backup wip
This commit is contained in:
parent
2b928eedd4
commit
65ef8c30d0
|
@ -125,32 +125,92 @@ def make_offline_buffer(
|
|||
|
||||
# TODO(rcadene): remove this and put it in config. Ideally we want to reproduce SOTA results just with mean_std
|
||||
normalization_mode = "mean_std" if cfg.env.name == "aloha" else "min_max"
|
||||
|
||||
|
||||
# TODO(now): These stats are needed to use their pretrained model for sim_transfer_cube_human.
|
||||
# (Pdb) stats['observation']['state']['mean']
|
||||
# tensor([-0.0071, -0.6293, 1.0351, -0.0517, -0.4642, -0.0754, 0.4751, -0.0373,
|
||||
# -0.3324, 0.9034, -0.2258, -0.3127, -0.2412, 0.6866])
|
||||
stats['observation', 'state', 'mean'] = torch.tensor([-0.00740268, -0.63187766, 1.0356655 , -0.05027218, -0.46199223,
|
||||
-0.07467502, 0.47467607, -0.03615446, -0.33203387, 0.9038929 ,
|
||||
-0.22060776, -0.31011587, -0.23484458, 0.6842416 ])
|
||||
stats["observation", "state", "mean"] = torch.tensor(
|
||||
[
|
||||
-0.00740268,
|
||||
-0.63187766,
|
||||
1.0356655,
|
||||
-0.05027218,
|
||||
-0.46199223,
|
||||
-0.07467502,
|
||||
0.47467607,
|
||||
-0.03615446,
|
||||
-0.33203387,
|
||||
0.9038929,
|
||||
-0.22060776,
|
||||
-0.31011587,
|
||||
-0.23484458,
|
||||
0.6842416,
|
||||
]
|
||||
)
|
||||
# (Pdb) stats['observation']['state']['std']
|
||||
# tensor([0.0022, 0.0520, 0.0291, 0.0092, 0.0267, 0.0145, 0.0563, 0.0179, 0.0494,
|
||||
# 0.0326, 0.0476, 0.0535, 0.0956, 0.0513])
|
||||
stats['observation', 'state', 'std'] = torch.tensor([0.01219023, 0.2975381 , 0.16728032, 0.04733803, 0.1486037 ,
|
||||
0.08788499, 0.31752336, 0.1049916 , 0.27933604, 0.18094037,
|
||||
0.26604933, 0.30466506, 0.5298686 , 0.25505227])
|
||||
stats["observation", "state", "std"] = torch.tensor(
|
||||
[
|
||||
0.01219023,
|
||||
0.2975381,
|
||||
0.16728032,
|
||||
0.04733803,
|
||||
0.1486037,
|
||||
0.08788499,
|
||||
0.31752336,
|
||||
0.1049916,
|
||||
0.27933604,
|
||||
0.18094037,
|
||||
0.26604933,
|
||||
0.30466506,
|
||||
0.5298686,
|
||||
0.25505227,
|
||||
]
|
||||
)
|
||||
# (Pdb) stats['action']['mean']
|
||||
# tensor([-0.0075, -0.6346, 1.0353, -0.0465, -0.4686, -0.0738, 0.3723, -0.0396,
|
||||
# -0.3184, 0.8991, -0.2065, -0.3182, -0.2338, 0.5593])
|
||||
stats['action']['mean'] = torch.tensor([-0.00756444, -0.6281845 , 1.0312834 , -0.04664314, -0.47211358,
|
||||
-0.074527 , 0.37389806, -0.03718753, -0.3261143 , 0.8997205 ,
|
||||
-0.21371077, -0.31840396, -0.23360962, 0.551947])
|
||||
stats["action"]["mean"] = torch.tensor(
|
||||
[
|
||||
-0.00756444,
|
||||
-0.6281845,
|
||||
1.0312834,
|
||||
-0.04664314,
|
||||
-0.47211358,
|
||||
-0.074527,
|
||||
0.37389806,
|
||||
-0.03718753,
|
||||
-0.3261143,
|
||||
0.8997205,
|
||||
-0.21371077,
|
||||
-0.31840396,
|
||||
-0.23360962,
|
||||
0.551947,
|
||||
]
|
||||
)
|
||||
# (Pdb) stats['action']['std']
|
||||
# tensor([0.0023, 0.0514, 0.0290, 0.0086, 0.0263, 0.0143, 0.0593, 0.0185, 0.0510,
|
||||
# 0.0328, 0.0478, 0.0531, 0.0945, 0.0794])
|
||||
stats['action']['std'] = torch.tensor([0.01252818, 0.2957442 , 0.16701928, 0.04584508, 0.14833844,
|
||||
0.08763024, 0.30665937, 0.10600077, 0.27572668, 0.1805853 ,
|
||||
0.26304692, 0.30708534, 0.5305411 , 0.38381037])
|
||||
stats["action"]["std"] = torch.tensor(
|
||||
[
|
||||
