubeTask
from lerobot.common.envs.aloha.tasks.sim_end_effector import (
InsertionEndEffectorTask,
TransferCubeEndEffectorTask,
)
from lerobot.common.envs.aloha.utils import sample_box_pose, sample_insertion_pose
from lerobot.common.utils import set_global_seed
_has_gym = importlib.util.find_spec("gymnasium") is not None
class AlohaEnv(AbstractEnv):
name = "aloha"
available_tasks = ["sim_insertion", "sim_transfer_cube"]
_reset_warning_issued = False
def __init__(
self,
task,
frame_skip: int = 1,
from_pixels: bool = False,
pixels_only: bool = False,
image_size=None,
seed=1337,
device="cpu",
num_prev_obs=1,
num_prev_action=0,
):
super().__init__(
task=task,
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=image_size,
seed=seed,
device=device,
num_prev_obs=num_prev_obs,
num_prev_action=num_prev_action,
)
def _make_env(self):
if not _has_gym:
raise ImportError("Cannot import gymnasium.")
if not self.from_pixels:
raise NotImplementedError()
self._env = self._make_env_task(self.task)
def render(self, mode="rgb_array", width=640, height=480):
# TODO(rcadene): render and visualizer several cameras (e.g. angle, front_close)
image = self._env.physics.render(height=height, width=width, camera_id="top")
return image
def _make_env_task(self, task_name):
# time limit is controlled by StepCounter in env factory
time_limit = float("inf")
if "sim_transfer_cube" in task_name:
xml_path = ASSETS_DIR / "bimanual_viperx_transfer_cube.xml"
physics = mujoco.Physics.from_xml_path(str(xml_path))
task = TransferCubeTask(random=False)
elif "sim_insertion" in task_name:
xml_path = ASSETS_DIR / "bimanual_viperx_insertion.xml"
physics = mujoco.Physics.from_xml_path(str(xml_path))
task = InsertionTask(random=False)
elif "sim_end_effector_transfer_cube" in task_name:
raise NotImplementedError()
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_transfer_cube.xml"
physics = mujoco.Physics.from_xml_path(str(xml_path))
task = TransferCubeEndEffectorTask(random=False)
elif "sim_end_effector_insertion" in task_name:
raise NotImplementedError()
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_insertion.xml"
physics = mujoco.Physics.from_xml_path(str(xml_path))
task = InsertionEndEffectorTask(random=False)
else:
raise NotImplementedError(task_name)
env = control.Environment(
physics, task, time_limit, control_timestep=DT, n_sub_steps=None, flat_observation=False
)
return env
def _format_raw_obs(self, raw_obs):
if self.from_pixels:
image = torch.from_numpy(raw_obs["images"]["top"].copy())
image = einops.rearrange(image, "h w c -> c h w")
assert image.dtype == torch.uint8
obs = {"image": {"top": image}}
if not self.pixels_only:
obs["state"] = torch.from_numpy(raw_obs["qpos"]).type(torch.float32)
else:
# TODO(rcadene):
raise NotImplementedError()
# obs = {"state": torch.from_numpy(raw_obs["observation"]).type(torch.float32)}
return obs
def _reset(self, tensordict: Optional[TensorDict] = None):
if tensordict is not None and not AlohaEnv._reset_warning_issued:
logging.warning(f"{self.__class__.__name__}._reset ignores the provided tensordict.")
AlohaEnv._reset_warning_issued = True
# Seed the environment and update the seed to be used for the next reset.
self._next_seed = self.set_seed(self._next_seed)
# TODO(rcadene): do not use global variable for this
if "sim_transfer_cube" in self.task:
BOX_POSE[0] = sample_box_pose() # used in sim reset
elif "sim_insertion" in self.task:
BOX_POSE[0] = np.concatenate(sample_insertion_pose()) # used in sim reset
raw_obs = self._env.reset()
obs = self._format_raw_obs(raw_obs.observation)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue = deque(
[obs["image"]["top"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
if "state" in obs:
self._prev_obs_state_queue = deque(
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": TensorDict(obs, batch_size=[]),
"done": torch.tensor([False], dtype=torch.bool),
},
batch_size=[],
)
return td
def _step(self, tensordict: TensorDict):
td = tensordict
action = td["action"].numpy()
assert action.ndim == 1
# TODO(rcadene): add info["is_success"] and info["success"] ?
_, reward, _, raw_obs = self._env.step(action)
# TODO(rcadene): add an enum
success = done = reward == 4
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue.append(obs["image"]["top"])
stacked_obs["image"] = {"top": torch.stack(list(self._prev_obs_image_queue))}
if "state" in obs:
self._prev_obs_state_queue.append(obs["state"])
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": TensorDict(obs, batch_size=[]),
"reward": torch.tensor([reward], dtype=torch.float32),
# success and done are true when coverage > self.success_threshold in env
"done": torch.tensor([done], dtype=torch.bool),
"success": torch.tensor([success], dtype=torch.bool),
},
batch_size=[],
)
return td
def _make_spec(self):
obs = {}
from omegaconf import OmegaConf
if self.from_pixels:
if isinstance(self.image_size, int):
image_shape = (3, self.image_size, self.image_size)
elif OmegaConf.is_list(self.image_size) or isinstance(self.image_size, list):
assert len(self.image_size) == 3 # c h w
assert self.image_size[0] == 3 # c is RGB
image_shape = tuple(self.image_size)
else:
raise ValueError(self.image_size)
if self.num_prev_obs > 0:
image_shape = (self.num_prev_obs + 1, *image_shape)
obs["image"] = {
"top": BoundedTensorSpec(
low=0,
high=255,
shape=image_shape,
dtype=torch.uint8,
device=self.device,
)
}
if not self.pixels_only:
state_shape = (len(JOINTS),)
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = UnboundedContinuousTensorSpec(
# TODO: add low and high bounds
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
else:
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
state_shape = (len(JOINTS),)
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = UnboundedContinuousTensorSpec(
# TODO: add low and high bounds
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
self.observation_spec = CompositeSpec({"observation": obs})
# TODO(rcadene): valid when controling end effector?
# action_space = self._env.action_spec()
# self.action_spec = BoundedTensorSpec(
# low=action_space.minimum,
# high=action_space.maximum,
# shape=action_space.shape,
# dtype=torch.float32,
# device=self.device,
# )
# TODO(rcaene): add bounds (where are they????)
self.action_spec = BoundedTensorSpec(
shape=(len(ACTIONS)),
low=-1,
high=1,
dtype=torch.float32,
device=self.device,
)
self.reward_spec = UnboundedContinuousTensorSpec(
shape=(1,),
dtype=torch.float32,
device=self.device,
)
self.done_spec = CompositeSpec(
{
"done": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
"success": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
}
)
def _set_seed(self, seed: Optional[int]):
set_global_seed(seed)
# TODO(rcadene): seed the env
# self._env.seed(seed)
logging.warning("Aloha env is not seeded")

View File

@ -1,219 +0,0 @@
import collections
import numpy as np
from dm_control.suite import base
from lerobot.common.envs.aloha.constants import (
START_ARM_POSE,
normalize_puppet_gripper_position,
normalize_puppet_gripper_velocity,
unnormalize_puppet_gripper_position,
)
BOX_POSE = [None] # to be changed from outside
"""
Environment for simulated robot bi-manual manipulation, with joint position control
Action space: [left_arm_qpos (6), # absolute joint position
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
right_arm_qpos (6), # absolute joint position
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
right_arm_qpos (6), # absolute joint position
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
right_arm_qvel (6), # absolute joint velocity (rad)
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
"""
class BimanualViperXTask(base.Task):
def __init__(self, random=None):
super().__init__(random=random)
def before_step(self, action, physics):
left_arm_action = action[:6]
right_arm_action = action[7 : 7 + 6]
normalized_left_gripper_action = action[6]
normalized_right_gripper_action = action[7 + 6]
left_gripper_action = unnormalize_puppet_gripper_position(normalized_left_gripper_action)
right_gripper_action = unnormalize_puppet_gripper_position(normalized_right_gripper_action)
full_left_gripper_action = [left_gripper_action, -left_gripper_action]
full_right_gripper_action = [right_gripper_action, -right_gripper_action]
env_action = np.concatenate(
[left_arm_action, full_left_gripper_action, right_arm_action, full_right_gripper_action]
)
super().before_step(env_action, physics)
return
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
super().initialize_episode(physics)
@staticmethod
def get_qpos(physics):
qpos_raw = physics.data.qpos.copy()
left_qpos_raw = qpos_raw[:8]
right_qpos_raw = qpos_raw[8:16]
left_arm_qpos = left_qpos_raw[:6]
right_arm_qpos = right_qpos_raw[:6]
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
@staticmethod
def get_qvel(physics):
qvel_raw = physics.data.qvel.copy()
left_qvel_raw = qvel_raw[:8]
right_qvel_raw = qvel_raw[8:16]
left_arm_qvel = left_qvel_raw[:6]
right_arm_qvel = right_qvel_raw[:6]
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
@staticmethod
def get_env_state(physics):
raise NotImplementedError
def get_observation(self, physics):
obs = collections.OrderedDict()
obs["qpos"] = self.get_qpos(physics)
obs["qvel"] = self.get_qvel(physics)
obs["env_state"] = self.get_env_state(physics)
obs["images"] = {}
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
return obs
def get_reward(self, physics):
# return whether left gripper is holding the box
raise NotImplementedError
class TransferCubeTask(BimanualViperXTask):
def __init__(self, random=None):
super().__init__(random=random)
self.max_reward = 4
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
# reset qpos, control and box position
with physics.reset_context():
physics.named.data.qpos[:16] = START_ARM_POSE
np.copyto(physics.data.ctrl, START_ARM_POSE)
assert BOX_POSE[0] is not None
physics.named.data.qpos[-7:] = BOX_POSE[0]
# print(f"{BOX_POSE=}")
super().initialize_episode(physics)
@staticmethod
def get_env_state(physics):
env_state = physics.data.qpos.copy()[16:]
return env_state
def get_reward(self, physics):
# return whether left gripper is holding the box
all_contact_pairs = []
for i_contact in range(physics.data.ncon):
id_geom_1 = physics.data.contact[i_contact].geom1
id_geom_2 = physics.data.contact[i_contact].geom2
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
contact_pair = (name_geom_1, name_geom_2)
all_contact_pairs.append(contact_pair)
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
touch_table = ("red_box", "table") in all_contact_pairs
reward = 0
if touch_right_gripper:
reward = 1
if touch_right_gripper and not touch_table: # lifted
reward = 2
if touch_left_gripper: # attempted transfer
reward = 3
if touch_left_gripper and not touch_table: # successful transfer
reward = 4
return reward
class InsertionTask(BimanualViperXTask):
def __init__(self, random=None):
super().__init__(random=random)
self.max_reward = 4
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
# reset qpos, control and box position
with physics.reset_context():
physics.named.data.qpos[:16] = START_ARM_POSE
np.copyto(physics.data.ctrl, START_ARM_POSE)
assert BOX_POSE[0] is not None
physics.named.data.qpos[-7 * 2 :] = BOX_POSE[0] # two objects
# print(f"{BOX_POSE=}")
super().initialize_episode(physics)
@staticmethod
def get_env_state(physics):
env_state = physics.data.qpos.copy()[16:]
return env_state
def get_reward(self, physics):
# return whether peg touches the pin
all_contact_pairs = []
for i_contact in range(physics.data.ncon):
id_geom_1 = physics.data.contact[i_contact].geom1
id_geom_2 = physics.data.contact[i_contact].geom2
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
contact_pair = (name_geom_1, name_geom_2)
all_contact_pairs.append(contact_pair)
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
touch_left_gripper = (
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
)
peg_touch_table = ("red_peg", "table") in all_contact_pairs
socket_touch_table = (
("socket-1", "table") in all_contact_pairs
or ("socket-2", "table") in all_contact_pairs
or ("socket-3", "table") in all_contact_pairs
or ("socket-4", "table") in all_contact_pairs
)
peg_touch_socket = (
("red_peg", "socket-1") in all_contact_pairs
or ("red_peg", "socket-2") in all_contact_pairs
or ("red_peg", "socket-3") in all_contact_pairs
or ("red_peg", "socket-4") in all_contact_pairs
)
pin_touched = ("red_peg", "pin") in all_contact_pairs
reward = 0
if touch_left_gripper and touch_right_gripper: # touch both
reward = 1
if (
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
): # grasp both
reward = 2
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
reward = 3
if pin_touched: # successful insertion
reward = 4
return reward

View File

@ -1,263 +0,0 @@
import collections
import numpy as np
from dm_control.suite import base
from lerobot.common.envs.aloha.constants import (
PUPPET_GRIPPER_POSITION_CLOSE,
START_ARM_POSE,
normalize_puppet_gripper_position,
normalize_puppet_gripper_velocity,
unnormalize_puppet_gripper_position,
)
from lerobot.common.envs.aloha.utils import sample_box_pose, sample_insertion_pose
"""
Environment for simulated robot bi-manual manipulation, with end-effector control.
Action space: [left_arm_pose (7), # position and quaternion for end effector
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
right_arm_pose (7), # position and quaternion for end effector
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
right_arm_qpos (6), # absolute joint position
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
right_arm_qvel (6), # absolute joint velocity (rad)
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
"""
class BimanualViperXEndEffectorTask(base.Task):
def __init__(self, random=None):
super().__init__(random=random)
def before_step(self, action, physics):
a_len = len(action) // 2
action_left = action[:a_len]
action_right = action[a_len:]
# set mocap position and quat
# left
np.copyto(physics.data.mocap_pos[0], action_left[:3])
np.copyto(physics.data.mocap_quat[0], action_left[3:7])
# right
np.copyto(physics.data.mocap_pos[1], action_right[:3])
np.copyto(physics.data.mocap_quat[1], action_right[3:7])
# set gripper
g_left_ctrl = unnormalize_puppet_gripper_position(action_left[7])
g_right_ctrl = unnormalize_puppet_gripper_position(action_right[7])
np.copyto(physics.data.ctrl, np.array([g_left_ctrl, -g_left_ctrl, g_right_ctrl, -g_right_ctrl]))
def initialize_robots(self, physics):
# reset joint position
physics.named.data.qpos[:16] = START_ARM_POSE
# reset mocap to align with end effector
# to obtain these numbers:
# (1) make an ee_sim env and reset to the same start_pose
# (2) get env._physics.named.data.xpos['vx300s_left/gripper_link']
# get env._physics.named.data.xquat['vx300s_left/gripper_link']
# repeat the same for right side
np.copyto(physics.data.mocap_pos[0], [-0.31718881, 0.5, 0.29525084])
np.copyto(physics.data.mocap_quat[0], [1, 0, 0, 0])
# right
np.copyto(physics.data.mocap_pos[1], np.array([0.31718881, 0.49999888, 0.29525084]))
np.copyto(physics.data.mocap_quat[1], [1, 0, 0, 0])
# reset gripper control
close_gripper_control = np.array(
[
PUPPET_GRIPPER_POSITION_CLOSE,
-PUPPET_GRIPPER_POSITION_CLOSE,
PUPPET_GRIPPER_POSITION_CLOSE,
-PUPPET_GRIPPER_POSITION_CLOSE,
]
)
np.copyto(physics.data.ctrl, close_gripper_control)
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
super().initialize_episode(physics)
@staticmethod
def get_qpos(physics):
qpos_raw = physics.data.qpos.copy()
left_qpos_raw = qpos_raw[:8]
right_qpos_raw = qpos_raw[8:16]
left_arm_qpos = left_qpos_raw[:6]
right_arm_qpos = right_qpos_raw[:6]
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
@staticmethod
def get_qvel(physics):
qvel_raw = physics.data.qvel.copy()
left_qvel_raw = qvel_raw[:8]
right_qvel_raw = qvel_raw[8:16]
left_arm_qvel = left_qvel_raw[:6]
right_arm_qvel = right_qvel_raw[:6]
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
@staticmethod
def get_env_state(physics):
raise NotImplementedError
def get_observation(self, physics):
# note: it is important to do .copy()
obs = collections.OrderedDict()
obs["qpos"] = self.get_qpos(physics)
obs["qvel"] = self.get_qvel(physics)
obs["env_state"] = self.get_env_state(physics)
obs["images"] = {}
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
# used in scripted policy to obtain starting pose
obs["mocap_pose_left"] = np.concatenate(
[physics.data.mocap_pos[0], physics.data.mocap_quat[0]]
).copy()
obs["mocap_pose_right"] = np.concatenate(
[physics.data.mocap_pos[1], physics.data.mocap_quat[1]]
).copy()
# used when replaying joint trajectory
obs["gripper_ctrl"] = physics.data.ctrl.copy()
return obs
def get_reward(self, physics):
raise NotImplementedError
class TransferCubeEndEffectorTask(BimanualViperXEndEffectorTask):
def __init__(self, random=None):
super().__init__(random=random)
self.max_reward = 4
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
self.initialize_robots(physics)
# randomize box position
cube_pose = sample_box_pose()
box_start_idx = physics.model.name2id("red_box_joint", "joint")
np.copyto(physics.data.qpos[box_start_idx : box_start_idx + 7], cube_pose)
# print(f"randomized cube position to {cube_position}")
super().initialize_episode(physics)
@staticmethod
def get_env_state(physics):
env_state = physics.data.qpos.copy()[16:]
return env_state
def get_reward(self, physics):
# return whether left gripper is holding the box
all_contact_pairs = []
for i_contact in range(physics.data.ncon):
id_geom_1 = physics.data.contact[i_contact].geom1
id_geom_2 = physics.data.contact[i_contact].geom2
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
contact_pair = (name_geom_1, name_geom_2)
all_contact_pairs.append(contact_pair)
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
touch_table = ("red_box", "table") in all_contact_pairs
reward = 0
if touch_right_gripper:
reward = 1
if touch_right_gripper and not touch_table: # lifted
reward = 2
if touch_left_gripper: # attempted transfer
reward = 3
if touch_left_gripper and not touch_table: # successful transfer
reward = 4
return reward
class InsertionEndEffectorTask(BimanualViperXEndEffectorTask):
def __init__(self, random=None):
super().__init__(random=random)
self.max_reward = 4
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
self.initialize_robots(physics)
# randomize peg and socket position
peg_pose, socket_pose = sample_insertion_pose()
def id2index(j_id):
return 16 + (j_id - 16) * 7 # first 16 is robot qpos, 7 is pose dim # hacky
peg_start_id = physics.model.name2id("red_peg_joint", "joint")
peg_start_idx = id2index(peg_start_id)
np.copyto(physics.data.qpos[peg_start_idx : peg_start_idx + 7], peg_pose)
# print(f"randomized cube position to {cube_position}")
socket_start_id = physics.model.name2id("blue_socket_joint", "joint")
socket_start_idx = id2index(socket_start_id)
np.copyto(physics.data.qpos[socket_start_idx : socket_start_idx + 7], socket_pose)
# print(f"randomized cube position to {cube_position}")
super().initialize_episode(physics)
@staticmethod
def get_env_state(physics):
env_state = physics.data.qpos.copy()[16:]
return env_state
def get_reward(self, physics):
# return whether peg touches the pin
all_contact_pairs = []
for i_contact in range(physics.data.ncon):
id_geom_1 = physics.data.contact[i_contact].geom1
id_geom_2 = physics.data.contact[i_contact].geom2
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
contact_pair = (name_geom_1, name_geom_2)
all_contact_pairs.append(contact_pair)
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
touch_left_gripper = (
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
)
peg_touch_table = ("red_peg", "table") in all_contact_pairs
socket_touch_table = (
("socket-1", "table") in all_contact_pairs
or ("socket-2", "table") in all_contact_pairs
or ("socket-3", "table") in all_contact_pairs
or ("socket-4", "table") in all_contact_pairs
)
peg_touch_socket = (
("red_peg", "socket-1") in all_contact_pairs
or ("red_peg", "socket-2") in all_contact_pairs
or ("red_peg", "socket-3") in all_contact_pairs
or ("red_peg", "socket-4") in all_contact_pairs
)
pin_touched = ("red_peg", "pin") in all_contact_pairs
reward = 0
if touch_left_gripper and touch_right_gripper: # touch both
reward = 1
if (
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
): # grasp both
reward = 2
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
reward = 3
if pin_touched: # successful insertion
reward = 4
return reward

View File

@ -1,39 +0,0 @@
import numpy as np
def sample_box_pose():
x_range = [0.0, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
cube_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
cube_quat = np.array([1, 0, 0, 0])
return np.concatenate([cube_position, cube_quat])
def sample_insertion_pose():
# Peg
x_range = [0.1, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
peg_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
peg_quat = np.array([1, 0, 0, 0])
peg_pose = np.concatenate([peg_position, peg_quat])
# Socket
x_range = [-0.2, -0.1]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
socket_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
socket_quat = np.array([1, 0, 0, 0])
socket_pose = np.concatenate([socket_position, socket_quat])
return peg_pose, socket_pose

