Merge remote-tracking branch 'origin/user/rcadene/2024_07_16_control_robot_v2' into user/rcadene/2024_07_16_control_robot_v2_aloha
|
@ -384,5 +384,11 @@ python lerobot/scripts/visualize_dataset.py \
|
|||
|
||||
## What's next?
|
||||
|
||||
-
|
||||
### More datasets
|
||||
|
||||
Collect a slightly more difficult dataset, like grasping 5 lego blocks in a row, and co-train on it
|
||||
|
||||
###
|
||||
|
||||
|
||||
- Improve the dataset
|
||||
|
|
|
@ -8,126 +8,94 @@ import torch
|
|||
|
||||
from lerobot.common.robot_devices.cameras.utils import Camera
|
||||
from lerobot.common.robot_devices.motors.dynamixel import (
|
||||
DriveMode,
|
||||
DynamixelMotorsBus,
|
||||
OperatingMode,
|
||||
TorqueMode,
|
||||
)
|
||||
from lerobot.common.robot_devices.motors.utils import MotorsBus
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
|
||||
URL_HORIZONTAL_POSITION = {
|
||||
"follower": "https://raw.githubusercontent.com/huggingface/lerobot/main/media/koch/follower_horizontal.png",
|
||||
"leader": "https://raw.githubusercontent.com/huggingface/lerobot/main/media/koch/leader_horizontal.png",
|
||||
}
|
||||
URL_90_DEGREE_POSITION = {
|
||||
"follower": "https://raw.githubusercontent.com/huggingface/lerobot/main/media/koch/follower_90_degree.png",
|
||||
"leader": "https://raw.githubusercontent.com/huggingface/lerobot/main/media/koch/leader_90_degree.png",
|
||||
}
|
||||
|
||||
########################################################################
|
||||
# Calibration logic
|
||||
########################################################################
|
||||
|
||||
# In range ]-2048, 2048[
|
||||
# TARGET_HORIZONTAL_POSITION = np.array([0, -1024, 1024, 0, -1024, 0])
|
||||
# TARGET_90_DEGREE_POSITION = np.array([1024, 0, 0, 1024, 0, -1024])
|
||||
TARGET_HORIZONTAL_POSITION = np.array([0, -1024, -1024, 1024, 1024, 0, 0, 0, 0])
|
||||
TARGET_90_DEGREE_POSITION = np.array([1024, 0, 0, 0, 0, 1024, 1024, 1024, 1024])
|
||||
AVAILABLE_ROBOT_TYPES = ["koch", "aloha"]
|
||||
|
||||
# NULL_POSITION = np.array([0, 0, 0, 0, 0, 0])
|
||||
NULL_POSITION = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0])
|
||||
URL_TEMPLATE = "https://raw.githubusercontent.com/huggingface/lerobot/main/media/{robot}/{arm}_{position}.png"
|
||||
|
||||
# NULL_DRIVE = np.array([False, False, False, False, False, False])
|
||||
NULL_DRIVE = np.array([False, False, False, False, False, False, False, False, False])
|
||||
# In nominal range ]-2048, 2048[
|
||||
# First target position consists in moving koch arm to a straight horizontal position with gripper closed.
|
||||
KOCH_FIRST_POSITION = np.array([0, 0, 0, 0, 0, 0], dtype=np.int32)
|
||||
# Second target position consists in moving koch arm from the first target position by rotating every motor
|
||||
# by 90 degree. When the direction is ambiguous, always rotate on the right. Gripper is open, directed towards you.
|
||||
# TODO(rcadene): Take motor resolution into account instead of assuming 4096
|
||||
KOCH_SECOND_POSITION = np.array([1024, 1024, 1024, 1024, 1024, 1024], dtype=np.int32)
|
||||
# In nominal range ]-180, 180[
|
||||
KOCH_GRIPPER_OPEN = 35.156
|
||||
KOCH_REST_POSITION = np.array([0, 135, 90, 0, 0, KOCH_GRIPPER_OPEN])
|
||||
|
||||
# In range ]-180, 180[
|
||||
GRIPPER_OPEN = np.array([-35.156])
|
||||
ALOHA_FIRST_POSITION = np.array([0, 0, 0, 0, 0, 0], dtype=np.int32)
|
||||
ALOHA_SECOND_POSITION = np.array([0, 0, 0, 0, 0, 0], dtype=np.int32)
|
||||
ALOHA_REST_POSITION = np.array([0, 0, 0, 0, 0, 0], dtype=np.int32)
|
||||
|
||||
|
||||
def apply_homing_offset(values: np.array, homing_offset: np.array) -> np.array:
|
||||
for i in range(len(values)):
|
||||
if values[i] is not None:
|
||||
values[i] += homing_offset[i]
|
||||
return values
|
||||
def assert_robot_type(robot_type):
|
||||
if robot_type not in AVAILABLE_ROBOT_TYPES:
|
||||
raise ValueError(robot_type)
|
||||
|
||||
|
||||
def apply_drive_mode(values: np.array, drive_mode: np.array) -> np.array:
|
||||
for i in range(len(values)):
|
||||
if values[i] is not None and drive_mode[i]:
|
||||
values[i] = -values[i]
|
||||
return values
|
||||
def get_first_position(robot_type):
|
||||
if robot_type == "koch":
|
||||
return KOCH_FIRST_POSITION
|
||||
elif robot_type == "aloha":
|
||||
return ALOHA_FIRST_POSITION
|
||||
|
||||
|
||||
def apply_calibration(values: np.array, homing_offset: np.array, drive_mode: np.array) -> np.array:
|
||||
values = apply_drive_mode(values, drive_mode)
|
||||
values = apply_homing_offset(values, homing_offset)
|
||||
return values
|
||||
def get_second_position(robot_type):
|
||||
if robot_type == "koch":
|
||||
return KOCH_SECOND_POSITION
|
||||
elif robot_type == "aloha":
|
||||
return ALOHA_SECOND_POSITION
|
||||
|
||||
|
||||
def revert_calibration(values: np.array, homing_offset: np.array, drive_mode: np.array) -> np.array:
|
||||
"""
|
||||
Transform working position into real position for the robot.
