diff --git a/benchmarks/video/README.md b/benchmarks/video/README.md index 49e49811..daa3e1f4 100644 --- a/benchmarks/video/README.md +++ b/benchmarks/video/README.md @@ -51,7 +51,7 @@ For a comprehensive list and documentation of these parameters, see the ffmpeg d ### Decoding parameters **Decoder** We tested two video decoding backends from torchvision: -- `pyav` (default) +- `pyav` - `video_reader` (requires to build torchvision from source) **Requested timestamps** diff --git a/examples/7_get_started_with_real_robot.md b/examples/7_get_started_with_real_robot.md index 59accd7f..7bf88881 100644 --- a/examples/7_get_started_with_real_robot.md +++ b/examples/7_get_started_with_real_robot.md @@ -292,6 +292,11 @@ Steps: - Scan for devices. All 12 motors should appear. - Select the motors one by one and move the arm. Check that the graphical indicator near the top right shows the movement. +** There is a common issue with the Dynamixel XL430-W250 motors where the motors become undiscoverable after upgrading their firmware from Mac and Windows Dynamixel Wizard2 applications. When this occurs, it is required to do a firmware recovery (Select `DYNAMIXEL Firmware Recovery` and follow the prompts). There are two known workarounds to conduct this firmware reset: + 1) Install the Dynamixel Wizard on a linux machine and complete the firmware recovery + 2) Use the Dynamixel U2D2 in order to perform the reset with Windows or Mac. This U2D2 can be purchased [here](https://www.robotis.us/u2d2/). + For either solution, open DYNAMIXEL Wizard 2.0 and select the appropriate port. You will likely be unable to see the motor in the GUI at this time. Select `Firmware Recovery`, carefully choose the correct model, and wait for the process to complete. Finally, re-scan to confirm the firmware recovery was successful. + **Read and Write with DynamixelMotorsBus** To get familiar with how `DynamixelMotorsBus` communicates with the motors, you can start by reading data from them. Copy past this code in the same interactive python session: diff --git a/lerobot/common/datasets/lerobot_dataset.py b/lerobot/common/datasets/lerobot_dataset.py index b34e879d..d7bfdfcc 100644 --- a/lerobot/common/datasets/lerobot_dataset.py +++ b/lerobot/common/datasets/lerobot_dataset.py @@ -69,6 +69,7 @@ from lerobot.common.datasets.video_utils import ( VideoFrame, decode_video_frames, encode_video_frames, + get_safe_default_codec, get_video_info, ) from lerobot.common.robots.utils import Robot @@ -462,7 +463,7 @@ class LeRobotDataset(torch.utils.data.Dataset): download_videos (bool, optional): Flag to download the videos. Note that when set to True but the video files are already present on local disk, they won't be downloaded again. Defaults to True. - video_backend (str | None, optional): Video backend to use for decoding videos. Defaults to torchcodec. + video_backend (str | None, optional): Video backend to use for decoding videos. Defaults to torchcodec when available int the platform; otherwise, defaults to 'pyav'. You can also use the 'pyav' decoder used by Torchvision, which used to be the default option, or 'video_reader' which is another decoder of Torchvision. """ super().__init__() @@ -473,7 +474,7 @@ class LeRobotDataset(torch.utils.data.Dataset): self.episodes = episodes self.tolerance_s = tolerance_s self.revision = revision if revision else CODEBASE_VERSION - self.video_backend = video_backend if video_backend else "torchcodec" + self.video_backend = video_backend if video_backend else get_safe_default_codec() self.delta_indices = None # Unused attributes @@ -1027,7 +1028,7 @@ class LeRobotDataset(torch.utils.data.Dataset): obj.delta_timestamps = None obj.delta_indices = None obj.episode_data_index = None - obj.video_backend = video_backend if video_backend is not None else "torchcodec" + obj.video_backend = video_backend if video_backend is not None else