View File

@ -1,64 +1,42 @@
from torchrl.envs import SerialEnv
from torchrl.envs.transforms import Compose, StepCounter, Transform, TransformedEnv
import importlib
import gymnasium as gym
def make_env(cfg, transform=None):
def make_env(cfg, num_parallel_envs=0) -> gym.Env | gym.vector.SyncVectorEnv:
"""
Note: The returned environment is wrapped in a torchrl.SerialEnv with cfg.rollout_batch_size underlying
environments. The env therefore returns batches.`
Note: When `num_parallel_envs > 0`, this function returns a `SyncVectorEnv` which takes batched action as input and
returns batched observation, reward, terminated, truncated of `num_parallel_envs` items.
"""
kwargs = {
"frame_skip": cfg.env.action_repeat,
"from_pixels": cfg.env.from_pixels,
"pixels_only": cfg.env.pixels_only,
"image_size": cfg.env.image_size,
"num_prev_obs": cfg.n_obs_steps - 1,
"obs_type": "pixels_agent_pos",
"render_mode": "rgb_array",
"max_episode_steps": cfg.env.episode_length,
"visualization_width": 384,
"visualization_height": 384,
}
if cfg.env.name == "simxarm":
from lerobot.common.envs.simxarm.env import SimxarmEnv
package_name = f"gym_{cfg.env.name}"
kwargs["task"] = cfg.env.task
clsfunc = SimxarmEnv
elif cfg.env.name == "pusht":
from lerobot.common.envs.pusht.env import PushtEnv
try:
importlib.import_module(package_name)
except ModuleNotFoundError as e:
print(
f"{package_name} is not installed. Please install it with `pip install 'lerobot[{cfg.env.name}]'`"
)
raise e
# assert kwargs["seed"] > 200, "Seed 0-200 are used for the demonstration dataset, so we don't want to seed the eval env with this range."
gym_handle = f"{package_name}/{cfg.env.task}"
clsfunc = PushtEnv
elif cfg.env.name == "aloha":
from lerobot.common.envs.aloha.env import AlohaEnv
kwargs["task"] = cfg.env.task
clsfunc = AlohaEnv
if num_parallel_envs == 0:
# non-batched version of the env that returns an observation of shape (c)
env = gym.make(gym_handle, disable_env_checker=True, **kwargs)
else:
raise ValueError(cfg.env.name)
def _make_env(seed):
nonlocal kwargs
kwargs["seed"] = seed
env = clsfunc(**kwargs)
# limit rollout to max_steps
env = TransformedEnv(env, StepCounter(max_steps=cfg.env.episode_length))
if transform is not None:
# useful to add normalization
if isinstance(transform, Compose):
for tf in transform:
env.append_transform(tf.clone())
elif isinstance(transform, Transform):
env.append_transform(transform.clone())
else:
raise NotImplementedError()
return env
return SerialEnv(
cfg.rollout_batch_size,
create_env_fn=_make_env,
create_env_kwargs=[
{"seed": env_seed} for env_seed in range(cfg.seed, cfg.seed + cfg.rollout_batch_size)
],
)
# batched version of the env that returns an observation of shape (b, c)
env = gym.vector.SyncVectorEnv(
[
lambda: gym.make(gym_handle, disable_env_checker=True, **kwargs)
for _ in range(num_parallel_envs)
]
)
return env

View File

@ -1,245 +0,0 @@
import importlib
import logging
from collections import deque
from typing import Optional
import cv2
import numpy as np
import torch
from tensordict import TensorDict
from torchrl.data.tensor_specs import (
BoundedTensorSpec,
CompositeSpec,
DiscreteTensorSpec,
UnboundedContinuousTensorSpec,
)
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
from lerobot.common.envs.abstract import AbstractEnv
from lerobot.common.utils import set_global_seed
_has_gym = importlib.util.find_spec("gymnasium") is not None
class PushtEnv(AbstractEnv):
name = "pusht"
available_tasks = ["pusht"]
_reset_warning_issued = False
def __init__(
self,
task="pusht",
frame_skip: int = 1,
from_pixels: bool = False,
pixels_only: bool = False,
image_size=None,
seed=1337,
device="cpu",
num_prev_obs=1,
num_prev_action=0,
):
super().__init__(
task=task,
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=image_size,
seed=seed,
device=device,
num_prev_obs=num_prev_obs,
num_prev_action=num_prev_action,
)
def _make_env(self):
if not _has_gym:
raise ImportError("Cannot import gymnasium.")
# TODO(rcadene) (PushTEnv is similar to PushTImageEnv, but without the image rendering, it's faster to iterate on)
# from lerobot.common.envs.pusht.pusht_env import PushTEnv
if not self.from_pixels:
raise NotImplementedError("Use PushTEnv, instead of PushTImageEnv")
from lerobot.common.envs.pusht.pusht_image_env import PushTImageEnv
self._env = PushTImageEnv(render_size=self.image_size)
def render(self, mode="rgb_array", width=96, height=96, with_marker=True):
"""
with_marker adds a cursor showing the targeted action for the controller.
"""
if width != height:
raise NotImplementedError()
tmp = self._env.render_size
if width != self._env.render_size:
self._env.render_cache = None
self._env.render_size = width
out = self._env.render(mode).copy()
if with_marker and self._env.latest_action is not None:
action = np.array(self._env.latest_action)
coord = (action / 512 * self._env.render_size).astype(np.int32)
marker_size = int(8 / 96 * self._env.render_size)
thickness = int(1 / 96 * self._env.render_size)
cv2.drawMarker(
out,
coord,
color=(255, 0, 0),
markerType=cv2.MARKER_CROSS,
markerSize=marker_size,
thickness=thickness,
)
self._env.render_size = tmp
return out
def _format_raw_obs(self, raw_obs):
if self.from_pixels:
image = torch.from_numpy(raw_obs["image"])
obs = {"image": image}
if not self.pixels_only:
obs["state"] = torch.from_numpy(raw_obs["agent_pos"]).type(torch.float32)
else:
# TODO:
obs = {"state": torch.from_numpy(raw_obs["observation"]).type(torch.float32)}
return obs
def _reset(self, tensordict: Optional[TensorDict] = None):
if tensordict is not None and not PushtEnv._reset_warning_issued:
logging.warning(f"{self.__class__.__name__}._reset ignores the provided tensordict.")
PushtEnv._reset_warning_issued = True
# Seed the environment and update the seed to be used for the next reset.
self._next_seed = self.set_seed(self._next_seed)
raw_obs = self._env.reset()
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue = deque(
[obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue = deque(
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": TensorDict(obs, batch_size=[]),
"done": torch.tensor([False], dtype=torch.bool),
},
batch_size=[],
)
return td
def _step(self, tensordict: TensorDict):
td = tensordict
action = td["action"].numpy()
assert action.ndim == 1
# TODO(rcadene): add info["is_success"] and info["success"] ?
raw_obs, reward, done, info = self._env.step(action)
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue.append(obs["image"])
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue.append(obs["state"])
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": TensorDict(obs, batch_size=[]),
"reward": torch.tensor([reward], dtype=torch.float32),
# success and done are true when coverage > self.success_threshold in env
"done": torch.tensor([done], dtype=torch.bool),
"success": torch.tensor([done], dtype=torch.bool),
},
batch_size=[],
)
return td
def _make_spec(self):
obs = {}
if self.from_pixels:
image_shape = (3, self.image_size, self.image_size)
if self.num_prev_obs > 0:
image_shape = (self.num_prev_obs + 1, *image_shape)
obs["image"] = BoundedTensorSpec(
low=0,
high=255,
shape=image_shape,
dtype=torch.uint8,
device=self.device,
)
if not self.pixels_only:
state_shape = self._env.observation_space["agent_pos"].shape
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = BoundedTensorSpec(
low=0,
high=512,
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
else:
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
state_shape = self._env.observation_space["observation"].shape
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = UnboundedContinuousTensorSpec(
# TODO:
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
self.observation_spec = CompositeSpec({"observation": obs})
self.action_spec = _gym_to_torchrl_spec_transform(
self._env.action_space,
device=self.device,
)
self.reward_spec = UnboundedContinuousTensorSpec(
shape=(1,),
dtype=torch.float32,
device=self.device,
)
self.done_spec = CompositeSpec(
{
"done": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
"success": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
}
)
def _set_seed(self, seed: Optional[int]):
# Set global seed.
set_global_seed(seed)
# Set PushTImageEnv seed as it relies on it's own internal _seed attribute.
self._env.seed(seed)

View File

@ -1,378 +0,0 @@
import collections
import cv2
import gymnasium as gym
import numpy as np
import pygame
import pymunk
import pymunk.pygame_util
import shapely.geometry as sg
import skimage.transform as st
from gymnasium import spaces
from pymunk.vec2d import Vec2d
from lerobot.common.envs.pusht.pymunk_override import DrawOptions
def pymunk_to_shapely(body, shapes):
geoms = []
for shape in shapes:
if isinstance(shape, pymunk.shapes.Poly):
verts = [body.local_to_world(v) for v in shape.get_vertices()]
verts += [verts[0]]
geoms.append(sg.Polygon(verts))
else:
raise RuntimeError(f"Unsupported shape type {type(shape)}")
geom = sg.MultiPolygon(geoms)
return geom
class PushTEnv(gym.Env):
metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 10}
reward_range = (0.0, 1.0)
def __init__(
self,
legacy=True, # compatibility with original
block_cog=None,
damping=None,
render_action=True,
render_size=96,
reset_to_state=None,
):
self._seed = None
self.seed()
self.window_size = ws = 512 # The size of the PyGame window
self.render_size = render_size
self.sim_hz = 100
# Local controller params.
self.k_p, self.k_v = 100, 20 # PD control.z
self.control_hz = self.metadata["video.frames_per_second"]
# legcay set_state for data compatibility
self.legacy = legacy
# agent_pos, block_pos, block_angle
self.observation_space = spaces.Box(
low=np.array([0, 0, 0, 0, 0], dtype=np.float64),
high=np.array([ws, ws, ws, ws, np.pi * 2], dtype=np.float64),
shape=(5,),
dtype=np.float64,
)
# positional goal for agent
self.action_space = spaces.Box(
low=np.array([0, 0], dtype=np.float64),
high=np.array([ws, ws], dtype=np.float64),
shape=(2,),
dtype=np.float64,
)
self.block_cog = block_cog
self.damping = damping
self.render_action = render_action
"""
If human-rendering is used, `self.window` will be a reference
to the window that we draw to. `self.clock` will be a clock that is used
to ensure that the environment is rendered at the correct framerate in
human-mode. They will remain `None` until human-mode is used for the
first time.
"""
self.window = None
self.clock = None
self.screen = None
self.space = None
self.teleop = None
self.render_buffer = None
self.latest_action = None
self.reset_to_state = reset_to_state
def reset(self):
seed = self._seed
self._setup()
if self.block_cog is not None:
self.block.center_of_gravity = self.block_cog
if self.damping is not None:
self.space.damping = self.damping
# use legacy RandomState for compatibility
state = self.reset_to_state
if state is None:
rs = np.random.RandomState(seed=seed)
state = np.array(
[
rs.randint(50, 450),
rs.randint(50, 450),
rs.randint(100, 400),
rs.randint(100, 400),
rs.randn() * 2 * np.pi - np.pi,
]
)
self._set_state(state)
observation = self._get_obs()
return observation
def step(self, action):
dt = 1.0 / self.sim_hz
self.n_contact_points = 0
n_steps = self.sim_hz // self.control_hz
if action is not None:
self.latest_action = action
for _ in range(n_steps):
# Step PD control.
# self.agent.velocity = self.k_p * (act - self.agent.position) # P control works too.
acceleration = self.k_p * (action - self.agent.position) + self.k_v * (
Vec2d(0, 0) - self.agent.velocity
)
self.agent.velocity += acceleration * dt
# Step physics.
self.space.step(dt)
# compute reward
goal_body = self._get_goal_pose_body(self.goal_pose)
goal_geom = pymunk_to_shapely(goal_body, self.block.shapes)
block_geom = pymunk_to_shapely(self.block, self.block.shapes)
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage = intersection_area / goal_area
reward = np.clip(coverage / self.success_threshold, 0, 1)
done = coverage > self.success_threshold
observation = self._get_obs()
info = self._get_info()
return observation, reward, done, info
def render(self, mode):
return self._render_frame(mode)
def teleop_agent(self):
TeleopAgent = collections.namedtuple("TeleopAgent", ["act"])
def act(obs):
act = None
mouse_position = pymunk.pygame_util.from_pygame(Vec2d(*pygame.mouse.get_pos()), self.screen)
if self.teleop or (mouse_position - self.agent.position).length < 30:
self.teleop = True
act = mouse_position
return act
return TeleopAgent(act)
def _get_obs(self):
obs = np.array(
tuple(self.agent.position) + tuple(self.block.position) + (self.block.angle % (2 * np.pi),)
)
return obs
def _get_goal_pose_body(self, pose):
mass = 1
inertia = pymunk.moment_for_box(mass, (50, 100))
body = pymunk.Body(mass, inertia)
# preserving the legacy assignment order for compatibility
# the order here doesn't matter somehow, maybe because CoM is aligned with body origin
body.position = pose[:2].tolist()
body.angle = pose[2]
return body
def _get_info(self):
n_steps = self.sim_hz // self.control_hz
n_contact_points_per_step = int(np.ceil(self.n_contact_points / n_steps))
info = {
"pos_agent": np.array(self.agent.position),
"vel_agent": np.array(self.agent.velocity),
"block_pose": np.array(list(self.block.position) + [self.block.angle]),
"goal_pose": self.goal_pose,
"n_contacts": n_contact_points_per_step,
}
return info
def _render_frame(self, mode):
if self.window is None and mode == "human":
pygame.init()
pygame.display.init()
self.window = pygame.display.set_mode((self.window_size, self.window_size))
if self.clock is None and mode == "human":
self.clock = pygame.time.Clock()
canvas = pygame.Surface((self.window_size, self.window_size))
canvas.fill((255, 255, 255))
self.screen = canvas
draw_options = DrawOptions(canvas)
# Draw goal pose.
goal_body = self._get_goal_pose_body(self.goal_pose)
for shape in self.block.shapes:
goal_points = [
pymunk.pygame_util.to_pygame(goal_body.local_to_world(v), draw_options.surface)
for v in shape.get_vertices()
]
goal_points += [goal_points[0]]
pygame.draw.polygon(canvas, self.goal_color, goal_points)
# Draw agent and block.
self.space.debug_draw(draw_options)
if mode == "human":
# The following line copies our drawings from `canvas` to the visible window
self.window.blit(canvas, canvas.get_rect())
pygame.event.pump()
pygame.display.update()
# the clock is already ticked during in step for "human"
img = np.transpose(np.array(pygame.surfarray.pixels3d(canvas)), axes=(1, 0, 2))
img = cv2.resize(img, (self.render_size, self.render_size))
if self.render_action and self.latest_action is not None:
action = np.array(self.latest_action)
coord = (action / 512 * 96).astype(np.int32)
marker_size = int(8 / 96 * self.render_size)
thickness = int(1 / 96 * self.render_size)
cv2.drawMarker(
img,
coord,
color=(255, 0, 0),
markerType=cv2.MARKER_CROSS,
markerSize=marker_size,
thickness=thickness,
)
return img
def close(self):
if self.window is not None:
pygame.display.quit()
pygame.quit()
def seed(self, seed=None):
if seed is None:
seed = np.random.randint(0, 25536)
self._seed = seed
self.np_random = np.random.default_rng(seed)
def _handle_collision(self, arbiter, space, data):
self.n_contact_points += len(arbiter.contact_point_set.points)
def _set_state(self, state):
if isinstance(state, np.ndarray):
state = state.tolist()
pos_agent = state[:2]
pos_block = state[2:4]
rot_block = state[4]
self.agent.position = pos_agent
# setting angle rotates with respect to center of mass
# therefore will modify the geometric position
# if not the same as CoM
# therefore should be modified first.
if self.legacy:
# for compatibility with legacy data
self.block.position = pos_block
self.block.angle = rot_block
else:
self.block.angle = rot_block
self.block.position = pos_block
# Run physics to take effect
self.space.step(1.0 / self.sim_hz)
def _set_state_local(self, state_local):
agent_pos_local = state_local[:2]
block_pose_local = state_local[2:]
tf_img_obj = st.AffineTransform(translation=self.goal_pose[:2], rotation=self.goal_pose[2])
tf_obj_new = st.AffineTransform(translation=block_pose_local[:2], rotation=block_pose_local[2])
tf_img_new = st.AffineTransform(matrix=tf_img_obj.params @ tf_obj_new.params)
agent_pos_new = tf_img_new(agent_pos_local)
new_state = np.array(list(agent_pos_new[0]) + list(tf_img_new.translation) + [tf_img_new.rotation])
self._set_state(new_state)
return new_state
def _setup(self):
self.space = pymunk.Space()
self.space.gravity = 0, 0
self.space.damping = 0
self.teleop = False
self.render_buffer = []
# Add walls.
walls = [
self._add_segment((5, 506), (5, 5), 2),
self._add_segment((5, 5), (506, 5), 2),
self._add_segment((506, 5), (506, 506), 2),
self._add_segment((5, 506), (506, 506), 2),
]
self.space.add(*walls)
# Add agent, block, and goal zone.
self.agent = self.add_circle((256, 400), 15)
self.block = self.add_tee((256, 300), 0)
self.goal_color = pygame.Color("LightGreen")
self.goal_pose = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
# Add collision handling
self.collision_handeler = self.space.add_collision_handler(0, 0)
self.collision_handeler.post_solve = self._handle_collision
self.n_contact_points = 0
self.max_score = 50 * 100
self.success_threshold = 0.95 # 95% coverage.
def _add_segment(self, a, b, radius):
shape = pymunk.Segment(self.space.static_body, a, b, radius)
shape.color = pygame.Color("LightGray") # https://htmlcolorcodes.com/color-names
return shape
def add_circle(self, position, radius):
body = pymunk.Body(body_type=pymunk.Body.KINEMATIC)
body.position = position
body.friction = 1
shape = pymunk.Circle(body, radius)
shape.color = pygame.Color("RoyalBlue")
self.space.add(body, shape)
return body
def add_box(self, position, height, width):
mass = 1
inertia = pymunk.moment_for_box(mass, (height, width))
body = pymunk.Body(mass, inertia)
body.position = position
shape = pymunk.Poly.create_box(body, (height, width))
shape.color = pygame.Color("LightSlateGray")
self.space.add(body, shape)
return body
def add_tee(self, position, angle, scale=30, color="LightSlateGray", mask=None):
if mask is None:
mask = pymunk.ShapeFilter.ALL_MASKS()
mass = 1
length = 4
vertices1 = [
(-length * scale / 2, scale),
(length * scale / 2, scale),
(length * scale / 2, 0),
(-length * scale / 2, 0),
]
inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
vertices2 = [
(-scale / 2, scale),
(-scale / 2, length * scale),
(scale / 2, length * scale),
(scale / 2, scale),
]
inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
body = pymunk.Body(mass, inertia1 + inertia2)
shape1 = pymunk.Poly(body, vertices1)
shape2 = pymunk.Poly(body, vertices2)
shape1.color = pygame.Color(color)
shape2.color = pygame.Color(color)
shape1.filter = pymunk.ShapeFilter(mask=mask)
shape2.filter = pymunk.ShapeFilter(mask=mask)
body.center_of_gravity = (shape1.center_of_gravity + shape2.center_of_gravity) / 2
body.position = position
body.angle = angle
body.friction = 1
self.space.add(body, shape1, shape2)
return body

View File

@ -1,41 +0,0 @@
import numpy as np
from gymnasium import spaces
from lerobot.common.envs.pusht.pusht_env import PushTEnv
class PushTImageEnv(PushTEnv):
metadata = {"render.modes": ["rgb_array"], "video.frames_per_second": 10}
# Note: legacy defaults to True for compatibility with original
def __init__(self, legacy=True, block_cog=None, damping=None, render_size=96):
super().__init__(
legacy=legacy, block_cog=block_cog, damping=damping, render_size=render_size, render_action=False
)
ws = self.window_size
self.observation_space = spaces.Dict(
{
"image": spaces.Box(low=0, high=1, shape=(3, render_size, render_size), dtype=np.float32),
"agent_pos": spaces.Box(low=0, high=ws, shape=(2,), dtype=np.float32),
}
)
self.render_cache = None
def _get_obs(self):
img = super()._render_frame(mode="rgb_array")
agent_pos = np.array(self.agent.position)
img_obs = np.moveaxis(img, -1, 0)
obs = {"image": img_obs, "agent_pos": agent_pos}
self.render_cache = img
return obs
def render(self, mode):
assert mode == "rgb_array"
if self.render_cache is None:
self._get_obs()
return self.render_cache

