Implement RandomSubsetApply features

This commit is contained in:
Simon Alibert 2024-06-05 12:14:57 +00:00
parent 8b134725d5
commit 6509c3f6d4
2 changed files with 53 additions and 17 deletions

View File

@ -8,32 +8,58 @@ from torchvision.transforms.v2 import functional as F # noqa: N812
class RandomSubsetApply(Transform):
"""
Apply a random subset of N transformations from a list of transformations in a random order.
Apply a random subset of N transformations from a list of transformations.
Args:
transforms (sequence or torch.nn.Module): list of transformations
N (int): number of transformations to apply
p (list of floats or None, optional): probability of each transform being picked.
If ``p`` doesn't sum to 1, it is automatically normalized. If ``None``
(default), all transforms have the same probability.
n_subset (int or None): number of transformations to apply. If ``None``,
all transforms are applied.
random_order (bool): apply transformations in a random order
"""
def __init__(self, transforms: Sequence[Callable], n_subset: int) -> None:
def __init__(
self,
transforms: Sequence[Callable],
p: list[float] | None = None,
n_subset: int | None = None,
random_order: bool = False,
) -> None:
super().__init__()
if not isinstance(transforms, Sequence):
raise TypeError("Argument transforms should be a sequence of callables")
if not (0 <= n_subset <= len(transforms)):
raise ValueError(f"N should be in the interval [0, {len(transforms)}]")
if p is None:
p = [1] * len(transforms)
elif len(p) != len(transforms):
raise ValueError(
f"Length of p doesn't match the number of transforms: {len(p)} != {len(transforms)}"
)
if n_subset is None:
n_subset = len(transforms)
elif not isinstance(n_subset, int):
raise TypeError("n_subset should be an int or None")
elif not (0 <= n_subset <= len(transforms)):
raise ValueError(f"n_subset should be in the interval [0, {len(transforms)}]")
self.transforms = transforms
self.N = n_subset
self.n_subset = n_subset
self.random_order = random_order
def forward(self, *inputs: Any) -> Any:
needs_unpacking = len(inputs) > 1
# Randomly pick N transforms
selected_transforms = torch.randperm(len(self.transforms))[: self.N]
indices = torch.arange(len(self.transforms))
selected_indices = torch.randperm(len(indices))[: self.n_subset]
if not self.random_order:
selected_indices = selected_indices.sort().values
# Apply selected transforms in random order
for idx in selected_transforms:
transform = self.transforms[idx]
selected_transforms = [self.transforms[i] for i in selected_indices]
print(selected_transforms)
for transform in selected_transforms:
outputs = transform(*inputs)
inputs = outputs if needs_unpacking else (outputs,)
@ -66,19 +92,29 @@ class RangeRandomSharpness(Transform):
return range_min, range_max
def _transform(self, inpt: Any, params: Dict[str, Any]) -> Any:
sharpness_factor = self.range_min + (self.range_max - self.range_min) * torch.rand(1)
sharpness_factor = self.range_min + (self.range_max - self.range_min) * torch.rand(1).item()
print(f"{sharpness_factor=}")
return self._call_kernel(F.adjust_sharpness, inpt, sharpness_factor=sharpness_factor)
def make_transforms(cfg):
image_transforms = [
transforms_list = [
v2.ColorJitter(brightness=(cfg.brightness.min, cfg.brightness.max)),
v2.ColorJitter(contrast=(cfg.contrast.min, cfg.contrast.max)),
v2.ColorJitter(saturation=(cfg.saturation.min, cfg.saturation.max)),
v2.ColorJitter(hue=(cfg.hue.min, cfg.hue.max)),
RangeRandomSharpness(cfg.sharpness.min, cfg.sharpness.max),
]
# WIP
return v2.Compose(
[RandomSubsetApply(image_transforms, n_subset=cfg.n_subset), v2.ToDtype(torch.float32, scale=True)]
transforms_weights = [
cfg.brightness.weight,
cfg.contrast.weight,
cfg.saturation.weight,
cfg.hue.weight,
cfg.sharpness.weight,
]
transforms = RandomSubsetApply(
transforms_list, p=transforms_weights, n_subset=cfg.max_num_transforms, random_order=cfg.random_order
)
return v2.Compose([transforms, v2.ToDtype(torch.float32, scale=True)])

View File

@ -59,7 +59,7 @@ wandb:
notes: ""
image_transform:
enable: false
enable: true
# Maximum number of transforms to apply
max_num_transforms: 3
random_order: false