[PORT HIL-SERL] Optimize training loop, extract config usage (#855)

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
This commit is contained in:
Eugene Mironov 2025-03-19 20:27:32 +07:00 committed by AdilZouitine
parent 07cc0662da
commit 659adfc743
1 changed files with 29 additions and 18 deletions

View File

@ -509,6 +509,22 @@ def add_actor_information_and_train(
resume_interaction_step if resume_interaction_step is not None else 0
)
# Extract variables from cfg
online_step_before_learning = cfg.training.online_step_before_learning
utd_ratio = cfg.policy.utd_ratio
dataset_repo_id = cfg.dataset_repo_id
fps = cfg.fps
log_freq = cfg.training.log_freq
save_freq = cfg.training.save_freq
device = cfg.device
storage_device = cfg.training.storage_device
policy_update_freq = cfg.training.policy_update_freq
policy_parameters_push_frequency = (
cfg.actor_learner_config.policy_parameters_push_frequency
)
save_checkpoint = cfg.training.save_checkpoint
online_steps = cfg.training.online_steps
while True:
if shutdown_event is not None and shutdown_event.is_set():
logging.info("[LEARNER] Shutdown signal received. Exiting...")
@ -546,15 +562,15 @@ def add_actor_information_and_train(
logging.debug("[LEARNER] Received interactions")
if len(replay_buffer) < cfg.training.online_step_before_learning:
if len(replay_buffer) < online_step_before_learning:
continue
logging.debug("[LEARNER] Starting optimization loop")
time_for_one_optimization_step = time.time()
for _ in range(cfg.policy.utd_ratio - 1):
for _ in range(utd_ratio - 1):
batch = replay_buffer.sample(batch_size)
if cfg.dataset_repo_id is not None:
if dataset_repo_id is not None:
batch_offline = offline_replay_buffer.sample(batch_size)
batch = concatenate_batch_transitions(batch, batch_offline)
@ -591,7 +607,7 @@ def add_actor_information_and_train(
batch = replay_buffer.sample(batch_size)
if cfg.dataset_repo_id is not None:
if dataset_repo_id is not None:
batch_offline = offline_replay_buffer.sample(batch_size)
batch = concatenate_batch_transitions(
left_batch_transitions=batch, right_batch_transition=batch_offline
@ -633,8 +649,8 @@ def add_actor_information_and_train(
training_infos["loss_critic"] = loss_critic.item()
training_infos["critic_grad_norm"] = critic_grad_norm
if optimization_step % cfg.training.policy_update_freq == 0:
for _ in range(cfg.training.policy_update_freq):
if optimization_step % policy_update_freq == 0:
for _ in range(policy_update_freq):
loss_actor = policy.compute_loss_actor(
observations=observations,
observation_features=observation_features,
@ -672,14 +688,12 @@ def add_actor_information_and_train(
training_infos["temperature_grad_norm"] = temp_grad_norm
training_infos["temperature"] = policy.temperature
if (
time.time() - last_time_policy_pushed
> cfg.actor_learner_config.policy_parameters_push_frequency
):
if time.time() - last_time_policy_pushed > policy_parameters_push_frequency:
push_actor_policy_to_queue(parameters_queue, policy)
last_time_policy_pushed = time.time()
policy.update_target_networks()
if optimization_step % cfg.training.log_freq == 0:
training_infos["replay_buffer_size"] = len(replay_buffer)
if offline_replay_buffer is not None:
@ -711,17 +725,14 @@ def add_actor_information_and_train(
)
optimization_step += 1
if optimization_step % cfg.training.log_freq == 0:
if optimization_step % log_freq == 0:
logging.info(f"[LEARNER] Number of optimization step: {optimization_step}")
if cfg.training.save_checkpoint and (
optimization_step % cfg.training.save_freq == 0
or optimization_step == cfg.training.online_steps
if save_checkpoint and (
optimization_step % save_freq == 0 or optimization_step == online_steps
):
logging.info(f"Checkpoint policy after step {optimization_step}")
# Note: Save with step as the identifier, and format it to have at least 6 digits but more if
# needed (choose 6 as a minimum for consistency without being overkill).
_num_digits = max(6, len(str(cfg.training.online_steps)))
_num_digits = max(6, len(str(online_steps)))
step_identifier = f"{optimization_step:0{_num_digits}d}"
interaction_step = (
interaction_message["Interaction step"]
@ -745,7 +756,7 @@ def add_actor_information_and_train(
dataset_dir,
)
replay_buffer.to_lerobot_dataset(
cfg.dataset_repo_id, fps=cfg.fps, root=logger.log_dir / "dataset"
dataset_repo_id, fps=fps, root=logger.log_dir / "dataset"
)
if offline_replay_buffer is not None:
dataset_dir = logger.log_dir / "dataset_offline"