View File

@ -1,244 +0,0 @@
# ----------------------------------------------------------------------------
# pymunk
# Copyright (c) 2007-2016 Victor Blomqvist
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ----------------------------------------------------------------------------
"""This submodule contains helper functions to help with quick prototyping
using pymunk together with pygame.
Intended to help with debugging and prototyping, not for actual production use
in a full application. The methods contained in this module is opinionated
about your coordinate system and not in any way optimized.
"""
__docformat__ = "reStructuredText"
__all__ = [
"DrawOptions",
"get_mouse_pos",
"to_pygame",
"from_pygame",
# "lighten",
"positive_y_is_up",
]
from typing import Sequence, Tuple
import numpy as np
import pygame
import pymunk
from pymunk.space_debug_draw_options import SpaceDebugColor
from pymunk.vec2d import Vec2d
positive_y_is_up: bool = False
"""Make increasing values of y point upwards.
When True::
y
^
| . (3, 3)
|
| . (2, 2)
|
+------ > x
When False::
+------ > x
|
| . (2, 2)
|
| . (3, 3)
v
y
"""
class DrawOptions(pymunk.SpaceDebugDrawOptions):
def __init__(self, surface: pygame.Surface) -> None:
"""Draw a pymunk.Space on a pygame.Surface object.
Typical usage::
>>> import pymunk
>>> surface = pygame.Surface((10,10))
>>> space = pymunk.Space()
>>> options = pymunk.pygame_util.DrawOptions(surface)
>>> space.debug_draw(options)
You can control the color of a shape by setting shape.color to the color
you want it drawn in::
>>> c = pymunk.Circle(None, 10)
>>> c.color = pygame.Color("pink")
See pygame_util.demo.py for a full example
Since pygame uses a coordinate system where y points down (in contrast
to many other cases), you either have to make the physics simulation
with Pymunk also behave in that way, or flip everything when you draw.
The easiest is probably to just make the simulation behave the same
way as Pygame does. In that way all coordinates used are in the same
orientation and easy to reason about::
>>> space = pymunk.Space()
>>> space.gravity = (0, -1000)
>>> body = pymunk.Body()
>>> body.position = (0, 0) # will be positioned in the top left corner
>>> space.debug_draw(options)
To flip the drawing its possible to set the module property
:py:data:`positive_y_is_up` to True. Then the pygame drawing will flip
the simulation upside down before drawing::
>>> positive_y_is_up = True
>>> body = pymunk.Body()
>>> body.position = (0, 0)
>>> # Body will be position in bottom left corner
:Parameters:
surface : pygame.Surface
Surface that the objects will be drawn on
"""
self.surface = surface
super().__init__()
def draw_circle(
self,
pos: Vec2d,
angle: float,
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
p = to_pygame(pos, self.surface)
pygame.draw.circle(self.surface, fill_color.as_int(), p, round(radius), 0)
pygame.draw.circle(self.surface, light_color(fill_color).as_int(), p, round(radius - 4), 0)
# circle_edge = pos + Vec2d(radius, 0).rotated(angle)
# p2 = to_pygame(circle_edge, self.surface)
# line_r = 2 if radius > 20 else 1
# pygame.draw.lines(self.surface, outline_color.as_int(), False, [p, p2], line_r)
def draw_segment(self, a: Vec2d, b: Vec2d, color: SpaceDebugColor) -> None:
p1 = to_pygame(a, self.surface)
p2 = to_pygame(b, self.surface)
pygame.draw.aalines(self.surface, color.as_int(), False, [p1, p2])
def draw_fat_segment(
self,
a: Tuple[float, float],
b: Tuple[float, float],
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
p1 = to_pygame(a, self.surface)
p2 = to_pygame(b, self.surface)
r = round(max(1, radius * 2))
pygame.draw.lines(self.surface, fill_color.as_int(), False, [p1, p2], r)
if r > 2:
orthog = [abs(p2[1] - p1[1]), abs(p2[0] - p1[0])]
if orthog[0] == 0 and orthog[1] == 0:
return
scale = radius / (orthog[0] * orthog[0] + orthog[1] * orthog[1]) ** 0.5
orthog[0] = round(orthog[0] * scale)
orthog[1] = round(orthog[1] * scale)
points = [
(p1[0] - orthog[0], p1[1] - orthog[1]),
(p1[0] + orthog[0], p1[1] + orthog[1]),
(p2[0] + orthog[0], p2[1] + orthog[1]),
(p2[0] - orthog[0], p2[1] - orthog[1]),
]
pygame.draw.polygon(self.surface, fill_color.as_int(), points)
pygame.draw.circle(
self.surface,
fill_color.as_int(),
(round(p1[0]), round(p1[1])),
round(radius),
)
pygame.draw.circle(
self.surface,
fill_color.as_int(),
(round(p2[0]), round(p2[1])),
round(radius),
)
def draw_polygon(
self,
verts: Sequence[Tuple[float, float]],
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
ps = [to_pygame(v, self.surface) for v in verts]
ps += [ps[0]]
radius = 2
pygame.draw.polygon(self.surface, light_color(fill_color).as_int(), ps)
if radius > 0:
for i in range(len(verts)):
a = verts[i]
b = verts[(i + 1) % len(verts)]
self.draw_fat_segment(a, b, radius, fill_color, fill_color)
def draw_dot(self, size: float, pos: Tuple[float, float], color: SpaceDebugColor) -> None:
p = to_pygame(pos, self.surface)
pygame.draw.circle(self.surface, color.as_int(), p, round(size), 0)
def get_mouse_pos(surface: pygame.Surface) -> Tuple[int, int]:
"""Get position of the mouse pointer in pymunk coordinates."""
p = pygame.mouse.get_pos()
return from_pygame(p, surface)
def to_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
"""Convenience method to convert pymunk coordinates to pygame surface
local coordinates.
Note that in case positive_y_is_up is False, this function won't actually do
anything except converting the point to integers.
"""
if positive_y_is_up:
return round(p[0]), surface.get_height() - round(p[1])
else:
return round(p[0]), round(p[1])
def from_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
"""Convenience method to convert pygame surface local coordinates to
pymunk coordinates
"""
return to_pygame(p, surface)
def light_color(color: SpaceDebugColor):
color = np.minimum(1.2 * np.float32([color.r, color.g, color.b, color.a]), np.float32([255]))
color = SpaceDebugColor(r=color[0], g=color[1], b=color[2], a=color[3])
return color

View File

@ -1,237 +0,0 @@
import importlib
import logging
from collections import deque
from typing import Optional
import einops
import numpy as np
import torch
from tensordict import TensorDict
from torchrl.data.tensor_specs import (
BoundedTensorSpec,
CompositeSpec,
DiscreteTensorSpec,
UnboundedContinuousTensorSpec,
)
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
from lerobot.common.envs.abstract import AbstractEnv
from lerobot.common.utils import set_global_seed
MAX_NUM_ACTIONS = 4
_has_gym = importlib.util.find_spec("gymnasium") is not None
class SimxarmEnv(AbstractEnv):
name = "simxarm"
available_tasks = ["lift"]
def __init__(
self,
task,
frame_skip: int = 1,
from_pixels: bool = False,
pixels_only: bool = False,
image_size=None,
seed=1337,
device="cpu",
num_prev_obs=0,
num_prev_action=0,
):
super().__init__(
task=task,
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=image_size,
seed=seed,
device=device,
num_prev_obs=num_prev_obs,
num_prev_action=num_prev_action,
)
def _make_env(self):
if not _has_gym:
raise ImportError("Cannot import gymnasium.")
import gymnasium
from lerobot.common.envs.simxarm.simxarm import TASKS
if self.task not in TASKS:
raise ValueError(f"Unknown task {self.task}. Must be one of {list(TASKS.keys())}")
self._env = TASKS[self.task]["env"]()
num_actions = len(TASKS[self.task]["action_space"])
self._action_space = gymnasium.spaces.Box(low=-1.0, high=1.0, shape=(num_actions,))
self._action_padding = np.zeros((MAX_NUM_ACTIONS - num_actions), dtype=np.float32)
if "w" not in TASKS[self.task]["action_space"]:
self._action_padding[-1] = 1.0
def render(self, mode="rgb_array", width=384, height=384):
return self._env.render(mode, width=width, height=height)
def _format_raw_obs(self, raw_obs):
if self.from_pixels:
image = self.render(mode="rgb_array", width=self.image_size, height=self.image_size)
image = image.transpose(2, 0, 1) # (H, W, C) -> (C, H, W)
image = torch.tensor(image.copy(), dtype=torch.uint8)
obs = {"image": image}
if not self.pixels_only:
obs["state"] = torch.tensor(self._env.robot_state, dtype=torch.float32)
else:
obs = {"state": torch.tensor(raw_obs["observation"], dtype=torch.float32)}
# obs = TensorDict(obs, batch_size=[])
return obs
def _reset(self, tensordict: Optional[TensorDict] = None):
td = tensordict
if td is None or td.is_empty():
raw_obs = self._env.reset()
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue = deque(
[obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue = deque(
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": TensorDict(obs, batch_size=[]),
"done": torch.tensor([False], dtype=torch.bool),
},
batch_size=[],
)
else:
raise NotImplementedError()
return td
def _step(self, tensordict: TensorDict):
td = tensordict
action = td["action"].numpy()
# step expects shape=(4,) so we pad if necessary
action = np.concatenate([action, self._action_padding])
# TODO(rcadene): add info["is_success"] and info["success"] ?
sum_reward = 0
if action.ndim == 1:
action = einops.repeat(action, "c -> t c", t=self.frame_skip)
else:
if self.frame_skip > 1:
raise NotImplementedError()
num_action_steps = action.shape[0]
for i in range(num_action_steps):
raw_obs, reward, done, info = self._env.step(action[i])
sum_reward += reward
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue.append(obs["image"])
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue.append(obs["state"])
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": self._format_raw_obs(raw_obs),
"reward": torch.tensor([sum_reward], dtype=torch.float32),
"done": torch.tensor([done], dtype=torch.bool),
"success": torch.tensor([info["success"]], dtype=torch.bool),
},
batch_size=[],
)
return td
def _make_spec(self):
obs = {}
if self.from_pixels:
image_shape = (3, self.image_size, self.image_size)
if self.num_prev_obs > 0:
image_shape = (self.num_prev_obs + 1, *image_shape)
obs["image"] = BoundedTensorSpec(
low=0,
high=255,
shape=image_shape,
dtype=torch.uint8,
device=self.device,
)
if not self.pixels_only:
state_shape = (len(self._env.robot_state),)
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = UnboundedContinuousTensorSpec(
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
else:
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
state_shape = self._env.observation_space["observation"].shape
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = UnboundedContinuousTensorSpec(
# TODO:
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
self.observation_spec = CompositeSpec({"observation": obs})
self.action_spec = _gym_to_torchrl_spec_transform(
self._action_space,
device=self.device,
)
self.reward_spec = UnboundedContinuousTensorSpec(
shape=(1,),
dtype=torch.float32,
device=self.device,
)
self.done_spec = CompositeSpec(
{
"done": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
"success": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
}
)
def _set_seed(self, seed: Optional[int]):
set_global_seed(seed)
self._seed = seed
# TODO(aliberts): change self._reset so that it takes in a seed value
logging.warning("simxarm env is not properly seeded")

View File

@ -1,166 +0,0 @@
from collections import OrderedDict, deque
import gymnasium as gym
import numpy as np
from gymnasium.wrappers import TimeLimit
from lerobot.common.envs.simxarm.simxarm.tasks.base import Base as Base
from lerobot.common.envs.simxarm.simxarm.tasks.lift import Lift
from lerobot.common.envs.simxarm.simxarm.tasks.peg_in_box import PegInBox
from lerobot.common.envs.simxarm.simxarm.tasks.push import Push
from lerobot.common.envs.simxarm.simxarm.tasks.reach import Reach
TASKS = OrderedDict(
(
(
"reach",
{
"env": Reach,
"action_space": "xyz",
"episode_length": 50,
"description": "Reach a target location with the end effector",
},
),
(
"push",
{
"env": Push,
"action_space": "xyz",
"episode_length": 50,
"description": "Push a cube to a target location",
},
),
(
"peg_in_box",
{
"env": PegInBox,
"action_space": "xyz",
"episode_length": 50,
"description": "Insert a peg into a box",
},
),
(
"lift",
{
"env": Lift,
"action_space": "xyzw",
"episode_length": 50,
"description": "Lift a cube above a height threshold",
},
),
)
)
class SimXarmWrapper(gym.Wrapper):
"""
A wrapper for the SimXarm environments. This wrapper is used to
convert the action and observation spaces to the correct format.
"""
def __init__(self, env, task, obs_mode, image_size, action_repeat, frame_stack=1, channel_last=False):
super().__init__(env)
self._env = env
self.obs_mode = obs_mode
self.image_size = image_size
self.action_repeat = action_repeat
self.frame_stack = frame_stack
self._frames = deque([], maxlen=frame_stack)
self.channel_last = channel_last
self._max_episode_steps = task["episode_length"] // action_repeat
image_shape = (
(image_size, image_size, 3 * frame_stack)
if channel_last
else (3 * frame_stack, image_size, image_size)
)
if obs_mode == "state":
self.observation_space = env.observation_space["observation"]
elif obs_mode == "rgb":
self.observation_space = gym.spaces.Box(low=0, high=255, shape=image_shape, dtype=np.uint8)
elif obs_mode == "all":
self.observation_space = gym.spaces.Dict(
state=gym.spaces.Box(low=-np.inf, high=np.inf, shape=(4,), dtype=np.float32),
rgb=gym.spaces.Box(low=0, high=255, shape=image_shape, dtype=np.uint8),
)
else:
raise ValueError(f"Unknown obs_mode {obs_mode}. Must be one of [rgb, all, state]")
self.action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(len(task["action_space"]),))
self.action_padding = np.zeros(4 - len(task["action_space"]), dtype=np.float32)
if "w" not in task["action_space"]:
self.action_padding[-1] = 1.0
def _render_obs(self):
obs = self.render(mode="rgb_array", width=self.image_size, height=self.image_size)
if not self.channel_last:
obs = obs.transpose(2, 0, 1)
return obs.copy()
def _update_frames(self, reset=False):
pixels = self._render_obs()
self._frames.append(pixels)
if reset:
for _ in range(1, self.frame_stack):
self._frames.append(pixels)
assert len(self._frames) == self.frame_stack
def transform_obs(self, obs, reset=False):
if self.obs_mode == "state":
return obs["observation"]
elif self.obs_mode == "rgb":
self._update_frames(reset=reset)
rgb_obs = np.concatenate(list(self._frames), axis=-1 if self.channel_last else 0)
return rgb_obs
elif self.obs_mode == "all":
self._update_frames(reset=reset)
rgb_obs = np.concatenate(list(self._frames), axis=-1 if self.channel_last else 0)
return OrderedDict((("rgb", rgb_obs), ("state", self.robot_state)))
else:
raise ValueError(f"Unknown obs_mode {self.obs_mode}. Must be one of [rgb, all, state]")
def reset(self):
return self.transform_obs(self._env.reset(), reset=True)
def step(self, action):
action = np.concatenate([action, self.action_padding])
reward = 0.0
for _ in range(self.action_repeat):
obs, r, done, info = self._env.step(action)
reward += r
return self.transform_obs(obs), reward, done, info
def render(self, mode="rgb_array", width=384, height=384, **kwargs):
return self._env.render(mode, width=width, height=height)
@property
def state(self):
return self._env.robot_state
def make(task, obs_mode="state", image_size=84, action_repeat=1, frame_stack=1, channel_last=False, seed=0):
"""
Create a new environment.
Args:
task (str): The task to create an environment for. Must be one of:
- 'reach'
- 'push'
- 'peg-in-box'
- 'lift'
obs_mode (str): The observation mode to use. Must be one of:
- 'state': Only state observations
- 'rgb': RGB images
- 'all': RGB images and state observations
image_size (int): The size of the image observations
action_repeat (int): The number of times to repeat the action
seed (int): The random seed to use
Returns:
gym.Env: The environment
"""
if task not in TASKS:
raise ValueError(f"Unknown task {task}. Must be one of {list(TASKS.keys())}")
env = TASKS[task]["env"]()
env = TimeLimit(env, TASKS[task]["episode_length"])
env = SimXarmWrapper(env, TASKS[task], obs_mode, image_size, action_repeat, frame_stack, channel_last)
env.seed(seed)
return env

View File

@ -1,53 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.002">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="20.0 20.0 1" type="plane" condim="3" material="floor_mat"></geom>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 1 1"></geom>
</body>
<body name="object" pos="1.405 0.3 0.58625">
<joint name="object_joint0" type="free" limited="false"></joint>
<geom size="0.035 0.035 0.035" type="box" name="object0" material="block_mat" density="50000" condim="4" friction="1 1 1" solimp="1 1 1" solref="0.02 1"></geom>
<site name="object_site" pos="0 0 0" size="0.035 0.035 0.035" rgba="1 0 0 0" type="box"></site>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:21fb81ae7fba19e3c6b2d2ca60c8051712ba273357287eb5a397d92d61c7a736
size 1211434

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:be68ce180d11630a667a5f37f4dffcc3feebe4217d4bb3912c813b6d9ca3ec66
size 3284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:2c6448552bf6b1c4f17334d686a5320ce051bcdfe31431edf69303d8a570d1de
size 3284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:748b9e197e6521914f18d1f6383a36f211136b3f33f2ad2a8c11b9f921c2cf86
size 6284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a44756eb72f9c214cb37e61dc209cd7073fdff3e4271a7423476ef6fd090d2d4
size 242684

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e8e48692ad26837bb3d6a97582c89784d09948fc09bfe4e5a59017859ff04dac
size 366284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:501665812b08d67e764390db781e839adc6896a9540301d60adf606f57648921
size 22284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:34b541122df84d2ef5fcb91b715eb19659dc15ad8d44a191dde481f780265636
size 184184

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:61e641cd47c169ecef779683332e00e4914db729bf02dfb61bfbe69351827455
size 225584

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:9e2798e7946dd70046c95455d5ba96392d0b54a6069caba91dc4ca66e1379b42
size 237084

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:c757fee95f873191a0633c355c07a360032960771cabbd7593a6cdb0f1ffb089
size 243684

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:715ad5787c5dab57589937fd47289882707b5e1eb997e340d567785b02f4ec90
size 229084

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:85b320aa420497827223d16d492bba8de091173374e361396fc7a5dad7bdb0cb
size 399384

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:97115d848fbf802cb770cd9be639ae2af993103b9d9bbb0c50c943c738a36f18
size 231684

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:f6fcbc18258090eb56c21cfb17baa5ae43abc98b1958cd366f3a73b9898fc7f0
size 2106184

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:c5dee87c7f37baf554b8456ebfe0b3e8ed0b22b8938bd1add6505c2ad6d32c7d
size 242684

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:b41dd2c2c550281bf78d7cc6fa117b14786700e5c453560a0cb5fd6dfa0ffb3e
size 366284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:75ca1107d0a42a0f03802a9a49cab48419b31851ee8935f8f1ca06be1c1c91e8
size 22284

View File

@ -1,74 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.001">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
</body>
<body name="box0" pos="1.605 0.25 0.55">
<joint name="box_joint0" type="free" limited="false"></joint>
<site name="box_site" pos="0 0.075 -0.01" size="0.02" rgba="0 0 0 0" type="sphere"></site>
<geom name="box_side0" pos="0 0 0" size="0.065 0.002 0.04" type= "box" rgba="0.8 0.1 0.1 1" mass ="1" condim="4" />
<geom name="box_side1" pos="0 0.149 0" size="0.065 0.002 0.04" type="box" rgba="0.9 0.2 0.2 1" mass ="2" condim="4" />
<geom name="box_side2" pos="0.064 0.074 0" size="0.002 0.075 0.04" type="box" rgba="0.8 0.1 0.1 1" mass ="2" condim="4" />
<geom name="box_side3" pos="-0.064 0.074 0" size="0.002 0.075 0.04" type="box" rgba="0.9 0.2 0.2 1" mass ="2" condim="4" />
<geom name="box_side4" pos="-0 0.074 -0.038" size="0.065 0.075 0.002" type="box" rgba="0.5 0 0 1" mass ="2" condim="4"/>
</body>
<body name="object0" pos="1.4 0.25 0.65">
<joint name="object_joint0" type="free" limited="false"></joint>
<geom name="object_target0" type="cylinder" pos="0 0 -0.05" size="0.03 0.035" rgba="0.6 0.8 0.5 1" mass ="0.1" condim="3" />
<site name="object_site" pos="0 0 -0.05" size="0.0325 0.0375" rgba="0 0 0 0" type="cylinder"></site>
<body name="B0" pos="0 0 0" euler="0 0 0 ">
<joint name="B0:joint" type="slide" limited="true" axis="0 0 1" damping="0.05" range="0.0001 0.0001001" solimpfriction="0.98 0.98 0.95" frictionloss="1"></joint>
<geom type="capsule" size="0.002 0.03" rgba="0 0 0 1" mass="0.001" condim="4"/>
<body name="B1" pos="0 0 0.04" euler="0 3.14 0 ">
<joint name="B1:joint1" type="hinge" axis="1 0 0" range="-0.1 0.1" frictionloss="1"></joint>
<joint name="B1:joint2" type="hinge" axis="0 1 0" range="-0.1 0.1" frictionloss="1"></joint>
<joint name="B1:joint3" type="hinge" axis="0 0 1" range="-0.1 0.1" frictionloss="1"></joint>
<geom type="capsule" size="0.002 0.004" rgba="1 0 0 0" mass="0.001" condim="4"/>
</body>
</body>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<weld body1="right_hand" body2="B1" solimp="0.99 0.99 0.99" solref="0.02 1"></weld>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@ -1,54 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.002">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
<site name="target0" pos="1.565 0.3 0.545" size="0.0475 0.001" rgba="1 0 0 1" type="cylinder"></site>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
</body>
<body name="object" pos="1.655 0.3 0.68">
<joint name="object_joint0" type="free" limited="false"></joint>
<geom size="0.024 0.024 0.024" type="box" name="object" material="block_mat" density="50000" condim="4" friction="1 1 1" solimp="1 1 1" solref="0.02 1"></geom>
<site name="object_site" pos="0 0 0" size="0.024 0.024 0.024" rgba="0 0 0 0" type="box"></site>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@ -1,48 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.002">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
<site name="target0" pos="1.605 0.3 0.58" size="0.0475 0.001" rgba="1 0 0 1" type="cylinder"></site>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@ -1,51 +0,0 @@
<mujoco>
<asset>
<texture type="skybox" builtin="gradient" rgb1="0.0 0.0 0.0" rgb2="0.0 0.0 0.0" width="32" height="32"></texture>
<material name="floor_mat" specular="0" shininess="0.0" reflectance="0" rgba="0.043 0.055 0.051 1"></material>
<material name="table_mat" specular="0.2" shininess="0.2" reflectance="0" rgba="1 1 1 1"></material>
<material name="pedestal_mat" specular="0.35" shininess="0.5" reflectance="0" rgba="0.705 0.585 0.405 1"></material>
<material name="block_mat" specular="0.5" shininess="0.9" reflectance="0.05" rgba="0.373 0.678 0.627 1"></material>
<material name="robot0:geomMat" shininess="0.03" specular="0.4"></material>
<material name="robot0:gripper_finger_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:gripper_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="background:gripper_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:arm_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:head_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:torso_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:base_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<mesh name="link_base" file="link_base.stl" />
<mesh name="link1" file="link1.stl" />
<mesh name="link2" file="link2.stl" />
<mesh name="link3" file="link3.stl" />
<mesh name="link4" file="link4.stl" />
<mesh name="link5" file="link5.stl" />
<mesh name="link6" file="link6.stl" />
<mesh name="link7" file="link7.stl" />
<mesh name="base_link" file="base_link.stl" />
<mesh name="left_outer_knuckle" file="left_outer_knuckle.stl" />
<mesh name="left_finger" file="left_finger.stl" />
<mesh name="left_inner_knuckle" file="left_inner_knuckle.stl" />
<mesh name="right_outer_knuckle" file="right_outer_knuckle.stl" />
<mesh name="right_finger" file="right_finger.stl" />
<mesh name="right_inner_knuckle" file="right_inner_knuckle.stl" />
</asset>
<equality>
<weld body1="robot0:mocap2" body2="link7" solimp="0.9 0.95 0.001" solref="0.02 1"></weld>
</equality>
<default>
<joint armature="1" damping="0.1" limited="true"/>
<default class="robot0:blue">
<geom rgba="0.086 0.506 0.767 1.0"></geom>
</default>
<default class="robot0:grey">
<geom rgba="0.356 0.361 0.376 1.0"></geom>
</default>
</default>
</mujoco>