get_safe_default_codec() return obj diff --git a/lerobot/common/datasets/video_utils.py b/lerobot/common/datasets/video_utils.py index 3fe19d8b..4f696861 100644 --- a/lerobot/common/datasets/video_utils.py +++ b/lerobot/common/datasets/video_utils.py @@ -13,6 +13,7 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +import importlib import json import logging import subprocess @@ -27,14 +28,23 @@ import torch import torchvision from datasets.features.features import register_feature from PIL import Image -from torchcodec.decoders import VideoDecoder + + +def get_safe_default_codec(): + if importlib.util.find_spec("torchcodec"): + return "torchcodec" + else: + logging.warning( + "'torchcodec' is not available in your platform, falling back to 'pyav' as a default decoder" + ) + return "pyav" def decode_video_frames( video_path: Path | str, timestamps: list[float], tolerance_s: float, - backend: str = "torchcodec", + backend: str | None = None, ) -> torch.Tensor: """ Decodes video frames using the specified backend. @@ -43,13 +53,15 @@ def decode_video_frames( video_path (Path): Path to the video file. timestamps (list[float]): List of timestamps to extract frames. tolerance_s (float): Allowed deviation in seconds for frame retrieval. - backend (str, optional): Backend to use for decoding. Defaults to "torchcodec". + backend (str, optional): Backend to use for decoding. Defaults to "torchcodec" when available in the platform; otherwise, defaults to "pyav".. Returns: torch.Tensor: Decoded frames. Currently supports torchcodec on cpu and pyav. """ + if backend is None: + backend = get_safe_default_codec() if backend == "torchcodec": return decode_video_frames_torchcodec(video_path, timestamps, tolerance_s) elif backend in ["pyav", "video_reader"]: @@ -173,6 +185,12 @@ def decode_video_frames_torchcodec( and all subsequent frames until reaching the requested frame. The number of key frames in a video can be adjusted during encoding to take into account decoding time and video size in bytes. """ + + if importlib.util.find_spec("torchcodec"): + from torchcodec.decoders import VideoDecoder + else: + raise ImportError("torchcodec is required but not available.") + # initialize video decoder decoder = VideoDecoder(video_path, device=device, seek_mode="approximate") loaded_frames = [] diff --git a/lerobot/common/policies/act/modeling_act.py b/lerobot/common/policies/act/modeling_act.py index f2b16a1e..72d4df03 100644 --- a/lerobot/common/policies/act/modeling_act.py +++ b/lerobot/common/policies/act/modeling_act.py @@ -119,9 +119,7 @@ class ACTPolicy(PreTrainedPolicy): batch = self.normalize_inputs(batch) if self.config.image_features: batch = dict(batch) # shallow copy so that adding a key doesn't modify the original - batch["observation.images"] = torch.stack( - [batch[key] for key in self.config.image_features], dim=-4 - ) + batch["observation.images"] = [batch[key] for key in self.config.image_features] # If we are doing temporal ensembling, do online updates where we keep track of the number of actions # we are ensembling over. @@ -149,9 +147,8 @@ class ACTPolicy(PreTrainedPolicy): batch = self.normalize_inputs(batch) if self.config.image_features: batch = dict(batch) # shallow copy so that adding a key doesn't modify the original - batch["observation.images"] = torch.stack( - [batch[key] for key in self.config.image_features], dim=-4 - ) + batch["observation.images"] = [batch[key] for key in self.config.image_features] + batch = self.normalize_targets(batch) actions_hat, (mu_hat, log_sigma_x2_hat) = self.model(batch) @@ -413,11 +410,10 @@ class ACT(nn.Module): "actions must be provided when using the variational objective in training mode." ) - batch_size = ( - batch["observation.images"] - if "observation.images" in batch - else batch["observation.environment_state"] - ).shape[0] + if "observation.images" in batch: + batch_size = batch["observation.images"][0].shape[0] + else: + batch_size = batch["observation.environment_state"].shape[0] # Prepare the latent for input to the transformer encoder. if self.config.use_vae and "action" in batch: @@ -490,20 +486,21 @@ class ACT(nn.Module): all_cam_features = [] all_cam_pos_embeds = [] - for cam_index in range(batch["observation.images"].shape[-4]): - cam_features = self.backbone(batch["observation.images"][:, cam_index])["feature_map"] - # TODO(rcadene, alexander-soare): remove call to `.to` to speedup forward ; precompute and use - # buffer + # For a list of images, the H and W may vary but H*W is constant. + for img in batch["observation.images"]: + cam_features = self.backbone(img)["feature_map"] cam_pos_embed = self.encoder_cam_feat_pos_embed(cam_features).to(dtype=cam_features.dtype) - cam_features = self.encoder_img_feat_input_proj(cam_features) # (B, C, h, w) + cam_features = self.encoder_img_feat_input_proj(cam_features) + + # Rearrange features to (sequence, batch, dim). + cam_features = einops.rearrange(cam_features, "b c h w -> (h w) b c") + cam_pos_embed = einops.rearrange(cam_pos_embed, "b c h w -> (h w) b c") + all_cam_features.append(cam_features) all_cam_pos_embeds.append(cam_pos_embed) - # Concatenate camera observation feature maps and positional embeddings along the width dimension, - # and move to (sequence, batch, dim). - all_cam_features = torch.cat(all_cam_features, axis=-1) - encoder_in_tokens.extend(einops.rearrange(all_cam_features, "b c h w -> (h w) b c")) - all_cam_pos_embeds = torch.cat(all_cam_pos_embeds, axis=-1) - encoder_in_pos_embed.extend(einops.rearrange(all_cam_pos_embeds, "b c h w -> (h w) b c")) + + encoder_in_tokens.extend(torch.cat(all_cam_features, axis=0)) + encoder_in_pos_embed.extend(torch.cat(all_cam_pos_embeds, axis=0)) # Stack all tokens along the sequence dimension. encoder_in_tokens = torch.stack(encoder_in_tokens, axis=0) diff --git a/lerobot/common/robots/manipulator.py b/lerobot/common/robots/manipulator.py index bafc3664..5bdddd03 100644 --- a/lerobot/common/robots/manipulator.py +++ b/lerobot/common/robots/manipulator.py @@ -580,7 +580,7 @@ class ManipulatorRobot: # Used when record_data=True follower_goal_pos[name] = goal_pos - goal_pos = goal_pos.numpy().astype(np.int32) + goal_pos = goal_pos.numpy().astype(np.float32) self.follower_arms[name].write("Goal_Position", goal_pos) self.logs[f"write_follower_{name}_goal_pos_dt_s"] = time.perf_counter() - before_fwrite_t @@ -702,7 +702,7 @@ class ManipulatorRobot: action_sent.append(goal_pos) # Send goal position to each follower - goal_pos = goal_pos.numpy().astype(np.int32) + goal_pos = goal_pos.numpy().astype(np.float32) self.follower_arms[name].write("Goal_Position", goal_pos) return torch.cat(action_sent) diff --git a/lerobot/configs/default.py b/lerobot/configs/default.py index dee0649a..b23bbb6d 100644 --- a/lerobot/configs/default.py +++ b/lerobot/configs/default.py @@ -20,6 +20,7 @@ from lerobot.common import ( policies, # noqa: F401 ) from lerobot.common.datasets.transforms import ImageTransformsConfig +from lerobot.common.datasets.video_utils import get_safe_default_codec @dataclass @@ -35,7 +36,7 @@ class DatasetConfig: image_transforms: ImageTransformsConfig = field(default_factory=ImageTransformsConfig) revision: str | None = None use_imagenet_stats: bool = True - video_backend: str = "pyav" + video_backend: str = field(default_factory=get_safe_default_codec) @dataclass diff --git a/pyproject.toml b/pyproject.toml index d810517a..d8cfcfa4 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -69,7 +69,7 @@ dependencies = [ "rerun-sdk>=0.21.0", "termcolor>=2.4.0", "torch>=2.2.1", - "torchcodec>=0.2.1", + "torchcodec>=0.2.1; sys_platform != 'win32' and (sys_platform != 'linux' or (platform_machine != 'aarch64' and platform_machine != 'arm64' and platform_machine != 'armv7l'))", "torchvision>=0.21.0", "wandb>=0.16.3", "zarr>=2.17.0",