Added visualisations for image augmentation

This commit is contained in:
Marina Barannikov 2024-06-04 11:57:45 +00:00
parent 42f9cc9c2a
commit 5eea2542d9
3 changed files with 74 additions and 10 deletions

View File

@ -47,11 +47,11 @@ class RandomSubsetApply(Transform):
def make_transforms(cfg): def make_transforms(cfg):
image_transforms = [] image_transforms = []
if 'jit' in cfg.image_transform.list: if 'colorjitter' in cfg.list:
image_transforms.append(v2.ColorJitter(brightness=cfg.colorjitter_range, contrast=cfg.colorjitter_range)) image_transforms.append(v2.ColorJitter(brightness=cfg.colorjitter_factor, contrast=cfg.colorjitter_factor))
if 'sharpness' in cfg.image_transform.list: if 'sharpness' in cfg.list:
image_transforms.append(v2.RandomAdjustSharpness(cfg.sharpness_factor, p=cfg.sharpness_p)) image_transforms.append(v2.RandomAdjustSharpness(cfg.sharpness_factor, p=cfg.sharpness_p))
if 'blur' in cfg.image_transform.list: if 'blur' in cfg.list:
image_transforms.append(v2.RandomAdjustSharpness(cfg.blur_factor, p=cfg.blur_p)) image_transforms.append(v2.RandomAdjustSharpness(cfg.blur_factor, p=cfg.blur_p))
return v2.Compose(RandomSubsetApply(image_transforms, n_subset=cfg.n_subset), v2.ToDtype(torch.float32, scale=True)) return v2.Compose([RandomSubsetApply(image_transforms, n_subset=cfg.n_subset), v2.ToDtype(torch.float32, scale=True)])

View File

@ -60,10 +60,9 @@ wandb:
image_transform: image_transform:
enable: false enable: false
colorjittor_range: (0, 1) colorjitter_factor: 0.5
colorjittor_p: 1 colorjitter_p: 1.O
# Range from which to sample colorjittor factor sharpness_factor: 3.0
sharpness_factor: 3
# Should be more than 1, setting parameter to 1 does not change the image # Should be more than 1, setting parameter to 1 does not change the image
sharpness_p: 0.5 sharpness_p: 0.5
blur_factor: 0.2 blur_factor: 0.2
@ -71,4 +70,4 @@ image_transform:
blur_p: 0.5 blur_p: 0.5
n_subset: 3 n_subset: 3
# Maximum number of transforms to apply # Maximum number of transforms to apply
list: ["colorjittor", "sharpness", "blur"] list: ["colorjitter", "sharpness", "blur"]

View File

@ -0,0 +1,65 @@
from lerobot.common.utils.utils import init_hydra_config
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.transforms import make_transforms
from pathlib import Path
import matplotlib.pyplot as plt
DEFAULT_CONFIG_PATH = "configs/default.yaml"
def show_image_transforms(cfg, repo_id, episode_index=0, output_dir="outputs/show_image_transforms"):
"""
Apply a series of image transformations to a frame from a dataset and save the transformed images.
Args:
cfg (ConfigNode): The configuration object containing the image transformation settings and the dataset to sample.
repo_id (str): The ID of the repository.
episode_index (int, optional): The index of the episode to use. Defaults to 0.
output_dir (str, optional): The directory to save the transformed images. Defaults to "outputs/show_image_transforms".
"""
dataset = LeRobotDataset(repo_id)
print(f"Getting frame from camera: {dataset.camera_keys[0]}")
# Get first frame of given episode
from_idx = dataset.episode_data_index["from"][episode_index].item()
frame = dataset[from_idx][dataset.camera_keys[0]]
Path(output_dir).mkdir(parents=True, exist_ok=True)
base_filename = f"{output_dir}/episode_{episode_index}"
# Apply each transformation and save the result
for transform in cfg.list:
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH,
overrides=[
f"image_transform.list=[{transform}]",
"image_transform.enable=True",
"image_transform.n_subset=1",
f"image_transform.{transform}_p=1",
])
cfg = cfg.image_transform
t = make_transforms(cfg)
# Apply transformation to frame
transformed_frame = t(frame)
transformed_frame = transformed_frame.permute(1, 2, 0).numpy()
# Save transformed frame
plt.imshow(transformed_frame)
plt.savefig(f'{base_filename}_max_transform_{transform}.png')
plt.close()
frame = frame.permute(1, 2, 0).numpy()
# Save original frame
plt.imshow(frame)
plt.savefig(f'{base_filename}_original.png')
plt.close()
print(f"Saved transformed images.")