View File

@ -1,88 +0,0 @@
<mujoco model="xarm7">
<body mocap="true" name="robot0:mocap2" pos="0 0 0">
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0 0.5 0 0" size="0.005 0.005 0.005" type="box"></geom>
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0.5 0 0 0" size="1 0.005 0.005" type="box"></geom>
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0 0 0.5 0" size="0.005 1 0.001" type="box"></geom>
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0.5 0.5 0 0" size="0.005 0.005 1" type="box"></geom>
</body>
<body name="link0" pos="1.09 0.28 0.655">
<geom name="bb" type="mesh" mesh="link_base" material="robot0:base_mat" rgba="1 1 1 1"/>
<body name="link1" pos="0 0 0.267">
<inertial pos="-0.0042142 0.02821 -0.0087788" quat="0.917781 -0.277115 0.0606681 0.277858" mass="0.42603" diaginertia="0.00144551 0.00137757 0.000823511" />
<joint name="joint1" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="10" frictionloss="1" />
<geom name="j1" type="mesh" mesh="link1" material="robot0:arm_mat" rgba="1 1 1 1"/>
<body name="link2" pos="0 0 0" quat="0.707105 -0.707108 0 0">
<inertial pos="-3.3178e-05 -0.12849 0.026337" quat="0.447793 0.894132 -0.00224061 0.00218314" mass="0.56095" diaginertia="0.00319151 0.00311598 0.000980804" />
<joint name="joint2" pos="0 0 0" axis="0 0 1" limited="true" range="-2.059 2.0944" damping="10" frictionloss="1" />
<geom name="j2" type="mesh" mesh="link2" material="robot0:head_mat" rgba="1 1 1 1"/>
<body name="link3" pos="0 -0.293 0" quat="0.707105 0.707108 0 0">
<inertial pos="0.04223 -0.023258 -0.0096674" quat="0.883205 0.339803 0.323238 0.000542237" mass="0.44463" diaginertia="0.00133227 0.00119126 0.000780475" />
<joint name="joint3" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="5" frictionloss="1" />
<geom name="j3" type="mesh" mesh="link3" material="robot0:gripper_mat" rgba="1 1 1 1"/>
<body name="link4" pos="0.0525 0 0" quat="0.707105 0.707108 0 0">
<inertial pos="0.067148 -0.10732 0.024479" quat="0.0654142 0.483317 -0.738663 0.465298" mass="0.52387" diaginertia="0.00288984 0.00282705 0.000894409" />
<joint name="joint4" pos="0 0 0" axis="0 0 1" limited="true" range="-0.19198 3.927" damping="5" frictionloss="1" />
<geom name="j4" type="mesh" mesh="link4" material="robot0:arm_mat" rgba="1 1 1 1"/>
<body name="link5" pos="0.0775 -0.3425 0" quat="0.707105 0.707108 0 0">
<inertial pos="-0.00023397 0.036705 -0.080064" quat="0.981064 -0.19003 0.00637998 0.0369004" mass="0.18554" diaginertia="0.00099553 0.000988613 0.000247126" />
<joint name="joint5" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="5" frictionloss="1" />
<geom name="j5" type="mesh" material="robot0:gripper_mat" rgba="1 1 1 1" mesh="link5" />
<body name="link6" pos="0 0 0" quat="0.707105 0.707108 0 0">
<inertial pos="0.058911 0.028469 0.0068428" quat="-0.188705 0.793535 0.166088 0.554173" mass="0.31344" diaginertia="0.000827892 0.000768871 0.000386708" />
<joint name="joint6" pos="0 0 0" axis="0 0 1" limited="true" range="-1.69297 3.14159" damping="2" frictionloss="1" />
<geom name="j6" type="mesh" material="robot0:gripper_mat" rgba="1 1 1 1" mesh="link6" />
<body name="link7" pos="0.076 0.097 0" quat="0.707105 -0.707108 0 0">
<inertial pos="-0.000420033 -0.00287433 0.0257078" quat="0.999372 -0.0349129 -0.00605634 0.000551744" mass="0.85624" diaginertia="0.00137671 0.00118744 0.000514968" />
<joint name="joint7" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="2" frictionloss="1" />
<geom name="j8" material="robot0:gripper_mat" type="mesh" rgba="0.753 0.753 0.753 1" mesh="link7" />
<geom name="j9" material="robot0:gripper_mat" type="mesh" rgba="1 1 1 1" mesh="base_link" />
<site name="grasp" pos="0 0 0.16" rgba="1 0 0 0" type="sphere" size="0.01" group="1"/>
<body name="left_outer_knuckle" pos="0 0.035 0.059098">
<inertial pos="0 0.021559 0.015181" quat="0.47789 0.87842 0 0" mass="0.033618" diaginertia="1.9111e-05 1.79089e-05 1.90167e-06" />
<joint name="drive_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="left_outer_knuckle" />
<body name="left_finger" pos="0 0.035465 0.042039">
<inertial pos="0 -0.016413 0.029258" quat="0.697634 0.115353 -0.115353 0.697634" mass="0.048304" diaginertia="1.88037e-05 1.7493e-05 3.56792e-06" />
<joint name="left_finger_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
<geom name="j10" material="robot0:gripper_finger_mat" type="mesh" rgba="0 0 0 1" conaffinity="3" contype="2" mesh="left_finger" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
<body name="right_hand" pos="0 -0.03 0.05" quat="-0.7071 0 0 0.7071">
<site name="ee" pos="0 0 0" rgba="0 0 1 0" type="sphere" group="1"/>
<site name="ee_x" pos="0 0 0" size="0.005 .1" quat="0.707105 0.707108 0 0 " rgba="1 0 0 0" type="cylinder" group="1"/>
<site name="ee_z" pos="0 0 0" size="0.005 .1" quat="0.707105 0 0 0.707108" rgba="0 0 1 0" type="cylinder" group="1"/>
<site name="ee_y" pos="0 0 0" size="0.005 .1" quat="0.707105 0 0.707108 0 " rgba="0 1 0 0" type="cylinder" group="1"/>
</body>
</body>
</body>
<body name="left_inner_knuckle" pos="0 0.02 0.074098">
<inertial pos="1.86601e-06 0.0220468 0.0261335" quat="0.664139 -0.242732 0.242713 0.664146" mass="0.0230126" diaginertia="8.34216e-06 6.0949e-06 2.75601e-06" />
<joint name="left_inner_knuckle_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="left_inner_knuckle" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
</body>
<body name="right_outer_knuckle" pos="0 -0.035 0.059098">
<inertial pos="0 -0.021559 0.015181" quat="0.87842 0.47789 0 0" mass="0.033618" diaginertia="1.9111e-05 1.79089e-05 1.90167e-06" />
<joint name="right_outer_knuckle_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="right_outer_knuckle" />
<body name="right_finger" pos="0 -0.035465 0.042039">
<inertial pos="0 0.016413 0.029258" quat="0.697634 -0.115356 0.115356 0.697634" mass="0.048304" diaginertia="1.88038e-05 1.7493e-05 3.56779e-06" />
<joint name="right_finger_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
<geom name="j11" material="robot0:gripper_finger_mat" type="mesh" rgba="0 0 0 1" conaffinity="3" contype="2" mesh="right_finger" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
<body name="left_hand" pos="0 0.03 0.05" quat="-0.7071 0 0 0.7071">
<site name="ee_2" pos="0 0 0" rgba="1 0 0 0" type="sphere" size="0.01" group="1"/>
</body>
</body>
</body>
<body name="right_inner_knuckle" pos="0 -0.02 0.074098">
<inertial pos="1.866e-06 -0.022047 0.026133" quat="0.66415 0.242702 -0.242721 0.664144" mass="0.023013" diaginertia="8.34209e-06 6.0949e-06 2.75601e-06" />
<joint name="right_inner_knuckle_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="right_inner_knuckle" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</mujoco>

View File

@ -1,145 +0,0 @@
import os
import mujoco
import numpy as np
from gymnasium_robotics.envs import robot_env
from lerobot.common.envs.simxarm.simxarm.tasks import mocap
class Base(robot_env.MujocoRobotEnv):
"""
Superclass for all simxarm environments.
Args:
xml_name (str): name of the xml environment file
gripper_rotation (list): initial rotation of the gripper (given as a quaternion)
"""
def __init__(self, xml_name, gripper_rotation=None):
if gripper_rotation is None:
gripper_rotation = [0, 1, 0, 0]
self.gripper_rotation = np.array(gripper_rotation, dtype=np.float32)
self.center_of_table = np.array([1.655, 0.3, 0.63625])
self.max_z = 1.2
self.min_z = 0.2
super().__init__(
model_path=os.path.join(os.path.dirname(__file__), "assets", xml_name + ".xml"),
n_substeps=20,
n_actions=4,
initial_qpos={},
)
@property
def dt(self):
return self.n_substeps * self.model.opt.timestep
@property
def eef(self):
return self._utils.get_site_xpos(self.model, self.data, "grasp")
@property
def obj(self):
return self._utils.get_site_xpos(self.model, self.data, "object_site")
@property
def robot_state(self):
gripper_angle = self._utils.get_joint_qpos(self.model, self.data, "right_outer_knuckle_joint")
return np.concatenate([self.eef, gripper_angle])
def is_success(self):
return NotImplementedError()
def get_reward(self):
raise NotImplementedError()
def _sample_goal(self):
raise NotImplementedError()
def get_obs(self):
return self._get_obs()
def _step_callback(self):
self._mujoco.mj_forward(self.model, self.data)
def _limit_gripper(self, gripper_pos, pos_ctrl):
if gripper_pos[0] > self.center_of_table[0] - 0.105 + 0.15:
pos_ctrl[0] = min(pos_ctrl[0], 0)
if gripper_pos[0] < self.center_of_table[0] - 0.105 - 0.3:
pos_ctrl[0] = max(pos_ctrl[0], 0)
if gripper_pos[1] > self.center_of_table[1] + 0.3:
pos_ctrl[1] = min(pos_ctrl[1], 0)
if gripper_pos[1] < self.center_of_table[1] - 0.3:
pos_ctrl[1] = max(pos_ctrl[1], 0)
if gripper_pos[2] > self.max_z:
pos_ctrl[2] = min(pos_ctrl[2], 0)
if gripper_pos[2] < self.min_z:
pos_ctrl[2] = max(pos_ctrl[2], 0)
return pos_ctrl
def _apply_action(self, action):
assert action.shape == (4,)
action = action.copy()
pos_ctrl, gripper_ctrl = action[:3], action[3]
pos_ctrl = self._limit_gripper(
self._utils.get_site_xpos(self.model, self.data, "grasp"), pos_ctrl
) * (1 / self.n_substeps)
gripper_ctrl = np.array([gripper_ctrl, gripper_ctrl])
mocap.apply_action(
self.model,
self._model_names,
self.data,
np.concatenate([pos_ctrl, self.gripper_rotation, gripper_ctrl]),
)
def _render_callback(self):
self._mujoco.mj_forward(self.model, self.data)
def _reset_sim(self):
self.data.time = self.initial_time
self.data.qpos[:] = np.copy(self.initial_qpos)
self.data.qvel[:] = np.copy(self.initial_qvel)
self._sample_goal()
self._mujoco.mj_step(self.model, self.data, nstep=10)
return True
def _set_gripper(self, gripper_pos, gripper_rotation):
self._utils.set_mocap_pos(self.model, self.data, "robot0:mocap", gripper_pos)
self._utils.set_mocap_quat(self.model, self.data, "robot0:mocap", gripper_rotation)
self._utils.set_joint_qpos(self.model, self.data, "right_outer_knuckle_joint", 0)
self.data.qpos[10] = 0.0
self.data.qpos[12] = 0.0
def _env_setup(self, initial_qpos):
for name, value in initial_qpos.items():
self.data.set_joint_qpos(name, value)
mocap.reset(self.model, self.data)
mujoco.mj_forward(self.model, self.data)
self._sample_goal()
mujoco.mj_forward(self.model, self.data)
def reset(self):
self._reset_sim()
return self._get_obs()
def step(self, action):
assert action.shape == (4,)
assert self.action_space.contains(action), "{!r} ({}) invalid".format(action, type(action))
self._apply_action(action)
self._mujoco.mj_step(self.model, self.data, nstep=2)
self._step_callback()
obs = self._get_obs()
reward = self.get_reward()
done = False
info = {"is_success": self.is_success(), "success": self.is_success()}
return obs, reward, done, info
def render(self, mode="rgb_array", width=384, height=384):
self._render_callback()
# HACK
self.model.vis.global_.offwidth = width
self.model.vis.global_.offheight = height
return self.mujoco_renderer.render(mode)
def close(self):
if self.mujoco_renderer is not None:
self.mujoco_renderer.close()

View File

@ -1,100 +0,0 @@
import numpy as np
from lerobot.common.envs.simxarm.simxarm import Base
class Lift(Base):
def __init__(self):
self._z_threshold = 0.15
super().__init__("lift")
@property
def z_target(self):
return self._init_z + self._z_threshold
def is_success(self):
return self.obj[2] >= self.z_target
def get_reward(self):
reach_dist = np.linalg.norm(self.obj - self.eef)
reach_dist_xy = np.linalg.norm(self.obj[:-1] - self.eef[:-1])
pick_completed = self.obj[2] >= (self.z_target - 0.01)
obj_dropped = (self.obj[2] < (self._init_z + 0.005)) and (reach_dist > 0.02)
# Reach
if reach_dist < 0.05:
reach_reward = -reach_dist + max(self._action[-1], 0) / 50
elif reach_dist_xy < 0.05:
reach_reward = -reach_dist
else:
z_bonus = np.linalg.norm(np.linalg.norm(self.obj[-1] - self.eef[-1]))
reach_reward = -reach_dist - 2 * z_bonus
# Pick
if pick_completed and not obj_dropped:
pick_reward = self.z_target
elif (reach_dist < 0.1) and (self.obj[2] > (self._init_z + 0.005)):
pick_reward = min(self.z_target, self.obj[2])
else:
pick_reward = 0
return reach_reward / 100 + pick_reward
def _get_obs(self):
eef_velp = self._utils.get_site_xvelp(self.model, self.data, "grasp") * self.dt
gripper_angle = self._utils.get_joint_qpos(self.model, self.data, "right_outer_knuckle_joint")
eef = self.eef - self.center_of_table
obj = self.obj - self.center_of_table
obj_rot = self._utils.get_joint_qpos(self.model, self.data, "object_joint0")[-4:]
obj_velp = self._utils.get_site_xvelp(self.model, self.data, "object_site") * self.dt
obj_velr = self._utils.get_site_xvelr(self.model, self.data, "object_site") * self.dt
obs = np.concatenate(
[
eef,
eef_velp,
obj,
obj_rot,
obj_velp,
obj_velr,
eef - obj,
np.array(
[
np.linalg.norm(eef - obj),
np.linalg.norm(eef[:-1] - obj[:-1]),
self.z_target,
self.z_target - obj[-1],
self.z_target - eef[-1],
]
),
gripper_angle,
],
axis=0,
)
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": eef}
def _sample_goal(self):
# Gripper
gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
super()._set_gripper(gripper_pos, self.gripper_rotation)
# Object
object_pos = self.center_of_table - np.array([0.15, 0.10, 0.07])
object_pos[0] += self.np_random.uniform(-0.05, 0.05, size=1)
object_pos[1] += self.np_random.uniform(-0.05, 0.05, size=1)
object_qpos = self._utils.get_joint_qpos(self.model, self.data, "object_joint0")
object_qpos[:3] = object_pos
self._utils.set_joint_qpos(self.model, self.data, "object_joint0", object_qpos)
self._init_z = object_pos[2]
# Goal
return object_pos + np.array([0, 0, self._z_threshold])
def reset(self):
self._action = np.zeros(4)
return super().reset()
def step(self, action):
self._action = action.copy()
return super().step(action)

View File

@ -1,67 +0,0 @@
# import mujoco_py
import mujoco
import numpy as np
def apply_action(model, model_names, data, action):
if model.nmocap > 0:
pos_action, gripper_action = np.split(action, (model.nmocap * 7,))
if data.ctrl is not None:
for i in range(gripper_action.shape[0]):
data.ctrl[i] = gripper_action[i]
pos_action = pos_action.reshape(model.nmocap, 7)
pos_delta, quat_delta = pos_action[:, :3], pos_action[:, 3:]
reset_mocap2body_xpos(model, model_names, data)
data.mocap_pos[:] = data.mocap_pos + pos_delta
data.mocap_quat[:] = data.mocap_quat + quat_delta
def reset(model, data):
if model.nmocap > 0 and model.eq_data is not None:
for i in range(model.eq_data.shape[0]):
# if sim.model.eq_type[i] == mujoco_py.const.EQ_WELD:
if model.eq_type[i] == mujoco.mjtEq.mjEQ_WELD:
# model.eq_data[i, :] = np.array([0., 0., 0., 1., 0., 0., 0.])
model.eq_data[i, :] = np.array(
[
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
)
# sim.forward()
mujoco.mj_forward(model, data)
def reset_mocap2body_xpos(model, model_names, data):
if model.eq_type is None or model.eq_obj1id is None or model.eq_obj2id is None:
return
# For all weld constraints
for eq_type, obj1_id, obj2_id in zip(model.eq_type, model.eq_obj1id, model.eq_obj2id, strict=False):
# if eq_type != mujoco_py.const.EQ_WELD:
if eq_type != mujoco.mjtEq.mjEQ_WELD:
continue
# body2 = model.body_id2name(obj2_id)
body2 = model_names.body_id2name[obj2_id]
if body2 == "B0" or body2 == "B9" or body2 == "B1":
continue
mocap_id = model.body_mocapid[obj1_id]
if mocap_id != -1:
# obj1 is the mocap, obj2 is the welded body
body_idx = obj2_id
else:
# obj2 is the mocap, obj1 is the welded body
mocap_id = model.body_mocapid[obj2_id]
body_idx = obj1_id
assert mocap_id != -1
data.mocap_pos[mocap_id][:] = data.xpos[body_idx]
data.mocap_quat[mocap_id][:] = data.xquat[body_idx]

View File

@ -1,86 +0,0 @@
import numpy as np
from lerobot.common.envs.simxarm.simxarm import Base
class PegInBox(Base):
def __init__(self):
super().__init__("peg_in_box")
def _reset_sim(self):
self._act_magnitude = 0
super()._reset_sim()
for _ in range(10):
self._apply_action(np.array([0, 0, 0, 1], dtype=np.float32))
self.sim.step()
@property
def box(self):
return self.sim.data.get_site_xpos("box_site")
def is_success(self):
return np.linalg.norm(self.obj - self.box) <= 0.05
def get_reward(self):
dist_xy = np.linalg.norm(self.obj[:2] - self.box[:2])
dist_xyz = np.linalg.norm(self.obj - self.box)
return float(dist_xy <= 0.045) * (2 - 6 * dist_xyz) - 0.2 * np.square(self._act_magnitude) - dist_xy
def _get_obs(self):
eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
eef, box = self.eef - self.center_of_table, self.box - self.center_of_table
obj = self.obj - self.center_of_table
obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
obs = np.concatenate(
[
eef,
eef_velp,
box,
obj,
obj_rot,
obj_velp,
obj_velr,
eef - box,
eef - obj,
obj - box,
np.array(
[
np.linalg.norm(eef - box),
np.linalg.norm(eef - obj),
np.linalg.norm(obj - box),
gripper_angle,
]
),
],
axis=0,
)
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": box}
def _sample_goal(self):
# Gripper
gripper_pos = np.array([1.280, 0.295, 0.9]) + self.np_random.uniform(-0.05, 0.05, size=3)
super()._set_gripper(gripper_pos, self.gripper_rotation)
# Object
object_pos = gripper_pos - np.array([0, 0, 0.06]) + self.np_random.uniform(-0.005, 0.005, size=3)
object_qpos = self.sim.data.get_joint_qpos("object_joint0")
object_qpos[:3] = object_pos
self.sim.data.set_joint_qpos("object_joint0", object_qpos)
# Box
box_pos = np.array([1.61, 0.18, 0.58])
box_pos[:2] += self.np_random.uniform(-0.11, 0.11, size=2)
box_qpos = self.sim.data.get_joint_qpos("box_joint0")
box_qpos[:3] = box_pos
self.sim.data.set_joint_qpos("box_joint0", box_qpos)
return self.box
def step(self, action):
self._act_magnitude = np.linalg.norm(action[:3])
return super().step(action)

View File

@ -1,78 +0,0 @@
import numpy as np
from lerobot.common.envs.simxarm.simxarm import Base
class Push(Base):
def __init__(self):
super().__init__("push")
def _reset_sim(self):
self._act_magnitude = 0
super()._reset_sim()
def is_success(self):
return np.linalg.norm(self.obj - self.goal) <= 0.05
def get_reward(self):
dist = np.linalg.norm(self.obj - self.goal)
penalty = self._act_magnitude**2
return -(dist + 0.15 * penalty)
def _get_obs(self):
eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
eef, goal = self.eef - self.center_of_table, self.goal - self.center_of_table
obj = self.obj - self.center_of_table
obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
obs = np.concatenate(
[
eef,
eef_velp,
goal,
obj,
obj_rot,
obj_velp,
obj_velr,
eef - goal,
eef - obj,
obj - goal,
np.array(
[
np.linalg.norm(eef - goal),
np.linalg.norm(eef - obj),
np.linalg.norm(obj - goal),
gripper_angle,
]
),
],
axis=0,
)
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": goal}
def _sample_goal(self):
# Gripper
gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
super()._set_gripper(gripper_pos, self.gripper_rotation)
# Object
object_pos = self.center_of_table - np.array([0.25, 0, 0.07])
object_pos[0] += self.np_random.uniform(-0.08, 0.08, size=1)
object_pos[1] += self.np_random.uniform(-0.08, 0.08, size=1)
object_qpos = self.sim.data.get_joint_qpos("object_joint0")
object_qpos[:3] = object_pos
self.sim.data.set_joint_qpos("object_joint0", object_qpos)
# Goal
self.goal = np.array([1.600, 0.200, 0.545])
self.goal[:2] += self.np_random.uniform(-0.1, 0.1, size=2)
self.sim.model.site_pos[self.sim.model.site_name2id("target0")] = self.goal
return self.goal
def step(self, action):
self._act_magnitude = np.linalg.norm(action[:3])
return super().step(action)

