This commit is contained in:
Simon Alibert 2024-08-01 11:50:40 +02:00
parent f8a6574698
commit 609531677b
2 changed files with 130 additions and 0 deletions

46
dev.py Normal file
View File

@ -0,0 +1,46 @@
import os
import time
import numpy as np
import torch
# Parameters
filename = "benchmark_data.dat"
shape = (10000, 10000) # Large array
dtype = np.float32
torch_dtype = torch.float32
# Calculate file size
element_size = np.dtype(dtype).itemsize
file_size = shape[0] * shape[1] * element_size
# Create a large file and write random data to it
if not os.path.exists(filename) or os.path.getsize(filename) != file_size:
data = np.random.rand(*shape).astype(dtype)
with open(filename, "wb") as f:
f.write(data.tobytes())
# Benchmark numpy.memmap
start_time = time.time()
data_np = np.memmap(filename, dtype=dtype, mode="r", shape=shape)
tensor_np = torch.from_numpy(data_np)
np_load_time = time.time() - start_time
print(f"np.memmap load time: {np_load_time:.4f} seconds")
# Benchmark torch.UntypedStorage
start_time = time.time()
storage = torch.UntypedStorage.from_file(filename, shared=True, nbytes=file_size)
tensor = torch.FloatTensor(storage).reshape(shape)
torch_load_time = time.time() - start_time
print(f"torch.UntypedStorage load time: {torch_load_time:.4f} seconds")
# Set NumPy print precision
# np.set_printoptions(precision=4)
# Print part of the arrays to compare precision
print("NumPy memmap array sample:\n", data_np[:5, :5])
print("PyTorch tensor sample:\n", tensor[:5, :5].numpy())
# Output the results
print(f"Numpy memmap load time: {np_load_time:.4f} seconds")
print(f"Torch UntypedStorage load time: {torch_load_time:.4f} seconds")

View File

@ -0,0 +1,84 @@
import json
from pathlib import Path
from huggingface_hub import HfApi
from lerobot import available_datasets
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
api = HfApi()
LOCAL_DIR = Path("outputs/test_artifacts/")
# LOCAL_DIR = Path("tests/data/")
datasets_info = api.list_datasets(author="lerobot")
hub_available_datasets = [info.id for info in datasets_info if info.id in available_datasets]
for repo_id in hub_available_datasets:
print(repo_id)
dataset_info = api.list_repo_refs(repo_id, repo_type="dataset")
branches = [b.name for b in dataset_info.branches]
if CODEBASE_VERSION in branches:
# if "_image" not in repo_id:
# print(f"{repo_id} already @{CODEBASE_VERSION}, skipping.")
continue
else:
# Check if meta_data/info.json exists in the main branch
files = api.list_repo_files(repo_id, repo_type="dataset", revision="main")
info_file_path = "meta_data/info.json"
if info_file_path in files:
local_dir = LOCAL_DIR / repo_id
local_dir.mkdir(exist_ok=True, parents=True)
# Download the meta_data/info.json file from the main branch
local_info_file_path = api.hf_hub_download(
repo_id=repo_id,
filename=info_file_path,
revision="main",
repo_type="dataset",
local_dir=local_dir,
)
else:
continue
with open(local_info_file_path) as f:
info_data = json.load(f)
# Update the JSON data
new_info_data = {}
new_info_data["codebase_version"] = CODEBASE_VERSION
for k, v in info_data.items():
if k != "codebase_version":
new_info_data[k] = v
# Save the updated JSON file
with open(local_info_file_path, "w") as f:
json.dump(new_info_data, f, indent=4)
# Upload the modified file to the new branch
api.upload_file(
path_or_fileobj=local_info_file_path,
path_in_repo=info_file_path,
repo_id=repo_id,
repo_type="dataset",
commit_message=f"Update meta_data/info.json for {CODEBASE_VERSION}",
revision="main",
)
print(f"{repo_id} meta_data/info.json updated with new codebase version")
# Now create a branch named after the new version by branching out from "main"
# which is expected to be the preceding version
api.create_branch(repo_id, repo_type="dataset", branch=CODEBASE_VERSION, revision="main")
print(f"{repo_id} successfully updated @{CODEBASE_VERSION}")
def main():
# TODO: from list of repos, download:
# - data/
# - meta_data/
# - video/{key}_episode_000001.mp4
...
if __name__ == "__main__":
main()