Implement RandomSubsetApply features
This commit is contained in:
parent
8b134725d5
commit
6509c3f6d4
|
@ -8,32 +8,58 @@ from torchvision.transforms.v2 import functional as F # noqa: N812
|
||||||
|
|
||||||
class RandomSubsetApply(Transform):
|
class RandomSubsetApply(Transform):
|
||||||
"""
|
"""
|
||||||
Apply a random subset of N transformations from a list of transformations in a random order.
|
Apply a random subset of N transformations from a list of transformations.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
transforms (sequence or torch.nn.Module): list of transformations
|
transforms (sequence or torch.nn.Module): list of transformations
|
||||||
N (int): number of transformations to apply
|
p (list of floats or None, optional): probability of each transform being picked.
|
||||||
|
If ``p`` doesn't sum to 1, it is automatically normalized. If ``None``
|
||||||
|
(default), all transforms have the same probability.
|
||||||
|
n_subset (int or None): number of transformations to apply. If ``None``,
|
||||||
|
all transforms are applied.
|
||||||
|
random_order (bool): apply transformations in a random order
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, transforms: Sequence[Callable], n_subset: int) -> None:
|
def __init__(
|
||||||
|
self,
|
||||||
|
transforms: Sequence[Callable],
|
||||||
|
p: list[float] | None = None,
|
||||||
|
n_subset: int | None = None,
|
||||||
|
random_order: bool = False,
|
||||||
|
) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
if not isinstance(transforms, Sequence):
|
if not isinstance(transforms, Sequence):
|
||||||
raise TypeError("Argument transforms should be a sequence of callables")
|
raise TypeError("Argument transforms should be a sequence of callables")
|
||||||
if not (0 <= n_subset <= len(transforms)):
|
if p is None:
|
||||||
raise ValueError(f"N should be in the interval [0, {len(transforms)}]")
|
p = [1] * len(transforms)
|
||||||
|
elif len(p) != len(transforms):
|
||||||
|
raise ValueError(
|
||||||
|
f"Length of p doesn't match the number of transforms: {len(p)} != {len(transforms)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if n_subset is None:
|
||||||
|
n_subset = len(transforms)
|
||||||
|
elif not isinstance(n_subset, int):
|
||||||
|
raise TypeError("n_subset should be an int or None")
|
||||||
|
elif not (0 <= n_subset <= len(transforms)):
|
||||||
|
raise ValueError(f"n_subset should be in the interval [0, {len(transforms)}]")
|
||||||
|
|
||||||
self.transforms = transforms
|
self.transforms = transforms
|
||||||
self.N = n_subset
|
self.n_subset = n_subset
|
||||||
|
self.random_order = random_order
|
||||||
|
|
||||||
def forward(self, *inputs: Any) -> Any:
|
def forward(self, *inputs: Any) -> Any:
|
||||||
needs_unpacking = len(inputs) > 1
|
needs_unpacking = len(inputs) > 1
|
||||||
|
|
||||||
# Randomly pick N transforms
|
indices = torch.arange(len(self.transforms))
|
||||||
selected_transforms = torch.randperm(len(self.transforms))[: self.N]
|
selected_indices = torch.randperm(len(indices))[: self.n_subset]
|
||||||
|
if not self.random_order:
|
||||||
|
selected_indices = selected_indices.sort().values
|
||||||
|
|
||||||
# Apply selected transforms in random order
|
selected_transforms = [self.transforms[i] for i in selected_indices]
|
||||||
for idx in selected_transforms:
|
print(selected_transforms)
|
||||||
transform = self.transforms[idx]
|
|
||||||
|
for transform in selected_transforms:
|
||||||
outputs = transform(*inputs)
|
outputs = transform(*inputs)
|
||||||
inputs = outputs if needs_unpacking else (outputs,)
|
inputs = outputs if needs_unpacking else (outputs,)
|
||||||
|
|
||||||
|
@ -66,19 +92,29 @@ class RangeRandomSharpness(Transform):
|
||||||
return range_min, range_max
|
return range_min, range_max
|
||||||
|
|
||||||
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
|
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
|
||||||
sharpness_factor = self.range_min + (self.range_max - self.range_min) * torch.rand(1)
|
sharpness_factor = self.range_min + (self.range_max - self.range_min) * torch.rand(1).item()
|
||||||
|
print(f"{sharpness_factor=}")
|
||||||
return self._call_kernel(F.adjust_sharpness, inpt, sharpness_factor=sharpness_factor)
|
return self._call_kernel(F.adjust_sharpness, inpt, sharpness_factor=sharpness_factor)
|
||||||
|
|
||||||
|
|
||||||
def make_transforms(cfg):
|
def make_transforms(cfg):
|
||||||
image_transforms = [
|
transforms_list = [
|
||||||
v2.ColorJitter(brightness=(cfg.brightness.min, cfg.brightness.max)),
|
v2.ColorJitter(brightness=(cfg.brightness.min, cfg.brightness.max)),
|
||||||
v2.ColorJitter(contrast=(cfg.contrast.min, cfg.contrast.max)),
|
v2.ColorJitter(contrast=(cfg.contrast.min, cfg.contrast.max)),
|
||||||
v2.ColorJitter(saturation=(cfg.saturation.min, cfg.saturation.max)),
|
v2.ColorJitter(saturation=(cfg.saturation.min, cfg.saturation.max)),
|
||||||
v2.ColorJitter(hue=(cfg.hue.min, cfg.hue.max)),
|
v2.ColorJitter(hue=(cfg.hue.min, cfg.hue.max)),
|
||||||
RangeRandomSharpness(cfg.sharpness.min, cfg.sharpness.max),
|
RangeRandomSharpness(cfg.sharpness.min, cfg.sharpness.max),
|
||||||
]
|
]
|
||||||
# WIP
|
transforms_weights = [
|
||||||
return v2.Compose(
|
cfg.brightness.weight,
|
||||||
[RandomSubsetApply(image_transforms, n_subset=cfg.n_subset), v2.ToDtype(torch.float32, scale=True)]
|
cfg.contrast.weight,
|
||||||
|
cfg.saturation.weight,
|
||||||
|
cfg.hue.weight,
|
||||||
|
cfg.sharpness.weight,
|
||||||
|
]
|
||||||
|
|
||||||
|
transforms = RandomSubsetApply(
|
||||||
|
transforms_list, p=transforms_weights, n_subset=cfg.max_num_transforms, random_order=cfg.random_order
|
||||||
)
|
)
|
||||||
|
|
||||||
|
return v2.Compose([transforms, v2.ToDtype(torch.float32, scale=True)])
|
||||||
|
|
|
@ -59,7 +59,7 @@ wandb:
|
||||||
notes: ""
|
notes: ""
|
||||||
|
|
||||||
image_transform:
|
image_transform:
|
||||||
enable: false
|
enable: true
|
||||||
# Maximum number of transforms to apply
|
# Maximum number of transforms to apply
|
||||||
max_num_transforms: 3
|
max_num_transforms: 3
|
||||||
random_order: false
|
random_order: false
|
||||||
|
|
Loading…
Reference in New Issue