View File

@ -1,44 +0,0 @@
import numpy as np
from lerobot.common.envs.simxarm.simxarm import Base
class Reach(Base):
def __init__(self):
super().__init__("reach")
def _reset_sim(self):
self._act_magnitude = 0
super()._reset_sim()
def is_success(self):
return np.linalg.norm(self.eef - self.goal) <= 0.05
def get_reward(self):
dist = np.linalg.norm(self.eef - self.goal)
penalty = self._act_magnitude**2
return -(dist + 0.15 * penalty)
def _get_obs(self):
eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
eef, goal = self.eef - self.center_of_table, self.goal - self.center_of_table
obs = np.concatenate(
[eef, eef_velp, goal, eef - goal, np.array([np.linalg.norm(eef - goal), gripper_angle])], axis=0
)
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": goal}
def _sample_goal(self):
# Gripper
gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
super()._set_gripper(gripper_pos, self.gripper_rotation)
# Goal
self.goal = np.array([1.550, 0.287, 0.580])
self.goal[:2] += self.np_random.uniform(-0.125, 0.125, size=2)
self.sim.model.site_pos[self.sim.model.site_name2id("target0")] = self.goal
return self.goal
def step(self, action):
self._act_magnitude = np.linalg.norm(action[:3])
return super().step(action)

View File

@ -0,0 +1,41 @@
import einops
import torch
from lerobot.common.transforms import apply_inverse_transform
def preprocess_observation(observation, transform=None):
# map to expected inputs for the policy
obs = {}
if isinstance(observation["pixels"], dict):
imgs = {f"observation.images.{key}": img for key, img in observation["pixels"].items()}
else:
imgs = {"observation.image": observation["pixels"]}
for imgkey, img in imgs.items():
img = torch.from_numpy(img).float()
# convert to (b c h w) torch format
img = einops.rearrange(img, "b h w c -> b c h w")
obs[imgkey] = img
# TODO(rcadene): enable pixels only baseline with `obs_type="pixels"` in environment by removing requirement for "agent_pos"
obs["observation.state"] = torch.from_numpy(observation["agent_pos"]).float()
# apply same transforms as in training
if transform is not None:
for key in obs:
obs[key] = torch.stack([transform({key: item})[key] for item in obs[key]])
return obs
def postprocess_action(action, transform=None):
action = action.to("cpu")
# action is a batch (num_env,action_dim) instead of an item (action_dim),
# we assume applying inverse transform on a batch works the same
action = apply_inverse_transform({"action": action}, transform)["action"].numpy()
assert (
action.ndim == 2
), "we assume dimensions are respectively the number of parallel envs, action dimensions"
return action

View File

@ -1,82 +0,0 @@
from collections import deque
import torch
from torch import Tensor, nn
class AbstractPolicy(nn.Module):
"""Base policy which all policies should be derived from.
The forward method should generally not be overriden as it plays the role of handling multi-step policies. See its
documentation for more information.
Note:
When implementing a concrete class (e.g. `AlohaDataset`, `PushtEnv`, `DiffusionPolicy`), you need to:
1. set the required class attributes:
- for classes inheriting from `AbstractDataset`: `available_datasets`
- for classes inheriting from `AbstractEnv`: `name`, `available_tasks`
- for classes inheriting from `AbstractPolicy`: `name`
2. update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
3. update variables in `tests/test_available.py` by importing your new class
"""
name: str | None = None # same name should be used to instantiate the policy in factory.py
def __init__(self, n_action_steps: int | None):
"""
n_action_steps: Sets the cache size for storing action trajectories. If None, it is assumed that a single
action is returned by `select_actions` and that doesn't have a horizon dimension. The `forward` method then
adds that dimension.
"""
super().__init__()
assert self.name is not None, "Subclasses of `AbstractPolicy` should set the `name` class attribute."
self.n_action_steps = n_action_steps
self.clear_action_queue()
def update(self, replay_buffer, step):
"""One step of the policy's learning algorithm."""
raise NotImplementedError("Abstract method")
def save(self, fp):
torch.save(self.state_dict(), fp)
def load(self, fp):
d = torch.load(fp)
self.load_state_dict(d)
def select_actions(self, observation) -> Tensor:
"""Select an action (or trajectory of actions) based on an observation during rollout.
If n_action_steps was provided at initialization, this should return a (batch_size, n_action_steps, *) tensor of
actions. Otherwise if n_actions_steps is None, this should return a (batch_size, *) tensor of actions.
"""
raise NotImplementedError("Abstract method")
def clear_action_queue(self):
"""This should be called whenever the environment is reset."""
if self.n_action_steps is not None:
self._action_queue = deque([], maxlen=self.n_action_steps)
def forward(self, *args, **kwargs) -> Tensor:
"""Inference step that makes multi-step policies compatible with their single-step environments.
WARNING: In general, this should not be overriden.
Consider a "policy" that observes the environment then charts a course of N actions to take. To make this fit
into the formalism of a TorchRL environment, we view it as being effectively a policy that (1) makes an
observation and prepares a queue of actions, (2) consumes that queue when queried, regardless of the environment
observation, (3) repopulates the action queue when empty. This method handles the aforementioned logic so that
the subclass doesn't have to.
This method effectively wraps the `select_actions` method of the subclass. The following assumptions are made:
1. The `select_actions` method returns a Tensor of actions with shape (B, H, *) where B is the batch size, H is
the action trajectory horizon and * is the action dimensions.
2. Prior to the `select_actions` method being called, theres is an `n_action_steps` instance attribute defined.
"""
if self.n_action_steps is None:
return self.select_actions(*args, **kwargs)
if len(self._action_queue) == 0:
# `select_actions` returns a (batch_size, n_action_steps, *) tensor, but the queue effectively has shape
# (n_action_steps, batch_size, *), hence the transpose.
self._action_queue.extend(self.select_actions(*args, **kwargs).transpose(0, 1))
return self._action_queue.popleft()

View File

@ -1,115 +0,0 @@
from typing import List
import torch
import torchvision
from torch import nn
from torchvision.models._utils import IntermediateLayerGetter
from .position_encoding import build_position_encoding
from .utils import NestedTensor, is_main_process
class FrozenBatchNorm2d(torch.nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
without which any other policy_models than torchvision.policy_models.resnet[18,34,50,101]
produce nans.
"""
def __init__(self, n):
super().__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
# move reshapes to the beginning
# to make it fuser-friendly
w = self.weight.reshape(1, -1, 1, 1)
b = self.bias.reshape(1, -1, 1, 1)
rv = self.running_var.reshape(1, -1, 1, 1)
rm = self.running_mean.reshape(1, -1, 1, 1)
eps = 1e-5
scale = w * (rv + eps).rsqrt()
bias = b - rm * scale
return x * scale + bias
class BackboneBase(nn.Module):
def __init__(
self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool
):
super().__init__()
# for name, parameter in backbone.named_parameters(): # only train later layers # TODO do we want this?
# if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
# parameter.requires_grad_(False)
if return_interm_layers:
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
else:
return_layers = {"layer4": "0"}
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
self.num_channels = num_channels
def forward(self, tensor):
xs = self.body(tensor)
return xs
# out: Dict[str, NestedTensor] = {}
# for name, x in xs.items():
# m = tensor_list.mask
# assert m is not None
# mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
# out[name] = NestedTensor(x, mask)
# return out
class Backbone(BackboneBase):
"""ResNet backbone with frozen BatchNorm."""
def __init__(self, name: str, train_backbone: bool, return_interm_layers: bool, dilation: bool):
backbone = getattr(torchvision.models, name)(
replace_stride_with_dilation=[False, False, dilation],
pretrained=is_main_process(),
norm_layer=FrozenBatchNorm2d,
) # pretrained # TODO do we want frozen batch_norm??
num_channels = 512 if name in ("resnet18", "resnet34") else 2048
super().__init__(backbone, train_backbone, num_channels, return_interm_layers)
class Joiner(nn.Sequential):
def __init__(self, backbone, position_embedding):
super().__init__(backbone, position_embedding)
def forward(self, tensor_list: NestedTensor):
xs = self[0](tensor_list)
out: List[NestedTensor] = []
pos = []
for _, x in xs.items():
out.append(x)
# position encoding
pos.append(self[1](x).to(x.dtype))
return out, pos
def build_backbone(args):
position_embedding = build_position_encoding(args)
train_backbone = args.lr_backbone > 0
return_interm_layers = args.masks
backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation)
model = Joiner(backbone, position_embedding)
model.num_channels = backbone.num_channels
return model

View File

@ -1,212 +0,0 @@
import numpy as np
import torch
from torch import nn
from torch.autograd import Variable
from .backbone import build_backbone
from .transformer import TransformerEncoder, TransformerEncoderLayer, build_transformer
def reparametrize(mu, logvar):
std = logvar.div(2).exp()
eps = Variable(std.data.new(std.size()).normal_())
return mu + std * eps
def get_sinusoid_encoding_table(n_position, d_hid):
def get_position_angle_vec(position):
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
class DETRVAE(nn.Module):
"""This is the DETR module that performs object detection"""
def __init__(
self, backbones, transformer, encoder, state_dim, action_dim, num_queries, camera_names, vae
):
"""Initializes the model.
Parameters:
backbones: torch module of the backbone to be used. See backbone.py
transformer: torch module of the transformer architecture. See transformer.py
state_dim: robot state dimension of the environment
num_queries: number of object queries, ie detection slot. This is the maximal number of objects
DETR can detect in a single image. For COCO, we recommend 100 queries.
aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
"""
super().__init__()
self.num_queries = num_queries
self.camera_names = camera_names
self.transformer = transformer
self.encoder = encoder
self.vae = vae
hidden_dim = transformer.d_model
self.action_head = nn.Linear(hidden_dim, action_dim)
self.is_pad_head = nn.Linear(hidden_dim, 1)
self.query_embed = nn.Embedding(num_queries, hidden_dim)
if backbones is not None:
self.input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1)
self.backbones = nn.ModuleList(backbones)
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim)
else:
# input_dim = 14 + 7 # robot_state + env_state
self.input_proj_robot_state = nn.Linear(state_dim, hidden_dim)
# TODO(rcadene): understand what is env_state, and why it needs to be 7
self.input_proj_env_state = nn.Linear(state_dim // 2, hidden_dim)
self.pos = torch.nn.Embedding(2, hidden_dim)
self.backbones = None
# encoder extra parameters
self.latent_dim = 32 # final size of latent z # TODO tune
self.cls_embed = nn.Embedding(1, hidden_dim) # extra cls token embedding
self.encoder_action_proj = nn.Linear(14, hidden_dim) # project action to embedding
self.encoder_joint_proj = nn.Linear(14, hidden_dim) # project qpos to embedding
self.latent_proj = nn.Linear(
hidden_dim, self.latent_dim * 2
) # project hidden state to latent std, var
self.register_buffer(
"pos_table", get_sinusoid_encoding_table(1 + 1 + num_queries, hidden_dim)
) # [CLS], qpos, a_seq
# decoder extra parameters
self.latent_out_proj = nn.Linear(self.latent_dim, hidden_dim) # project latent sample to embedding
self.additional_pos_embed = nn.Embedding(
2, hidden_dim
) # learned position embedding for proprio and latent
def forward(self, qpos, image, env_state, actions=None, is_pad=None):
"""
qpos: batch, qpos_dim
image: batch, num_cam, channel, height, width
env_state: None
actions: batch, seq, action_dim
"""
is_training = actions is not None # train or val
bs, _ = qpos.shape
### Obtain latent z from action sequence
if self.vae and is_training:
# project action sequence to embedding dim, and concat with a CLS token
action_embed = self.encoder_action_proj(actions) # (bs, seq, hidden_dim)
qpos_embed = self.encoder_joint_proj(qpos) # (bs, hidden_dim)
qpos_embed = torch.unsqueeze(qpos_embed, axis=1) # (bs, 1, hidden_dim)
cls_embed = self.cls_embed.weight # (1, hidden_dim)
cls_embed = torch.unsqueeze(cls_embed, axis=0).repeat(bs, 1, 1) # (bs, 1, hidden_dim)
encoder_input = torch.cat(
[cls_embed, qpos_embed, action_embed], axis=1
) # (bs, seq+1, hidden_dim)
encoder_input = encoder_input.permute(1, 0, 2) # (seq+1, bs, hidden_dim)
# do not mask cls token
# cls_joint_is_pad = torch.full((bs, 2), False).to(qpos.device) # False: not a padding
# is_pad = torch.cat([cls_joint_is_pad, is_pad], axis=1) # (bs, seq+1)
# obtain position embedding
pos_embed = self.pos_table.clone().detach()
pos_embed = pos_embed.permute(1, 0, 2) # (seq+1, 1, hidden_dim)
# query model
encoder_output = self.encoder(encoder_input, pos=pos_embed) # , src_key_padding_mask=is_pad)
encoder_output = encoder_output[0] # take cls output only
latent_info = self.latent_proj(encoder_output)
mu = latent_info[:, : self.latent_dim]
logvar = latent_info[:, self.latent_dim :]
latent_sample = reparametrize(mu, logvar)
latent_input = self.latent_out_proj(latent_sample)
else:
mu = logvar = None
latent_sample = torch.zeros([bs, self.latent_dim], dtype=torch.float32).to(qpos.device)
latent_input = self.latent_out_proj(latent_sample)
if self.backbones is not None:
# Image observation features and position embeddings
all_cam_features = []
all_cam_pos = []
for cam_id, _ in enumerate(self.camera_names):
features, pos = self.backbones[0](image[:, cam_id]) # HARDCODED
features = features[0] # take the last layer feature
pos = pos[0]
all_cam_features.append(self.input_proj(features))
all_cam_pos.append(pos)
# proprioception features
proprio_input = self.input_proj_robot_state(qpos)
# fold camera dimension into width dimension
src = torch.cat(all_cam_features, axis=3)
pos = torch.cat(all_cam_pos, axis=3)
hs = self.transformer(
src,
None,
self.query_embed.weight,
pos,
latent_input,
proprio_input,
self.additional_pos_embed.weight,
)[0]
else:
qpos = self.input_proj_robot_state(qpos)
env_state = self.input_proj_env_state(env_state)
transformer_input = torch.cat([qpos, env_state], axis=1) # seq length = 2
hs = self.transformer(transformer_input, None, self.query_embed.weight, self.pos.weight)[0]
a_hat = self.action_head(hs)
is_pad_hat = self.is_pad_head(hs)
return a_hat, is_pad_hat, [mu, logvar]
def mlp(input_dim, hidden_dim, output_dim, hidden_depth):
if hidden_depth == 0:
mods = [nn.Linear(input_dim, output_dim)]
else:
mods = [nn.Linear(input_dim, hidden_dim), nn.ReLU(inplace=True)]
for _ in range(hidden_depth - 1):
mods += [nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True)]
mods.append(nn.Linear(hidden_dim, output_dim))
trunk = nn.Sequential(*mods)
return trunk
def build_encoder(args):
d_model = args.hidden_dim # 256
dropout = args.dropout # 0.1
nhead = args.nheads # 8
dim_feedforward = args.dim_feedforward # 2048
num_encoder_layers = args.enc_layers # 4 # TODO shared with VAE decoder
normalize_before = args.pre_norm # False
activation = "relu"
encoder_layer = TransformerEncoderLayer(
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
)
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
return encoder
def build(args):
# From state
# backbone = None # from state for now, no need for conv nets
# From image
backbones = []
backbone = build_backbone(args)
backbones.append(backbone)
transformer = build_transformer(args)
encoder = build_encoder(args)
model = DETRVAE(
backbones,
transformer,
encoder,
state_dim=args.state_dim,
action_dim=args.action_dim,
num_queries=args.num_queries,
camera_names=args.camera_names,
vae=args.vae,
)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print("number of parameters: {:.2f}M".format(n_parameters / 1e6))
return model