0.01252818,
|
||||
0.2957442,
|
||||
0.16701928,
|
||||
0.04584508,
|
||||
0.14833844,
|
||||
0.08763024,
|
||||
0.30665937,
|
||||
0.10600077,
|
||||
0.27572668,
|
||||
0.1805853,
|
||||
0.26304692,
|
||||
0.30708534,
|
||||
0.5305411,
|
||||
0.38381037,
|
||||
]
|
||||
)
|
||||
transforms.append(NormalizeTransform(stats, in_keys, mode=normalization_mode))
|
||||
|
||||
offline_buffer.set_transform(transforms)
|
||||
|
|
|
@ -2,7 +2,6 @@ import numpy as np
|
|||
import torch
|
||||
from torch import nn
|
||||
from torch.autograd import Variable
|
||||
from transformers import DetrForObjectDetection
|
||||
|
||||
from .backbone import build_backbone
|
||||
from .transformer import TransformerEncoder, TransformerEncoderLayer, build_transformer
|
||||
|
@ -74,7 +73,7 @@ class ActionChunkingTransformer(nn.Module):
|
|||
hidden_dim = transformer.d_model
|
||||
self.action_head = nn.Linear(hidden_dim, action_dim)
|
||||
self.is_pad_head = nn.Linear(hidden_dim, 1)
|
||||
# Positional embedding to be used as input to the latent vae_encoder (if applicable) and for the
|
||||
# Positional embedding to be used as input to the latent vae_encoder (if applicable) and for the
|
||||
self.pos_embed = nn.Embedding(horizon, hidden_dim)
|
||||
if backbones is not None:
|
||||
self.input_proj = nn.Conv2d(backbones[0].num_channels, hidden_dim, kernel_size=1)
|
||||
|
@ -134,7 +133,9 @@ class ActionChunkingTransformer(nn.Module):
|
|||
pos_embed = self.pos_table.clone().detach()
|
||||
pos_embed = pos_embed.permute(1, 0, 2) # (seq+1, 1, hidden_dim)
|
||||
# query model
|
||||
vae_encoder_output = self.vae_encoder(vae_encoder_input, pos=pos_embed) # , src_key_padding_mask=is_pad)
|
||||
vae_encoder_output = self.vae_encoder(
|
||||
vae_encoder_input, pos=pos_embed
|
||||
) # , src_key_padding_mask=is_pad)
|
||||
vae_encoder_output = vae_encoder_output[0] # take cls output only
|
||||
latent_info = self.latent_proj(vae_encoder_output)
|
||||
mu = latent_info[:, : self.latent_dim]
|
||||
|
@ -219,7 +220,7 @@ def build(args):
|
|||
backbones.append(backbone)
|
||||
|
||||
transformer = build_transformer(args)
|
||||
|
||||
|
||||
vae_encoder = build_vae_encoder(args)
|
||||
|
||||
model = ActionChunkingTransformer(
|
||||
|
|
|
@ -54,7 +54,7 @@ class ActionChunkingTransformerPolicy(AbstractPolicy):
|
|||
Args:
|
||||
vae: Whether to use the variational objective. TODO(now): Give more details.
|
||||
temporal_agg: Whether to do temporal aggregation. For each timestep during rollout, the action
|
||||
returned as an exponential moving average of previously generated actions for that timestep.
|
||||
returned as an exponential moving average of previously generated actions for that timestep.
|
||||
n_obs_steps: Number of time steps worth of observation to use as input.
|
||||
horizon: The number of actions to generate in one forward pass.
|
||||
kl_weight: Weight for KL divergence. Defaults to None. Only applicable when using the variational
|
||||
|
@ -120,7 +120,7 @@ class ActionChunkingTransformerPolicy(AbstractPolicy):
|
|||
"action": action.to(self.device, non_blocking=True),
|
||||
}
|
||||
return out
|
||||
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
batch = replay_buffer.sample(batch_size)
|
||||
|
|
Loading…
Reference in New Issue