View File

@ -1,173 +1,200 @@
import logging
import time
"""Action Chunking Transformer Policy
As per Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware (https://arxiv.org/abs/2304.13705).
The majority of changes here involve removing unused code, unifying naming, and adding helpful comments.
"""
import math
import time
from collections import deque
from itertools import chain
from typing import Callable
import einops
import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
import torchvision
import torchvision.transforms as transforms
from torch import Tensor, nn
from torchvision.models._utils import IntermediateLayerGetter
from torchvision.ops.misc import FrozenBatchNorm2d
from lerobot.common.policies.abstract import AbstractPolicy
from lerobot.common.policies.act.detr_vae import build
from lerobot.common.utils import get_safe_torch_device
def build_act_model_and_optimizer(cfg):
model = build(cfg)
class ActionChunkingTransformerPolicy(nn.Module):
"""
Action Chunking Transformer Policy as per Learning Fine-Grained Bimanual Manipulation with Low-Cost
Hardware (paper: https://arxiv.org/abs/2304.13705, code: https://github.com/tonyzhaozh/act)
param_dicts = [
{"params": [p for n, p in model.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model.named_parameters() if "backbone" in n and p.requires_grad],
"lr": cfg.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=cfg.lr, weight_decay=cfg.weight_decay)
Note: In this code we use the terms `vae_encoder`, 'encoder', `decoder`. The meanings are as follows.
- The `vae_encoder` is, as per the literature around variational auto-encoders (VAE), the part of the
model that encodes the target data (a sequence of actions), and the condition (the robot
joint-space).
- A transformer with an `encoder` (not the VAE encoder) and `decoder` (not the VAE decoder) with
cross-attention is used as the VAE decoder. For these terms, we drop the `vae_` prefix because we
have an option to train this model without the variational objective (in which case we drop the
`vae_encoder` altogether, and nothing about this model has anything to do with a VAE).
return model, optimizer
Transformer
Used alone for inference
(acts as VAE decoder
during training)
Outputs
Transf.
decoder
VAE
encoder Transf.
encoder
inputs
"""
def kl_divergence(mu, logvar):
batch_size = mu.size(0)
assert batch_size != 0
if mu.data.ndimension() == 4:
mu = mu.view(mu.size(0), mu.size(1))
if logvar.data.ndimension() == 4:
logvar = logvar.view(logvar.size(0), logvar.size(1))
klds = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp())
total_kld = klds.sum(1).mean(0, True)
dimension_wise_kld = klds.mean(0)
mean_kld = klds.mean(1).mean(0, True)
return total_kld, dimension_wise_kld, mean_kld
class ActionChunkingTransformerPolicy(AbstractPolicy):
name = "act"
_multiple_obs_steps_not_handled_msg = (
"ActionChunkingTransformerPolicy does not handle multiple observation steps."
)
def __init__(self, cfg, device, n_action_steps=1):
super().__init__(n_action_steps)
def __init__(self, cfg, device):
"""
TODO(alexander-soare): Add documentation for all parameters once we have model configs established.
"""
super().__init__()
if getattr(cfg, "n_obs_steps", 1) != 1:
raise ValueError(self._multiple_obs_steps_not_handled_msg)
self.cfg = cfg
self.n_action_steps = n_action_steps
self.n_action_steps = cfg.n_action_steps
self.device = get_safe_torch_device(device)
self.model, self.optimizer = build_act_model_and_optimizer(cfg)
self.kl_weight = self.cfg.kl_weight
logging.info(f"KL Weight {self.kl_weight}")
self.camera_names = cfg.camera_names
self.use_vae = cfg.use_vae
self.horizon = cfg.horizon
self.d_model = cfg.d_model
transformer_common_kwargs = dict( # noqa: C408
d_model=self.d_model,
num_heads=cfg.num_heads,
dim_feedforward=cfg.dim_feedforward,
dropout=cfg.dropout,
activation=cfg.activation,
normalize_before=cfg.pre_norm,
)
# BERT style VAE encoder with input [cls, *joint_space_configuration, *action_sequence].
# The cls token forms parameters of the latent's distribution (like this [*means, *log_variances]).
if self.use_vae:
self.vae_encoder = _TransformerEncoder(num_layers=cfg.vae_enc_layers, **transformer_common_kwargs)
self.vae_encoder_cls_embed = nn.Embedding(1, self.d_model)
# Projection layer for joint-space configuration to hidden dimension.
self.vae_encoder_robot_state_input_proj = nn.Linear(cfg.state_dim, self.d_model)
# Projection layer for action (joint-space target) to hidden dimension.
self.vae_encoder_action_input_proj = nn.Linear(cfg.state_dim, self.d_model)
self.latent_dim = cfg.latent_dim
# Projection layer from the VAE encoder's output to the latent distribution's parameter space.
self.vae_encoder_latent_output_proj = nn.Linear(self.d_model, self.latent_dim * 2)
# Fixed sinusoidal positional embedding the whole input to the VAE encoder. Unsqueeze for batch
# dimension.
self.register_buffer(
"vae_encoder_pos_enc",
_create_sinusoidal_position_embedding(1 + 1 + self.horizon, self.d_model).unsqueeze(0),
)
# Backbone for image feature extraction.
self.image_normalizer = transforms.Normalize(
mean=cfg.image_normalization.mean, std=cfg.image_normalization.std
)
backbone_model = getattr(torchvision.models, cfg.backbone)(
replace_stride_with_dilation=[False, False, cfg.dilation],
pretrained=cfg.pretrained_backbone,
norm_layer=FrozenBatchNorm2d,
)
# Note: The forward method of this returns a dict: {"feature_map": output}.
self.backbone = IntermediateLayerGetter(backbone_model, return_layers={"layer4": "feature_map"})
# Transformer (acts as VAE decoder when training with the variational objective).
self.encoder = _TransformerEncoder(num_layers=cfg.enc_layers, **transformer_common_kwargs)
self.decoder = _TransformerDecoder(num_layers=cfg.dec_layers, **transformer_common_kwargs)
# Transformer encoder input projections. The tokens will be structured like
# [latent, robot_state, image_feature_map_pixels].
self.encoder_robot_state_input_proj = nn.Linear(cfg.state_dim, self.d_model)
self.encoder_latent_input_proj = nn.Linear(self.latent_dim, self.d_model)
self.encoder_img_feat_input_proj = nn.Conv2d(
backbone_model.fc.in_features, self.d_model, kernel_size=1
)
# Transformer encoder positional embeddings.
self.encoder_robot_and_latent_pos_embed = nn.Embedding(2, self.d_model)
self.encoder_cam_feat_pos_embed = _SinusoidalPositionEmbedding2D(self.d_model // 2)
# Transformer decoder.
# Learnable positional embedding for the transformer's decoder (in the style of DETR object queries).
self.decoder_pos_embed = nn.Embedding(self.horizon, self.d_model)
# Final action regression head on the output of the transformer's decoder.
self.action_head = nn.Linear(self.d_model, cfg.action_dim)
self._reset_parameters()
self._create_optimizer()
self.to(self.device)
def update(self, replay_buffer, step):
del step
start_time = time.time()
self.train()
num_slices = self.cfg.batch_size
batch_size = self.cfg.horizon * num_slices
assert batch_size % self.cfg.horizon == 0
assert batch_size % num_slices == 0
def process_batch(batch, horizon, num_slices):
# trajectory t = 64, horizon h = 16
# (t h) ... -> t h ...
batch = batch.reshape(num_slices, horizon)
image = batch["observation", "image", "top"]
image = image[:, 0] # first observation t=0
# batch, num_cam, channel, height, width
image = image.unsqueeze(1)
assert image.ndim == 5
image = image.float()
state = batch["observation", "state"]
state = state[:, 0] # first observation t=0
# batch, qpos_dim
assert state.ndim == 2
action = batch["action"]
# batch, seq, action_dim
assert action.ndim == 3
assert action.shape[1] == horizon
if self.cfg.n_obs_steps > 1:
raise NotImplementedError()
# # keep first n observations of the slice corresponding to t=[-1,0]
# image = image[:, : self.cfg.n_obs_steps]
# state = state[:, : self.cfg.n_obs_steps]
out = {
"obs": {
"image": image.to(self.device, non_blocking=True),
"agent_pos": state.to(self.device, non_blocking=True),
},
"action": action.to(self.device, non_blocking=True),
}
return out
batch = replay_buffer.sample(batch_size)
batch = process_batch(batch, self.cfg.horizon, num_slices)
data_s = time.time() - start_time
loss = self.compute_loss(batch)
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
self.model.parameters(),
self.cfg.grad_clip_norm,
error_if_nonfinite=False,
def _create_optimizer(self):
optimizer_params_dicts = [
{
"params": [
p for n, p in self.named_parameters() if not n.startswith("backbone") and p.requires_grad
]
},
{
"params": [
p for n, p in self.named_parameters() if n.startswith("backbone") and p.requires_grad
],
"lr": self.cfg.lr_backbone,
},
]
self.optimizer = torch.optim.AdamW(
optimizer_params_dicts, lr=self.cfg.lr, weight_decay=self.cfg.weight_decay
)
self.optimizer.step()
self.optimizer.zero_grad()
# self.lr_scheduler.step()
def _reset_parameters(self):
"""Xavier-uniform initialization of the transformer parameters as in the original code."""
for p in chain(self.encoder.parameters(), self.decoder.parameters()):
if p.dim() > 1:
nn.init.xavier_uniform_(p)
info = {
"loss": loss.item(),
"grad_norm": float(grad_norm),
# "lr": self.lr_scheduler.get_last_lr()[0],
"lr": self.cfg.lr,
"data_s": data_s,
"update_s": time.time() - start_time,
}
def reset(self):
"""This should be called whenever the environment is reset."""
if self.n_action_steps is not None:
self._action_queue = deque([], maxlen=self.n_action_steps)
return info
def save(self, fp):
torch.save(self.state_dict(), fp)
def load(self, fp):
d = torch.load(fp)
self.load_state_dict(d)
def compute_loss(self, batch):
loss_dict = self._forward(
qpos=batch["obs"]["agent_pos"],
image=batch["obs"]["image"],
actions=batch["action"],
)
loss = loss_dict["loss"]
return loss
def select_action(self, batch: dict[str, Tensor], *_, **__) -> Tensor:
"""
This method wraps `select_actions` in order to return one action at a time for execution in the
environment. It works by managing the actions in a queue and only calling `select_actions` when the
queue is empty.
"""
if len(self._action_queue) == 0:
# `select_actions` returns a (batch_size, n_action_steps, *) tensor, but the queue effectively has shape
# (n_action_steps, batch_size, *), hence the transpose.
self._action_queue.extend(self.select_actions(batch).transpose(0, 1))
return self._action_queue.popleft()
@torch.no_grad()
def select_actions(self, observation, step_count):
if observation["image"].shape[0] != 1:
raise NotImplementedError("Batch size > 1 not handled")
# TODO(rcadene): remove unused step_count
del step_count
def select_actions(self, batch: dict[str, Tensor]) -> Tensor:
"""Use the action chunking transformer to generate a sequence of actions."""
self.eval()
self._preprocess_batch(batch, add_obs_steps_dim=True)
# TODO(rcadene): remove hack
# add 1 camera dimension
observation["image", "top"] = observation["image", "top"].unsqueeze(1)
obs_dict = {
"image": observation["image", "top"],
"agent_pos": observation["state"],
}
action = self._forward(qpos=obs_dict["agent_pos"], image=obs_dict["image"])
action = self.forward(batch, return_loss=False)
if self.cfg.temporal_agg:
# TODO(rcadene): implement temporal aggregation
@ -182,35 +209,470 @@ class ActionChunkingTransformerPolicy(AbstractPolicy):
# exp_weights = torch.from_numpy(exp_weights).cuda().unsqueeze(dim=1)
# raw_action = (actions_for_curr_step * exp_weights).sum(dim=0, keepdim=True)
# take first predicted action or n first actions
action = action[: self.n_action_steps]
return action
return action[: self.n_action_steps]
def _forward(self, qpos, image, actions=None, is_pad=None):
env_state = None
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
image = normalize(image)
def __call__(self, *args, **kwargs) -> dict:
# TODO(now): Temporary bridge until we know what to do about the `update` method.
return self.update(*args, **kwargs)
is_training = actions is not None
if is_training: # training time
actions = actions[:, : self.model.num_queries]
if is_pad is not None:
is_pad = is_pad[:, : self.model.num_queries]
def _preprocess_batch(
self, batch: dict[str, Tensor], add_obs_steps_dim: bool = False
) -> dict[str, Tensor]:
"""
This function expects `batch` to have (at least):
{
"observation.state": (B, 1, J) OR (B, J) tensor of robot states (joint configuration).
"observation.images.top": (B, 1, C, H, W) OR (B, C, H, W) tensor of images.
"action": (B, H, J) tensor of actions (positional target for robot joint configuration)
"action_is_pad": (B, H) mask for whether the actions are padding outside of the episode bounds.
}
"""
if add_obs_steps_dim:
# Add a dimension for the observations steps. Since n_obs_steps > 1 is not supported right now,
# this just amounts to an unsqueeze.
for k in batch:
if k.startswith("observation."):
batch[k] = batch[k].unsqueeze(1)
a_hat, is_pad_hat, (mu, logvar) = self.model(qpos, image, env_state, actions, is_pad)
if batch["observation.state"].shape[1] != 1:
raise ValueError(self._multiple_obs_steps_not_handled_msg)
batch["observation.state"] = batch["observation.state"].squeeze(1)
# TODO(alexander-soare): generalize this to multiple images.
assert (
sum(k.startswith("observation.images.") and not k.endswith("is_pad") for k in batch) == 1
), "ACT only handles one image for now."
# Note: no squeeze is required for "observation.images.top" because then we'd have to unsqueeze to get
# the image index dimension.
all_l1 = F.l1_loss(actions, a_hat, reduction="none")
l1 = all_l1.mean() if is_pad is None else (all_l1 * ~is_pad.unsqueeze(-1)).mean()
def update(self, batch, *_, **__) -> dict:
start_time = time.time()
self._preprocess_batch(batch)
self.train()
num_slices = self.cfg.batch_size
batch_size = self.cfg.horizon * num_slices
assert batch_size % self.cfg.horizon == 0
assert batch_size % num_slices == 0
loss = self.forward(batch, return_loss=True)["loss"]
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
self.parameters(),
self.cfg.grad_clip_norm,
error_if_nonfinite=False,
)
self.optimizer.step()
self.optimizer.zero_grad()
info = {
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": self.cfg.lr,
"update_s": time.time() - start_time,
}
return info
def forward(self, batch: dict[str, Tensor], return_loss: bool = False) -> dict | Tensor:
images = self.image_normalizer(batch["observation.images.top"])
if return_loss: # training time
actions_hat, (mu_hat, log_sigma_x2_hat) = self._forward(
batch["observation.state"], images, batch["action"]
)
l1_loss = (
F.l1_loss(batch["action"], actions_hat, reduction="none")
* ~batch["action_is_pad"].unsqueeze(-1)
).mean()
loss_dict = {}
loss_dict["l1"] = l1
if self.cfg.vae:
total_kld, dim_wise_kld, mean_kld = kl_divergence(mu, logvar)
loss_dict["kl"] = total_kld[0]
loss_dict["loss"] = loss_dict["l1"] + loss_dict["kl"] * self.kl_weight
loss_dict["l1"] = l1_loss
if self.cfg.use_vae:
# Calculate Dₖₗ(latent_pdf || standard_normal). Note: After computing the KL-divergence for
# each dimension independently, we sum over the latent dimension to get the total
# KL-divergence per batch element, then take the mean over the batch.
# (See App. B of https://arxiv.org/abs/1312.6114 for more details).
mean_kld = (
(-0.5 * (1 + log_sigma_x2_hat - mu_hat.pow(2) - (log_sigma_x2_hat).exp())).sum(-1).mean()
)
loss_dict["kl"] = mean_kld
loss_dict["loss"] = loss_dict["l1"] + loss_dict["kl"] * self.cfg.kl_weight
else:
loss_dict["loss"] = loss_dict["l1"]
return loss_dict
else:
action, _, (_, _) = self.model(qpos, image, env_state) # no action, sample from prior
action, _ = self._forward(batch["observation.state"], images)
return action
def _forward(
self, robot_state: Tensor, image: Tensor, actions: Tensor | None = None
) -> tuple[Tensor, tuple[Tensor | None, Tensor | None]]:
"""
Args:
robot_state: (B, J) batch of robot joint configurations.
image: (B, N, C, H, W) batch of N camera frames.
actions: (B, S, A) batch of actions from the target dataset which must be provided if the
VAE is enabled and the model is in training mode.
Returns:
(B, S, A) batch of action sequences
Tuple containing the latent PDF's parameters (mean, log(σ²)) both as (B, L) tensors where L is the
latent dimension.
"""
if self.use_vae and self.training:
assert (
actions is not None
), "actions must be provided when using the variational objective in training mode."
batch_size = robot_state.shape[0]
# Prepare the latent for input to the transformer encoder.
if self.use_vae and actions is not None:
# Prepare the input to the VAE encoder: [cls, *joint_space_configuration, *action_sequence].
cls_embed = einops.repeat(
self.vae_encoder_cls_embed.weight, "1 d -> b 1 d", b=batch_size
) # (B, 1, D)
robot_state_embed = self.vae_encoder_robot_state_input_proj(robot_state).unsqueeze(1) # (B, 1, D)
action_embed = self.vae_encoder_action_input_proj(actions) # (B, S, D)
vae_encoder_input = torch.cat([cls_embed, robot_state_embed, action_embed], axis=1) # (B, S+2, D)
# Prepare fixed positional embedding.
# Note: detach() shouldn't be necessary but leaving it the same as the original code just in case.
pos_embed = self.vae_encoder_pos_enc.clone().detach() # (1, S+2, D)
# Forward pass through VAE encoder to get the latent PDF parameters.
cls_token_out = self.vae_encoder(
vae_encoder_input.permute(1, 0, 2), pos_embed=pos_embed.permute(1, 0, 2)
)[0] # select the class token, with shape (B, D)
latent_pdf_params = self.vae_encoder_latent_output_proj(cls_token_out)
mu = latent_pdf_params[:, : self.latent_dim]
# This is 2log(sigma). Done this way to match the original implementation.
log_sigma_x2 = latent_pdf_params[:, self.latent_dim :]
# Sample the latent with the reparameterization trick.
latent_sample = mu + log_sigma_x2.div(2).exp() * torch.randn_like(mu)
else:
# When not using the VAE encoder, we set the latent to be all zeros.
mu = log_sigma_x2 = None
latent_sample = torch.zeros([batch_size, self.latent_dim], dtype=torch.float32).to(
robot_state.device
)
# Prepare all other transformer encoder inputs.
# Camera observation features and positional embeddings.
all_cam_features = []
all_cam_pos_embeds = []
for cam_id, _ in enumerate(self.camera_names):
cam_features = self.backbone(image[:, cam_id])["feature_map"]
cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype)
cam_features = self.encoder_img_feat_input_proj(cam_features) # (B, C, h, w)
all_cam_features.append(cam_features)
all_cam_pos_embeds.append(cam_pos_embed)
# Concatenate camera observation feature maps and positional embeddings along the width dimension.
encoder_in = torch.cat(all_cam_features, axis=3)
cam_pos_embed = torch.cat(all_cam_pos_embeds, axis=3)
# Get positional embeddings for robot state and latent.
robot_state_embed = self.encoder_robot_state_input_proj(robot_state)
latent_embed = self.encoder_latent_input_proj(latent_sample)
# Stack encoder input and positional embeddings moving to (S, B, C).
encoder_in = torch.cat(
[
torch.stack([latent_embed, robot_state_embed], axis=0),
encoder_in.flatten(2).permute(2, 0, 1),
]
)
pos_embed = torch.cat(
[
self.encoder_robot_and_latent_pos_embed.weight.unsqueeze(1),
cam_pos_embed.flatten(2).permute(2, 0, 1),
],
axis=0,
)
# Forward pass through the transformer modules.
encoder_out = self.encoder(encoder_in, pos_embed=pos_embed)
decoder_in = torch.zeros(
(self.horizon, batch_size, self.d_model), dtype=pos_embed.dtype, device=pos_embed.device
)
decoder_out = self.decoder(
decoder_in,
encoder_out,
encoder_pos_embed=pos_embed,
decoder_pos_embed=self.decoder_pos_embed.weight.unsqueeze(1),
)
# Move back to (B, S, C).
decoder_out = decoder_out.transpose(0, 1)
actions = self.action_head(decoder_out)
return actions, (mu, log_sigma_x2)
def save(self, fp):
torch.save(self.state_dict(), fp)
def load(self, fp):
d = torch.load(fp)
self.load_state_dict(d)
class _TransformerEncoder(nn.Module):
"""Convenience module for running multiple encoder layers, maybe followed by normalization."""
def __init__(self, num_layers: int, **encoder_layer_kwargs: dict):
super().__init__()
self.layers = nn.ModuleList(
[_TransformerEncoderLayer(**encoder_layer_kwargs) for _ in range(num_layers)]
)
self.norm = (
nn.LayerNorm(encoder_layer_kwargs["d_model"])
if encoder_layer_kwargs["normalize_before"]
else nn.Identity()
)
def forward(self, x: Tensor, pos_embed: Tensor | None = None) -> Tensor:
for layer in self.layers:
x = layer(x, pos_embed=pos_embed)
x = self.norm(x)
return x
class _TransformerEncoderLayer(nn.Module):
def __init__(
self,
d_model: int,
num_heads: int,
dim_feedforward: int,
dropout: float,
activation: str,
normalize_before: bool,
):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout)
# Feed forward layers.
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def forward(self, x, pos_embed: Tensor | None = None) -> Tensor:
skip = x
if self.normalize_before:
x = self.norm1(x)
q = k = x if pos_embed is None else x + pos_embed
x = self.self_attn(q, k, value=x)[0] # select just the output, not the attention weights
x = skip + self.dropout1(x)
if self.normalize_before:
skip = x
x = self.norm2(x)
else:
x = self.norm1(x)
skip = x
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
x = skip + self.dropout2(x)
if not self.normalize_before:
x = self.norm2(x)
return x
class _TransformerDecoder(nn.Module):
def __init__(self, num_layers: int, **decoder_layer_kwargs):
"""Convenience module for running multiple decoder layers followed by normalization."""
super().__init__()
self.layers = nn.ModuleList(
[_TransformerDecoderLayer(**decoder_layer_kwargs) for _ in range(num_layers)]
)
self.num_layers = num_layers
self.norm = nn.LayerNorm(decoder_layer_kwargs["d_model"])
def forward(
self,
x: Tensor,
encoder_out: Tensor,
decoder_pos_embed: Tensor | None = None,
encoder_pos_embed: Tensor | None = None,
) -> Tensor:
for layer in self.layers:
x = layer(
x, encoder_out, decoder_pos_embed=decoder_pos_embed, encoder_pos_embed=encoder_pos_embed
)
if self.norm is not None:
x = self.norm(x)
return x
class _TransformerDecoderLayer(nn.Module):
def __init__(
self,
d_model: int,
num_heads: int,
dim_feedforward: int,
dropout: float,
activation: str,
normalize_before: bool,
):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout)
# Feed forward layers.
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def maybe_add_pos_embed(self, tensor: Tensor, pos_embed: Tensor | None) -> Tensor:
return tensor if pos_embed is None else tensor + pos_embed
def forward(
self,
x: Tensor,
encoder_out: Tensor,
decoder_pos_embed: Tensor | None = None,
encoder_pos_embed: Tensor | None = None,
) -> Tensor:
"""
Args:
x: (Decoder Sequence, Batch, Channel) tensor of input tokens.
encoder_out: (Encoder Sequence, B, C) output features from the last layer of the encoder we are
cross-attending with.
decoder_pos_embed: (ES, 1, C) positional embedding for keys (from the encoder).
encoder_pos_embed: (DS, 1, C) Positional_embedding for the queries (from the decoder).
Returns:
(DS, B, C) tensor of decoder output features.
"""
skip = x
if self.normalize_before:
x = self.norm1(x)
q = k = self.maybe_add_pos_embed(x, decoder_pos_embed)
x = self.self_attn(q, k, value=x)[0] # select just the output, not the attention weights
x = skip + self.dropout1(x)
if self.normalize_before:
skip = x
x = self.norm2(x)
else:
x = self.norm1(x)
skip = x
x = self.multihead_attn(
query=self.maybe_add_pos_embed(x, decoder_pos_embed),
key=self.maybe_add_pos_embed(encoder_out, encoder_pos_embed),
value=encoder_out,
)[0] # select just the output, not the attention weights
x = skip + self.dropout2(x)
if self.normalize_before:
skip = x
x = self.norm3(x)
else:
x = self.norm2(x)
skip = x
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
x = skip + self.dropout3(x)
if not self.normalize_before:
x = self.norm3(x)
return x
def _create_sinusoidal_position_embedding(num_positions: int, dimension: int) -> Tensor:
"""1D sinusoidal positional embeddings as in Attention is All You Need.
Args:
num_positions: Number of token positions required.
Returns: (num_positions, dimension) position embeddings (the first dimension is the batch dimension).
"""
def get_position_angle_vec(position):
return [position / np.power(10000, 2 * (hid_j // 2) / dimension) for hid_j in range(dimension)]
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(num_positions)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.from_numpy(sinusoid_table).float()
class _SinusoidalPositionEmbedding2D(nn.Module):
"""2D sinusoidal positional embeddings similar to what's presented in Attention Is All You Need.
The variation is that the position indices are normalized in [0, 2π] (not quite: the lower bound is 1/H
for the vertical direction, and 1/W for the horizontal direction.
"""
def __init__(self, dimension: int):
"""
Args:
dimension: The desired dimension of the embeddings.
"""
super().__init__()
self.dimension = dimension
self._two_pi = 2 * math.pi
self._eps = 1e-6
# Inverse "common ratio" for the geometric progression in sinusoid frequencies.
self._temperature = 10000
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: A (B, C, H, W) batch of 2D feature map to generate the embeddings for.
Returns:
A (1, C, H, W) batch of corresponding sinusoidal positional embeddings.
"""
not_mask = torch.ones_like(x[0, :1]) # (1, H, W)
# Note: These are like range(1, H+1) and range(1, W+1) respectively, but in most implementations
# they would be range(0, H) and range(0, W). Keeping it at as is to match the original code.
y_range = not_mask.cumsum(1, dtype=torch.float32)
x_range = not_mask.cumsum(2, dtype=torch.float32)
# "Normalize" the position index such that it ranges in [0, 2π].
# Note: Adding epsilon on the denominator should not be needed as all values of y_embed and x_range
# are non-zero by construction. This is an artifact of the original code.
y_range = y_range / (y_range[:, -1:, :] + self._eps) * self._two_pi
x_range = x_range / (x_range[:, :, -1:] + self._eps) * self._two_pi
inverse_frequency = self._temperature ** (
2 * (torch.arange(self.dimension, dtype=torch.float32, device=x.device) // 2) / self.dimension
)
x_range = x_range.unsqueeze(-1) / inverse_frequency # (1, H, W, 1)
y_range = y_range.unsqueeze(-1) / inverse_frequency # (1, H, W, 1)
# Note: this stack then flatten operation results in interleaved sine and cosine terms.
# pos_embed_x and pos_embed_y are (1, H, W, C // 2).
pos_embed_x = torch.stack((x_range[..., 0::2].sin(), x_range[..., 1::2].cos()), dim=-1).flatten(3)
pos_embed_y = torch.stack((y_range[..., 0::2].sin(), y_range[..., 1::2].cos()), dim=-1).flatten(3)
pos_embed = torch.cat((pos_embed_y, pos_embed_x), dim=3).permute(0, 3, 1, 2) # (1, C, H, W)
return pos_embed
def _get_activation_fn(activation: str) -> Callable:
"""Return an activation function given a string."""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(f"activation should be relu/gelu/glu, not {activation}.")

View File

@ -1,102 +0,0 @@
"""
Various positional encodings for the transformer.
"""
import math
import torch
from torch import nn
from .utils import NestedTensor
class PositionEmbeddingSine(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one
used by the Attention is all you need paper, generalized to work on images.
"""
def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, tensor):
x = tensor
# mask = tensor_list.mask
# assert mask is not None
# not_mask = ~mask
not_mask = torch.ones_like(x[0, [0]])
y_embed = not_mask.cumsum(1, dtype=torch.float32)
x_embed = not_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
class PositionEmbeddingLearned(nn.Module):
"""
Absolute pos embedding, learned.
"""
def __init__(self, num_pos_feats=256):
super().__init__()
self.row_embed = nn.Embedding(50, num_pos_feats)
self.col_embed = nn.Embedding(50, num_pos_feats)
self.reset_parameters()
def reset_parameters(self):
nn.init.uniform_(self.row_embed.weight)
nn.init.uniform_(self.col_embed.weight)
def forward(self, tensor_list: NestedTensor):
x = tensor_list.tensors
h, w = x.shape[-2:]
i = torch.arange(w, device=x.device)
j = torch.arange(h, device=x.device)
x_emb = self.col_embed(i)
y_emb = self.row_embed(j)
pos = (
torch.cat(
[
x_emb.unsqueeze(0).repeat(h, 1, 1),
y_emb.unsqueeze(1).repeat(1, w, 1),
],
dim=-1,
)
.permute(2, 0, 1)
.unsqueeze(0)
.repeat(x.shape[0], 1, 1, 1)
)
return pos
def build_position_encoding(args):
n_steps = args.hidden_dim // 2
if args.position_embedding in ("v2", "sine"):
# TODO find a better way of exposing other arguments
position_embedding = PositionEmbeddingSine(n_steps, normalize=True)
elif args.position_embedding in ("v3", "learned"):
position_embedding = PositionEmbeddingLearned(n_steps)
else:
raise ValueError(f"not supported {args.position_embedding}")
return position_embedding

View File

@ -1,371 +0,0 @@
"""
DETR Transformer class.
Copy-paste from torch.nn.Transformer with modifications:
* positional encodings are passed in MHattention
* extra LN at the end of encoder is removed
* decoder returns a stack of activations from all decoding layers
"""
import copy
from typing import Optional
import torch
import torch.nn.functional as F # noqa: N812
from torch import Tensor, nn
class Transformer(nn.Module):
def __init__(
self,
d_model=512,
nhead=8,
num_encoder_layers=6,
num_decoder_layers=6,
dim_feedforward=2048,
dropout=0.1,
activation="relu",
normalize_before=False,
return_intermediate_dec=False,
):
super().__init__()
encoder_layer = TransformerEncoderLayer(
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
)
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
decoder_layer = TransformerDecoderLayer(
d_model, nhead, dim_feedforward, dropout, activation, normalize_before
)
decoder_norm = nn.LayerNorm(d_model)
self.decoder = TransformerDecoder(
decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec
)
self._reset_parameters()
self.d_model = d_model
self.nhead = nhead
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(
self,
src,
mask,
query_embed,
pos_embed,
latent_input=None,
proprio_input=None,
additional_pos_embed=None,
):
# TODO flatten only when input has H and W
if len(src.shape) == 4: # has H and W
# flatten NxCxHxW to HWxNxC
bs, c, h, w = src.shape
src = src.flatten(2).permute(2, 0, 1)
pos_embed = pos_embed.flatten(2).permute(2, 0, 1).repeat(1, bs, 1)
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
# mask = mask.flatten(1)
additional_pos_embed = additional_pos_embed.unsqueeze(1).repeat(1, bs, 1) # seq, bs, dim
pos_embed = torch.cat([additional_pos_embed, pos_embed], axis=0)
addition_input = torch.stack([latent_input, proprio_input], axis=0)
src = torch.cat([addition_input, src], axis=0)
else:
assert len(src.shape) == 3
# flatten NxHWxC to HWxNxC
bs, hw, c = src.shape
src = src.permute(1, 0, 2)
pos_embed = pos_embed.unsqueeze(1).repeat(1, bs, 1)
query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
tgt = torch.zeros_like(query_embed)
memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
hs = self.decoder(tgt, memory, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed)
hs = hs.transpose(1, 2)
return hs
class TransformerEncoder(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(
self,
src,
mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
):
output = src
for layer in self.layers:
output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask, pos=pos)
if self.norm is not None:
output = self.norm(output)
return output
class TransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
super().__init__()
self.layers = _get_clones(decoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
def forward(
self,
tgt,
memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
output = tgt
intermediate = []
for layer in self.layers:
output = layer(
output,
memory,
tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask,
pos=pos,
query_pos=query_pos,
)
if self.return_intermediate:
intermediate.append(self.norm(output))
if self.norm is not None:
output = self.norm(output)
if self.return_intermediate:
intermediate.pop()
intermediate.append(output)
if self.return_intermediate:
return torch.stack(intermediate)
return output.unsqueeze(0)
class TransformerEncoderLayer(nn.Module):
def __init__(
self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False
):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(
self,
src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
):
q = k = self.with_pos_embed(src, pos)
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
def forward_pre(
self,
src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
):
src2 = self.norm1(src)
q = k = self.with_pos_embed(src2, pos)
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src2 = self.norm2(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
src = src + self.dropout2(src2)
return src
def forward(
self,
src,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
):
if self.normalize_before:
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
class TransformerDecoderLayer(nn.Module):
def __init__(
self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False
):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
return tensor if pos is None else tensor + pos
def forward_post(
self,
tgt,
memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
q = k = self.with_pos_embed(tgt, query_pos)
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(
query=self.with_pos_embed(tgt, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
def forward_pre(
self,
tgt,
memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
tgt2 = self.norm1(tgt)
q = k = self.with_pos_embed(tgt2, query_pos)
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt2 = self.norm2(tgt)
tgt2 = self.multihead_attn(
query=self.with_pos_embed(tgt2, query_pos),
key=self.with_pos_embed(memory, pos),
value=memory,
attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask,
)[0]
tgt = tgt + self.dropout2(tgt2)
tgt2 = self.norm3(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
tgt = tgt + self.dropout3(tgt2)
return tgt
def forward(
self,
tgt,
memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
query_pos: Optional[Tensor] = None,
):
if self.normalize_before:
return self.forward_pre(
tgt,
memory,
tgt_mask,
memory_mask,
tgt_key_padding_mask,
memory_key_padding_mask,
pos,
query_pos,
)
return self.forward_post(
tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos
)
def _get_clones(module, n):
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
def build_transformer(args):
return Transformer(
d_model=args.hidden_dim,
dropout=args.dropout,
nhead=args.nheads,
dim_feedforward=args.dim_feedforward,
num_encoder_layers=args.enc_layers,
num_decoder_layers=args.dec_layers,
normalize_before=args.pre_norm,
return_intermediate_dec=True,
)
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")

View File

@ -1,478 +0,0 @@
"""
Misc functions, including distributed helpers.
Mostly copy-paste from torchvision references.
"""
import datetime
import os
import pickle
import subprocess
import time
from collections import defaultdict, deque
from typing import List, Optional
import torch
import torch.distributed as dist
# needed due to empty tensor bug in pytorch and torchvision 0.5
import torchvision
from packaging import version
from torch import Tensor
if version.parse(torchvision.__version__) < version.parse("0.7"):
from torchvision.ops import _new_empty_tensor
from torchvision.ops.misc import _output_size
class SmoothedValue:
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
def all_gather(data):
"""
Run all_gather on arbitrary picklable data (not necessarily tensors)
Args:
data: any picklable object
Returns:
list[data]: list of data gathered from each rank
"""
world_size = get_world_size()
if world_size == 1:
return [data]
# serialized to a Tensor
buffer = pickle.dumps(data)
storage = torch.ByteStorage.from_buffer(buffer)
tensor = torch.ByteTensor(storage).to("cuda")
# obtain Tensor size of each rank
local_size = torch.tensor([tensor.numel()], device="cuda")
size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
dist.all_gather(size_list, local_size)
size_list = [int(size.item()) for size in size_list]
max_size = max(size_list)
# receiving Tensor from all ranks
# we pad the tensor because torch all_gather does not support
# gathering tensors of different shapes
tensor_list = []
for _ in size_list:
tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
if local_size != max_size:
padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
tensor = torch.cat((tensor, padding), dim=0)
dist.all_gather(tensor_list, tensor)
data_list = []
for size, tensor in zip(size_list, tensor_list, strict=False):
buffer = tensor.cpu().numpy().tobytes()[:size]
data_list.append(pickle.loads(buffer))
return data_list
def reduce_dict(input_dict, average=True):
"""
Args:
input_dict (dict): all the values will be reduced
average (bool): whether to do average or sum
Reduce the values in the dictionary from all processes so that all processes
have the averaged results. Returns a dict with the same fields as
input_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return input_dict
with torch.no_grad():
names = []
values = []
# sort the keys so that they are consistent across processes
for k in sorted(input_dict.keys()):
names.append(k)
values.append(input_dict[k])
values = torch.stack(values, dim=0)
dist.all_reduce(values)
if average:
values /= world_size
reduced_dict = {k: v for k, v in zip(names, values, strict=False)} # noqa: C416
return reduced_dict
class MetricLogger:
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
]
)
mega_b = 1024.0 * 1024.0
for i, obj in enumerate(iterable):
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / mega_b,
)
)
else:
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
)
)
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("{} Total time: {} ({:.4f} s / it)".format(header, total_time_str, total_time / len(iterable)))
def get_sha():
cwd = os.path.dirname(os.path.abspath(__file__))
def _run(command):
return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()
sha = "N/A"
diff = "clean"
branch = "N/A"
try:
sha = _run(["git", "rev-parse", "HEAD"])
subprocess.check_output(["git", "diff"], cwd=cwd)
diff = _run(["git", "diff-index", "HEAD"])
diff = "has uncommited changes" if diff else "clean"
branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
except Exception:
pass
message = f"sha: {sha}, status: {diff}, branch: {branch}"
return message
def collate_fn(batch):
batch = list(zip(*batch, strict=False))
batch[0] = nested_tensor_from_tensor_list(batch[0])
return tuple(batch)
def _max_by_axis(the_list):
# type: (List[List[int]]) -> List[int]
maxes = the_list[0]
for sublist in the_list[1:]:
for index, item in enumerate(sublist):
maxes[index] = max(maxes[index], item)
return maxes
class NestedTensor:
def __init__(self, tensors, mask: Optional[Tensor]):
self.tensors = tensors
self.mask = mask
def to(self, device):
# type: (Device) -> NestedTensor # noqa
cast_tensor = self.tensors.to(device)
mask = self.mask
if mask is not None:
assert mask is not None
cast_mask = mask.to(device)
else:
cast_mask = None
return NestedTensor(cast_tensor, cast_mask)
def decompose(self):
return self.tensors, self.mask
def __repr__(self):
return str(self.tensors)
def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
# TODO make this more general
if tensor_list[0].ndim == 3:
if torchvision._is_tracing():
# nested_tensor_from_tensor_list() does not export well to ONNX
# call _onnx_nested_tensor_from_tensor_list() instead
return _onnx_nested_tensor_from_tensor_list(tensor_list)
# TODO make it support different-sized images
max_size = _max_by_axis([list(img.shape) for img in tensor_list])
# min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
batch_shape = [len(tensor_list)] + max_size
b, c, h, w = batch_shape
dtype = tensor_list[0].dtype
device = tensor_list[0].device
tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
for img, pad_img, m in zip(tensor_list, tensor, mask, strict=False):
pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
m[: img.shape[1], : img.shape[2]] = False
else:
raise ValueError("not supported")
return NestedTensor(tensor, mask)
# _onnx_nested_tensor_from_tensor_list() is an implementation of
# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
@torch.jit.unused
def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
max_size = []
for i in range(tensor_list[0].dim()):
max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(
torch.int64
)
max_size.append(max_size_i)
max_size = tuple(max_size)
# work around for
# pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
# m[: img.shape[1], :img.shape[2]] = False
# which is not yet supported in onnx
padded_imgs = []
padded_masks = []
for img in tensor_list:
padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape), strict=False)]
padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
padded_imgs.append(padded_img)
m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
padded_masks.append(padded_mask.to(torch.bool))
tensor = torch.stack(padded_imgs)
mask = torch.stack(padded_masks)
return NestedTensor(tensor, mask=mask)
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
else:
print("Not using distributed mode")
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = "nccl"
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
@torch.no_grad()
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
if target.numel() == 0:
return [torch.zeros([], device=output.device)]
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
# type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
"""
Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
This will eventually be supported natively by PyTorch, and this
class can go away.
"""
if version.parse(torchvision.__version__) < version.parse("0.7"):
if input.numel() > 0:
return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners)
output_shape = _output_size(2, input, size, scale_factor)
output_shape = list(input.shape[:-2]) + list(output_shape)
return _new_empty_tensor(input, output_shape)
else:
return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)

View File

@ -244,8 +244,10 @@ class DiffusionUnetImagePolicy(BaseImagePolicy):
return result
def compute_loss(self, batch):
assert "valid_mask" not in batch
nobs = batch["obs"]
nobs = {
"image": batch["observation.image"],
"agent_pos": batch["observation.state"],
}
nactions = batch["action"]
batch_size = nactions.shape[0]
horizon = nactions.shape[1]
@ -303,6 +305,11 @@ class DiffusionUnetImagePolicy(BaseImagePolicy):
loss = F.mse_loss(pred, target, reduction="none")
loss = loss * loss_mask.type(loss.dtype)
loss = reduce(loss, "b ... -> b (...)", "mean")
if "action_is_pad" in batch:
in_episode_bound = ~batch["action_is_pad"]
loss = loss * in_episode_bound[:, :, None].type(loss.dtype)
loss = reduce(loss, "b t c -> b", "mean", b=batch_size)
loss = loss.mean()
return loss

View File

@ -1,18 +1,20 @@
import copy
import logging
import time
from collections import deque
import hydra
import torch
from torch import nn
from lerobot.common.policies.abstract import AbstractPolicy
from lerobot.common.policies.diffusion.diffusion_unet_image_policy import DiffusionUnetImagePolicy
from lerobot.common.policies.diffusion.model.lr_scheduler import get_scheduler
from lerobot.common.policies.diffusion.model.multi_image_obs_encoder import MultiImageObsEncoder, RgbEncoder
from lerobot.common.policies.utils import populate_queues
from lerobot.common.utils import get_safe_torch_device
class DiffusionPolicy(AbstractPolicy):
class DiffusionPolicy(nn.Module):
name = "diffusion"
def __init__(
@ -38,8 +40,12 @@ class DiffusionPolicy(AbstractPolicy):
# parameters passed to step
**kwargs,
):
super().__init__(n_action_steps)
super().__init__()
self.cfg = cfg
self.n_obs_steps = n_obs_steps
self.n_action_steps = n_action_steps
# queues are populated during rollout of the policy, they contain the n latest observations and actions
self._queues = None
noise_scheduler = hydra.utils.instantiate(cfg_noise_scheduler)
rgb_model_input_shape = copy.deepcopy(shape_meta.obs.image.shape)
@ -100,75 +106,51 @@ class DiffusionPolicy(AbstractPolicy):
last_epoch=self.global_step - 1,
)
def reset(self):
"""
Clear observation and action queues. Should be called on `env.reset()`
"""
self._queues = {
"observation.image": deque(maxlen=self.n_obs_steps),
"observation.state": deque(maxlen=self.n_obs_steps),
"action": deque(maxlen=self.n_action_steps),
}
@torch.no_grad()
def select_actions(self, observation, step_count):
def select_action(self, batch, step):
"""
Note: this uses the ema model weights if self.training == False, otherwise the non-ema model weights.
"""
# TODO(rcadene): remove unused step_count
del step_count
# TODO(rcadene): remove unused step
del step
assert "observation.image" in batch
assert "observation.state" in batch
assert len(batch) == 2
obs_dict = {
"image": observation["image"],
"agent_pos": observation["state"],
}
if self.training:
out = self.diffusion.predict_action(obs_dict)
else:
out = self.ema_diffusion.predict_action(obs_dict)
action = out["action"]
self._queues = populate_queues(self._queues, batch)
if len(self._queues["action"]) == 0:
# stack n latest observations from the queue
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
obs_dict = {
"image": batch["observation.image"],
"agent_pos": batch["observation.state"],
}
if self.training:
out = self.diffusion.predict_action(obs_dict)
else:
out = self.ema_diffusion.predict_action(obs_dict)
self._queues["action"].extend(out["action"].transpose(0, 1))
action = self._queues["action"].popleft()
return action
def update(self, replay_buffer, step):
def forward(self, batch, step):
start_time = time.time()
self.diffusion.train()
num_slices = self.cfg.batch_size
batch_size = self.cfg.horizon * num_slices
assert batch_size % self.cfg.horizon == 0
assert batch_size % num_slices == 0
def process_batch(batch, horizon, num_slices):
# trajectory t = 64, horizon h = 16
# (t h) ... -> t h ...
batch = batch.reshape(num_slices, horizon) # .transpose(1, 0).contiguous()
# |-1|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14| timestamps: 16
# |o|o| observations: 2
# | |a|a|a|a|a|a|a|a| actions executed: 8
# |p|p|p|p|p|p|p|p|p|p|p| p| p| p| p| p| actions predicted: 16
# note: we predict the action needed to go from t=-1 to t=0 similarly to an inverse kinematic model
image = batch["observation", "image"]
state = batch["observation", "state"]
action = batch["action"]
assert image.shape[1] == horizon
assert state.shape[1] == horizon
assert action.shape[1] == horizon
if not (horizon == 16 and self.cfg.n_obs_steps == 2):
raise NotImplementedError()
# keep first 2 observations of the slice corresponding to t=[-1,0]
image = image[:, : self.cfg.n_obs_steps]
state = state[:, : self.cfg.n_obs_steps]
out = {
"obs": {
"image": image.to(self.device, non_blocking=True),
"agent_pos": state.to(self.device, non_blocking=True),
},
"action": action.to(self.device, non_blocking=True),
}
return out
batch = replay_buffer.sample(batch_size)
batch = process_batch(batch, self.cfg.horizon, num_slices)
data_s = time.time() - start_time
loss = self.diffusion.compute_loss(batch)
loss.backward()
@ -189,7 +171,6 @@ class DiffusionPolicy(AbstractPolicy):
"loss": loss.item(),
"grad_norm": float(grad_norm),
"lr": self.lr_scheduler.get_last_lr()[0],
"data_s": data_s,
"update_s": time.time() - start_time,
}

View File

@ -1,11 +1,10 @@
def make_policy(cfg):
if cfg.policy.name != "diffusion" and cfg.rollout_batch_size > 1:
raise NotImplementedError("Only diffusion policy supports rollout_batch_size > 1 for the time being.")
if cfg.policy.name == "tdmpc":
from lerobot.common.policies.tdmpc.policy import TDMPCPolicy
policy = TDMPCPolicy(cfg.policy, cfg.device)
policy = TDMPCPolicy(
cfg.policy, n_obs_steps=cfg.n_obs_steps, n_action_steps=cfg.n_action_steps, device=cfg.device
)
elif cfg.policy.name == "diffusion":
from lerobot.common.policies.diffusion.policy import DiffusionPolicy
@ -17,24 +16,24 @@ def make_policy(cfg):
cfg_obs_encoder=cfg.obs_encoder,
cfg_optimizer=cfg.optimizer,
cfg_ema=cfg.ema,
n_action_steps=cfg.n_action_steps + cfg.n_latency_steps,
# n_obs_steps=cfg.n_obs_steps,
# n_action_steps=cfg.n_action_steps,
**cfg.policy,
)
elif cfg.policy.name == "act":
from lerobot.common.policies.act.policy import ActionChunkingTransformerPolicy
policy = ActionChunkingTransformerPolicy(
cfg.policy, cfg.device, n_action_steps=cfg.n_action_steps + cfg.n_latency_steps
)
policy = ActionChunkingTransformerPolicy(cfg.policy, cfg.device)
policy.to(cfg.device)
else:
raise ValueError(cfg.policy.name)
if cfg.policy.pretrained_model_path:
# TODO(rcadene): hack for old pretrained models from fowm
if cfg.policy.name == "tdmpc" and "fowm" in cfg.policy.pretrained_model_path:
if "offline" in cfg.pretrained_model_path:
if "offline" in cfg.policy.pretrained_model_path:
policy.step[0] = 25000
elif "final" in cfg.pretrained_model_path:
elif "final" in cfg.policy.pretrained_model_path:
policy.step[0] = 100000
else:
raise NotImplementedError()

View File

@ -1,6 +1,7 @@
# ruff: noqa: N806
import time
from collections import deque
from copy import deepcopy
import einops
@ -9,7 +10,7 @@ import torch
import torch.nn as nn
import lerobot.common.policies.tdmpc.helper as h
from lerobot.common.policies.abstract import AbstractPolicy
from lerobot.common.policies.utils import populate_queues
from lerobot.common.utils import get_safe_torch_device
FIRST_FRAME = 0
@ -87,16 +88,18 @@ class TOLD(nn.Module):
return torch.min(Q1, Q2) if return_type == "min" else (Q1 + Q2) / 2
class TDMPCPolicy(AbstractPolicy):
class TDMPCPolicy(nn.Module):
"""Implementation of TD-MPC learning + inference."""
name = "tdmpc"
def __init__(self, cfg, device):
super().__init__(None)
def __init__(self, cfg, n_obs_steps, n_action_steps, device):
super().__init__()
self.action_dim = cfg.action_dim
self.cfg = cfg
self.n_obs_steps = n_obs_steps
self.n_action_steps = n_action_steps
self.device = get_safe_torch_device(device)
self.std = h.linear_schedule(cfg.std_schedule, 0)
self.model = TOLD(cfg)
@ -107,7 +110,6 @@ class TDMPCPolicy(AbstractPolicy):
# self.bc_optim = torch.optim.Adam(self.model.parameters(), lr=self.cfg.lr)
self.model.eval()
self.model_target.eval()
self.batch_size = cfg.batch_size
self.register_buffer("step", torch.zeros(1))
@ -128,20 +130,54 @@ class TDMPCPolicy(AbstractPolicy):
self.model.load_state_dict(d["model"])
self.model_target.load_state_dict(d["model_target"])
@torch.no_grad()
def select_actions(self, observation, step_count):
if observation["image"].shape[0] != 1:
raise NotImplementedError("Batch size > 1 not handled")
t0 = step_count.item() == 0
obs = {
# TODO(rcadene): remove contiguous hack...
"rgb": observation["image"].contiguous(),
"state": observation["state"].contiguous(),
def reset(self):
"""
Clear observation and action queues. Should be called on `env.reset()`
"""
self._queues = {
"observation.image": deque(maxlen=self.n_obs_steps),
"observation.state": deque(maxlen=self.n_obs_steps),
"action": deque(maxlen=self.n_action_steps),
}
# Note: unsqueeze needed because `act` still uses non-batch logic.
action = self.act(obs, t0=t0, step=self.step.item()).unsqueeze(0)
@torch.no_grad()
def select_action(self, batch, step):
assert "observation.image" in batch
assert "observation.state" in batch
assert len(batch) == 2
self._queues = populate_queues(self._queues, batch)
t0 = step == 0
self.eval()
if len(self._queues["action"]) == 0:
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
if self.n_obs_steps == 1:
# hack to remove the time dimension
for key in batch:
assert batch[key].shape[1] == 1
batch[key] = batch[key][:, 0]
actions = []
batch_size = batch["observation.image"].shape[0]
for i in range(batch_size):
obs = {
"rgb": batch["observation.image"][[i]],
"state": batch["observation.state"][[i]],
}
# Note: unsqueeze needed because `act` still uses non-batch logic.
action = self.act(obs, t0=t0, step=self.step)
actions.append(action)
action = torch.stack(actions)
# tdmpc returns an action for 1 timestep only, so we copy it over `n_action_steps` time
if i in range(self.n_action_steps):
self._queues["action"].append(action)
action = self._queues["action"].popleft()
return action
@torch.no_grad()
@ -290,117 +326,54 @@ class TDMPCPolicy(AbstractPolicy):
def _td_target(self, next_z, reward, mask):
"""Compute the TD-target from a reward and the observation at the following time step."""
next_v = self.model.V(next_z)
td_target = reward + self.cfg.discount * mask * next_v
td_target = reward + self.cfg.discount * mask * next_v.squeeze(2)
return td_target
def update(self, replay_buffer, step, demo_buffer=None):
def forward(self, batch, step):
"""Main update function. Corresponds to one iteration of the model learning."""
start_time = time.time()
num_slices = self.cfg.batch_size
batch_size = self.cfg.horizon * num_slices
batch_size = batch["index"].shape[0]
if demo_buffer is None:
demo_batch_size = 0
else:
# Update oversampling ratio
demo_pc_batch = h.linear_schedule(self.cfg.demo_schedule, step)
demo_num_slices = int(demo_pc_batch * self.batch_size)
demo_batch_size = self.cfg.horizon * demo_num_slices
batch_size -= demo_batch_size
num_slices -= demo_num_slices
replay_buffer._sampler.num_slices = num_slices
demo_buffer._sampler.num_slices = demo_num_slices
# TODO(rcadene): convert tdmpc with (batch size, time/horizon, channels)
# instead of currently (time/horizon, batch size, channels) which is not the pytorch convention
# batch size b = 256, time/horizon t = 5
# b t ... -> t b ...
for key in batch:
if batch[key].ndim > 1:
batch[key] = batch[key].transpose(1, 0)
assert demo_batch_size % self.cfg.horizon == 0
assert demo_batch_size % demo_num_slices == 0
action = batch["action"]
reward = batch["next.reward"]
# idxs = batch["index"] # TODO(rcadene): use idxs to update sampling weights
done = torch.zeros_like(reward, dtype=torch.bool, device=reward.device)
mask = torch.ones_like(reward, dtype=torch.bool, device=reward.device)
weights = torch.ones(batch_size, dtype=torch.bool, device=reward.device)
assert batch_size % self.cfg.horizon == 0
assert batch_size % num_slices == 0
obses = {
"rgb": batch["observation.image"],
"state": batch["observation.state"],
}
# Sample from interaction dataset
def process_batch(batch, horizon, num_slices):
# trajectory t = 256, horizon h = 5
# (t h) ... -> h t ...
batch = batch.reshape(num_slices, horizon).transpose(1, 0).contiguous()
obs = {
"rgb": batch["observation", "image"][FIRST_FRAME].to(self.device, non_blocking=True),
"state": batch["observation", "state"][FIRST_FRAME].to(self.device, non_blocking=True),
}
action = batch["action"].to(self.device, non_blocking=True)
next_obses = {
"rgb": batch["next", "observation", "image"].to(self.device, non_blocking=True),
"state": batch["next", "observation", "state"].to(self.device, non_blocking=True),
}
reward = batch["next", "reward"].to(self.device, non_blocking=True)
idxs = batch["index"][FIRST_FRAME].to(self.device, non_blocking=True)
weights = batch["_weight"][FIRST_FRAME, :, None].to(self.device, non_blocking=True)
# TODO(rcadene): rearrange directly in offline dataset
if reward.ndim == 2:
reward = einops.rearrange(reward, "h t -> h t 1")
assert reward.ndim == 3
assert reward.shape == (horizon, num_slices, 1)
# We dont use `batch["next", "done"]` since it only indicates the end of an
# episode, but not the end of the trajectory of an episode.
# Neither does `batch["next", "terminated"]`
done = torch.zeros_like(reward, dtype=torch.bool, device=reward.device)
mask = torch.ones_like(reward, dtype=torch.bool, device=reward.device)
return obs, action, next_obses, reward, mask, done, idxs, weights
batch = replay_buffer.sample(batch_size) if self.cfg.balanced_sampling else replay_buffer.sample()
obs, action, next_obses, reward, mask, done, idxs, weights = process_batch(
batch, self.cfg.horizon, num_slices
)
# Sample from demonstration dataset
if demo_batch_size > 0:
demo_batch = demo_buffer.sample(demo_batch_size)
(
demo_obs,
demo_action,
demo_next_obses,
demo_reward,
demo_mask,
demo_done,
demo_idxs,
demo_weights,
) = process_batch(demo_batch, self.cfg.horizon, demo_num_slices)
if isinstance(obs, dict):
obs = {k: torch.cat([obs[k], demo_obs[k]]) for k in obs}
next_obses = {k: torch.cat([next_obses[k], demo_next_obses[k]], dim=1) for k in next_obses}
else:
obs = torch.cat([obs, demo_obs])
next_obses = torch.cat([next_obses, demo_next_obses], dim=1)
action = torch.cat([action, demo_action], dim=1)
reward = torch.cat([reward, demo_reward], dim=1)
mask = torch.cat([mask, demo_mask], dim=1)
done = torch.cat([done, demo_done], dim=1)
idxs = torch.cat([idxs, demo_idxs])
weights = torch.cat([weights, demo_weights])
shapes = {}
for k in obses:
shapes[k] = obses[k].shape
obses[k] = einops.rearrange(obses[k], "t b ... -> (t b) ... ")
# Apply augmentations
aug_tf = h.aug(self.cfg)
obs = aug_tf(obs)
obses = aug_tf(obses)
for k in next_obses:
next_obses[k] = einops.rearrange(next_obses[k], "h t ... -> (h t) ...")
next_obses = aug_tf(next_obses)
for k in next_obses:
next_obses[k] = einops.rearrange(
next_obses[k],
"(h t) ... -> h t ...",
h=self.cfg.horizon,
t=self.cfg.batch_size,
)
for k in obses:
t, b = shapes[k][:2]
obses[k] = einops.rearrange(obses[k], "(t b) ... -> t b ... ", b=b, t=t)
horizon = self.cfg.horizon
obs, next_obses = {}, {}
for k in obses:
obs[k] = obses[k][0]
next_obses[k] = obses[k][1:].clone()
horizon = next_obses["rgb"].shape[0]
loss_mask = torch.ones_like(mask, device=self.device)
for t in range(1, horizon):
loss_mask[t] = loss_mask[t - 1] * (~done[t - 1])
@ -418,7 +391,7 @@ class TDMPCPolicy(AbstractPolicy):
td_targets = self._td_target(next_z, reward, mask)
# Latent rollout
zs = torch.empty(horizon + 1, self.batch_size, self.cfg.latent_dim, device=self.device)
zs = torch.empty(horizon + 1, batch_size, self.cfg.latent_dim, device=self.device)
reward_preds = torch.empty_like(reward, device=self.device)
assert reward.shape[0] == horizon
z = self.model.encode(obs)
@ -427,22 +400,21 @@ class TDMPCPolicy(AbstractPolicy):
for t in range(horizon):
z, reward_pred = self.model.next(z, action[t])
zs[t + 1] = z
reward_preds[t] = reward_pred
reward_preds[t] = reward_pred.squeeze(1)
with torch.no_grad():
v_target = self.model_target.Q(zs[:-1].detach(), action, return_type="min")
# Predictions
qs = self.model.Q(zs[:-1], action, return_type="all")
qs = qs.squeeze(3)
value_info["Q"] = qs.mean().item()
v = self.model.V(zs[:-1])
value_info["V"] = v.mean().item()
# Losses
rho = torch.pow(self.cfg.rho, torch.arange(horizon, device=self.device)).view(-1, 1, 1)
consistency_loss = (rho * torch.mean(h.mse(zs[1:], z_targets), dim=2, keepdim=True) * loss_mask).sum(
dim=0
)
rho = torch.pow(self.cfg.rho, torch.arange(horizon, device=self.device)).view(-1, 1)
consistency_loss = (rho * torch.mean(h.mse(zs[1:], z_targets), dim=2) * loss_mask).sum(dim=0)
reward_loss = (rho * h.mse(reward_preds, reward) * loss_mask).sum(dim=0)
q_value_loss, priority_loss = 0, 0
for q in range(self.cfg.num_q):
@ -450,7 +422,9 @@ class TDMPCPolicy(AbstractPolicy):
priority_loss += (rho * h.l1(qs[q], td_targets) * loss_mask).sum(dim=0)
expectile = h.linear_schedule(self.cfg.expectile, step)
v_value_loss = (rho * h.l2_expectile(v_target - v, expectile=expectile) * loss_mask).sum(dim=0)
v_value_loss = (rho * h.l2_expectile(v_target - v, expectile=expectile).squeeze(2) * loss_mask).sum(
dim=0
)
total_loss = (
self.cfg.consistency_coef * consistency_loss
@ -459,7 +433,7 @@ class TDMPCPolicy(AbstractPolicy):
+ self.cfg.value_coef * v_value_loss
)
weighted_loss = (total_loss.squeeze(1) * weights).mean()
weighted_loss = (total_loss * weights).mean()
weighted_loss.register_hook(lambda grad: grad * (1 / self.cfg.horizon))
has_nan = torch.isnan(weighted_loss).item()
if has_nan:
@ -472,19 +446,20 @@ class TDMPCPolicy(AbstractPolicy):
)
self.optim.step()
if self.cfg.per:
# Update priorities
priorities = priority_loss.clamp(max=1e4).detach()
has_nan = torch.isnan(priorities).any().item()
if has_nan:
print(f"priorities has nan: {priorities=}")
else:
replay_buffer.update_priority(
idxs[:num_slices],
priorities[:num_slices],
)
if demo_batch_size > 0:
demo_buffer.update_priority(demo_idxs, priorities[num_slices:])
# TODO(rcadene): implement PrioritizedSampling by modifying sampler.weights with priorities computed by a criterion
# if self.cfg.per:
# # Update priorities
# priorities = priority_loss.clamp(max=1e4).detach()
# has_nan = torch.isnan(priorities).any().item()
# if has_nan:
# print(f"priorities has nan: {priorities=}")
# else:
# replay_buffer.update_priority(
# idxs[:num_slices],
# priorities[:num_slices],
# )
# if demo_batch_size > 0:
# demo_buffer.update_priority(demo_idxs, priorities[num_slices:])
# Update policy + target network
_, pi_update_info = self.update_pi(zs[:-1].detach(), acts=action)
@ -507,7 +482,7 @@ class TDMPCPolicy(AbstractPolicy):
"data_s": data_s,
"update_s": time.time() - start_time,
}
info["demo_batch_size"] = demo_batch_size
# info["demo_batch_size"] = demo_batch_size
info["expectile"] = expectile
info.update(value_info)
info.update(pi_update_info)

View File

@ -0,0 +1,10 @@
def populate_queues(queues, batch):
for key in batch:
if len(queues[key]) != queues[key].maxlen:
# initialize by copying the first observation several times until the queue is full
while len(queues[key]) != queues[key].maxlen:
queues[key].append(batch[key])
else:
# add latest observation to the queue
queues[key].append(batch[key])
return queues

View File

@ -1,53 +1,49 @@
from typing import Sequence
import torch
from tensordict import TensorDictBase
from tensordict.nn import dispatch
from tensordict.utils import NestedKey
from torchrl.envs.transforms import ObservationTransform, Transform
from torchvision.transforms.v2 import Compose, Transform
class Prod(ObservationTransform):
def apply_inverse_transform(item, transform):
transforms = transform.transforms if isinstance(transform, Compose) else [transform]
for tf in transforms[::-1]:
if tf.invertible:
item = tf.inverse_transform(item)
else:
raise ValueError(f"Inverse transform called on a non invertible transform ({tf}).")
return item
class Prod(Transform):
invertible = True
def __init__(self, in_keys: Sequence[NestedKey], prod: float):
def __init__(self, in_keys: list[str], prod: float):
super().__init__()
self.in_keys = in_keys
self.prod = prod
self.original_dtypes = {}
def _reset(self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase) -> TensorDictBase:
# _reset is called once when the environment reset to normalize the first observation
tensordict_reset = self._call(tensordict_reset)
return tensordict_reset
@dispatch(source="in_keys", dest="out_keys")
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
return self._call(tensordict)
def _call(self, td):
def forward(self, item):
for key in self.in_keys:
if td.get(key, None) is None:
if key not in item:
continue
self.original_dtypes[key] = td[key].dtype
td[key] = td[key].type(torch.float32) * self.prod
return td
self.original_dtypes[key] = item[key].dtype
item[key] = item[key].type(torch.float32) * self.prod
return item
def _inv_call(self, td: TensorDictBase) -> TensorDictBase:
def inverse_transform(self, item):
for key in self.in_keys:
if td.get(key, None) is None:
if key not in item:
continue
td[key] = (td[key] / self.prod).type(self.original_dtypes[key])
return td
item[key] = (item[key] / self.prod).type(self.original_dtypes[key])
return item
def transform_observation_spec(self, obs_spec):
for key in self.in_keys:
if obs_spec.get(key, None) is None:
continue
obs_spec[key].space.high = obs_spec[key].space.high.type(torch.float32) * self.prod
obs_spec[key].space.low = obs_spec[key].space.low.type(torch.float32) * self.prod
obs_spec[key].dtype = torch.float32
return obs_spec
# def transform_observation_spec(self, obs_spec):
# for key in self.in_keys:
# if obs_spec.get(key, None) is None:
# continue
# obs_spec[key].space.high = obs_spec[key].space.high.type(torch.float32) * self.prod
# obs_spec[key].space.low = obs_spec[key].space.low.type(torch.float32) * self.prod
# obs_spec[key].dtype = torch.float32
# return obs_spec
class NormalizeTransform(Transform):
@ -55,65 +51,50 @@ class NormalizeTransform(Transform):
def __init__(
self,
stats: TensorDictBase,
in_keys: Sequence[NestedKey] = None,
out_keys: Sequence[NestedKey] | None = None,
in_keys_inv: Sequence[NestedKey] | None = None,
out_keys_inv: Sequence[NestedKey] | None = None,
stats: dict,
in_keys: list[str] = None,
out_keys: list[str] | None = None,
in_keys_inv: list[str] | None = None,
out_keys_inv: list[str] | None = None,
mode="mean_std",
):
if out_keys is None:
out_keys = in_keys
if in_keys_inv is None:
in_keys_inv = out_keys
if out_keys_inv is None:
out_keys_inv = in_keys
super().__init__(
in_keys=in_keys, out_keys=out_keys, in_keys_inv=in_keys_inv, out_keys_inv=out_keys_inv
)
super().__init__()
self.in_keys = in_keys
self.out_keys = in_keys if out_keys is None else out_keys
self.in_keys_inv = self.out_keys if in_keys_inv is None else in_keys_inv
self.out_keys_inv = self.in_keys if out_keys_inv is None else out_keys_inv
self.stats = stats
assert mode in ["mean_std", "min_max"]
self.mode = mode
def _reset(self, tensordict: TensorDictBase, tensordict_reset: TensorDictBase) -> TensorDictBase:
# _reset is called once when the environment reset to normalize the first observation
tensordict_reset = self._call(tensordict_reset)
return tensordict_reset
@dispatch(source="in_keys", dest="out_keys")
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
return self._call(tensordict)
def _call(self, td: TensorDictBase) -> TensorDictBase:
def forward(self, item):
for inkey, outkey in zip(self.in_keys, self.out_keys, strict=False):
# TODO(rcadene): don't know how to do `inkey not in td`
if td.get(inkey, None) is None:
if inkey not in item:
continue
if self.mode == "mean_std":
mean = self.stats[inkey]["mean"]
std = self.stats[inkey]["std"]
td[outkey] = (td[inkey] - mean) / (std + 1e-8)
item[outkey] = (item[inkey] - mean) / (std + 1e-8)
else:
min = self.stats[inkey]["min"]
max = self.stats[inkey]["max"]
# normalize to [0,1]
td[outkey] = (td[inkey] - min) / (max - min)
item[outkey] = (item[inkey] - min) / (max - min)
# normalize to [-1, 1]
td[outkey] = td[outkey] * 2 - 1
return td
item[outkey] = item[outkey] * 2 - 1
return item
def _inv_call(self, td: TensorDictBase) -> TensorDictBase:
def inverse_transform(self, item):
for inkey, outkey in zip(self.in_keys_inv, self.out_keys_inv, strict=False):
# TODO(rcadene): don't know how to do `inkey not in td`
if td.get(inkey, None) is None:
if inkey not in item:
continue
if self.mode == "mean_std":
mean = self.stats[inkey]["mean"]
std = self.stats[inkey]["std"]
td[outkey] = td[inkey] * std + mean
item[outkey] = item[inkey] * std + mean
else:
min = self.stats[inkey]["min"]
max = self.stats[inkey]["max"]
td[outkey] = (td[inkey] + 1) / 2
td[outkey] = td[outkey] * (max - min) + min
return td
item[outkey] = (item[inkey] + 1) / 2
item[outkey] = item[outkey] * (max - min) + min
return item

View File

@ -95,3 +95,16 @@ def init_hydra_config(config_path: str, overrides: list[str] | None = None) -> D
)
cfg = hydra.compose(Path(config_path).stem, overrides)
return cfg
def print_cuda_memory_usage():
"""Use this function to locate and debug memory leak."""
import gc
gc.collect()
# Also clear the cache if you want to fully release the memory
torch.cuda.empty_cache()
print("Current GPU Memory Allocated: {:.2f} MB".format(torch.cuda.memory_allocated(0) / 1024**2))
print("Maximum GPU Memory Allocated: {:.2f} MB".format(torch.cuda.max_memory_allocated(0) / 1024**2))
print("Current GPU Memory Reserved: {:.2f} MB".format(torch.cuda.memory_reserved(0) / 1024**2))
print("Maximum GPU Memory Reserved: {:.2f} MB".format(torch.cuda.max_memory_reserved(0) / 1024**2))

View File

@ -4,7 +4,7 @@ eval_episodes: 50
eval_freq: 7500
save_freq: 75000
log_freq: 250
# TODO: same as simxarm, need to adjust
# TODO: same as xarm, need to adjust
offline_steps: 25000
online_steps: 25000
@ -14,11 +14,10 @@ dataset_id: aloha_sim_insertion_human
env:
name: aloha
task: sim_insertion
task: AlohaInsertion-v0
from_pixels: True
pixels_only: False
image_size: [3, 480, 640]
action_repeat: 1
episode_length: 400
fps: ${fps}

View File

@ -4,7 +4,7 @@ eval_episodes: 50
eval_freq: 7500
save_freq: 75000
log_freq: 250
# TODO: same as simxarm, need to adjust
# TODO: same as xarm, need to adjust
offline_steps: 25000
online_steps: 25000
@ -14,11 +14,10 @@ dataset_id: pusht
env:
name: pusht
task: pusht
task: PushT-v0
from_pixels: True
pixels_only: False
image_size: 96
action_repeat: 1
episode_length: 300
fps: ${fps}

View File

@ -12,12 +12,11 @@ fps: 15
dataset_id: xarm_lift_medium
env:
name: simxarm
task: lift
name: xarm
task: XarmLift-v0
from_pixels: True
pixels_only: False
image_size: 84
action_repeat: 2
episode_length: 25
fps: ${fps}

View File

@ -1,6 +1,6 @@
# @package _global_
offline_steps: 1344000
offline_steps: 80000
online_steps: 0
eval_episodes: 1
@ -10,7 +10,6 @@ log_freq: 250
horizon: 100
n_obs_steps: 1
n_latency_steps: 0
# when temporal_agg=False, n_action_steps=horizon
n_action_steps: ${horizon}
@ -21,26 +20,27 @@ policy:
lr: 1e-5
lr_backbone: 1e-5
pretrained_backbone: true
weight_decay: 1e-4
grad_clip_norm: 10
backbone: resnet18
num_queries: ${horizon} # chunk_size
horizon: ${horizon} # chunk_size
kl_weight: 10
hidden_dim: 512
d_model: 512
dim_feedforward: 3200
vae_enc_layers: 4
enc_layers: 4
dec_layers: 7
nheads: 8
dec_layers: 1
num_heads: 8
#camera_names: [top, front_close, left_pillar, right_pillar]
camera_names: [top]
position_embedding: sine
masks: false
dilation: false
dropout: 0.1
pre_norm: false
activation: relu
latent_dim: 32
vae: true
use_vae: true
batch_size: 8
@ -51,8 +51,18 @@ policy:
utd: 1
n_obs_steps: ${n_obs_steps}
n_action_steps: ${n_action_steps}
temporal_agg: false
state_dim: ???
action_dim: ???
state_dim: 14
action_dim: 14
image_normalization:
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
delta_timestamps:
observation.images.top: [0.0]
observation.state: [0.0]
action: "[i / ${fps} for i in range(${horizon})]"

Some files were not shown because too many files have changed in this diff Show More