|
||||
"""
|
||||
values = apply_homing_offset(
|
||||
values,
|
||||
np.array([-homing_offset if homing_offset is not None else None for homing_offset in homing_offset]),
|
||||
)
|
||||
values = apply_drive_mode(values, drive_mode)
|
||||
return values
|
||||
def get_rest_position(robot_type):
|
||||
if robot_type == "koch":
|
||||
return KOCH_REST_POSITION
|
||||
elif robot_type == "aloha":
|
||||
return ALOHA_REST_POSITION
|
||||
|
||||
|
||||
def revert_appropriate_positions(positions: np.array, drive_mode: list[bool]) -> np.array:
|
||||
for i, revert in enumerate(drive_mode):
|
||||
if not revert and positions[i] is not None:
|
||||
positions[i] = -positions[i]
|
||||
return positions
|
||||
def init_robot(robot):
|
||||
if robot.robot_type == "koch":
|
||||
# Enable torque on the gripper of the leader arms, and move it to 45 degrees,
|
||||
# so that we can use it as a trigger to close the gripper of the follower arms.
|
||||
for name in robot.leader_arms:
|
||||
robot.leader_arms[name].write("Torque_Enable", 1, "gripper")
|
||||
robot.leader_arms[name].write("Goal_Position", KOCH_GRIPPER_OPEN, "gripper")
|
||||
|
||||
elif robot.robot_type == "aloha":
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
def compute_corrections(positions: np.array, drive_mode: list[bool], target_position: np.array) -> np.array:
|
||||
correction = revert_appropriate_positions(positions, drive_mode)
|
||||
|
||||
for i in range(len(positions)):
|
||||
if correction[i] is not None:
|
||||
if drive_mode[i]:
|
||||
correction[i] -= target_position[i]
|
||||
else:
|
||||
correction[i] += target_position[i]
|
||||
|
||||
return correction
|
||||
def assert_drive_mode(drive_mode):
|
||||
# `drive_mode` is in [0,1] with 0 means original rotation direction for the motor, and 1 means inverted.
|
||||
if not np.all(np.isin(drive_mode, [0, 1])):
|
||||
raise ValueError(f"`drive_mode` contains values other than 0 or 1: ({drive_mode})")
|
||||
|
||||
|
||||
def compute_nearest_rounded_positions(positions: np.array) -> np.array:
|
||||
return np.array(
|
||||
[
|
||||
round(positions[i] / 1024) * 1024 if positions[i] is not None else None
|
||||
for i in range(len(positions))
|
||||
]
|
||||
)
|
||||
def apply_drive_mode(position, drive_mode):
|
||||
assert_drive_mode(drive_mode)
|
||||
# Convert `drive_mode` from [0, 1] with 0 indicates original rotation direction and 1 inverted,
|
||||
# to [-1, 1] with 1 indicates original rotation direction and -1 inverted.
|
||||
signed_drive_mode = -(drive_mode * 2 - 1)
|
||||
position *= signed_drive_mode
|
||||
return position
|
||||
|
||||
|
||||
def compute_homing_offset(
|
||||
arm: DynamixelMotorsBus, drive_mode: list[bool], target_position: np.array
|
||||
) -> np.array:
|
||||
# Get the present positions of the servos
|
||||
present_positions = apply_calibration(arm.read("Present_Position"), NULL_POSITION, drive_mode)
|
||||
|
||||
nearest_positions = compute_nearest_rounded_positions(present_positions)
|
||||
correction = compute_corrections(nearest_positions, drive_mode, target_position)
|
||||
return correction
|
||||
|
||||
|
||||
def compute_drive_mode(arm: DynamixelMotorsBus, offset: np.array):
|
||||
# Get current positions
|
||||
present_positions = apply_calibration(arm.read("Present_Position"), offset, NULL_DRIVE)
|
||||
|
||||
nearest_positions = compute_nearest_rounded_positions(present_positions)
|
||||
|
||||
# construct 'drive_mode' list comparing nearest_positions and TARGET_90_DEGREE_POSITION
|
||||
drive_mode = []
|
||||
for i in range(len(nearest_positions)):
|
||||
drive_mode.append(nearest_positions[i] != TARGET_90_DEGREE_POSITION[i])
|
||||
return drive_mode
|
||||
def compute_nearest_rounded_position(position):
|
||||
# TODO(rcadene): Take motor resolution into account instead of assuming 4096
|
||||
# Assumes 4096 steps for a full revolution for the motors
|
||||
# Hence 90 degree is 1024 steps
|
||||
return np.round(position / 1024).astype(position.dtype) * 1024
|
||||
|
||||
|
||||
def reset_arm(arm: MotorsBus):
|
||||
|
@ -139,57 +107,60 @@ def reset_arm(arm: MotorsBus):
|
|||
# you could end up with a servo with a position 0 or 4095 at a crucial point See [
|
||||
# https://emanual.robotis.com/docs/en/dxl/x/x_series/#operating-mode11]
|
||||
all_motors_except_gripper = [name for name in arm.motor_names if name != "gripper"]
|
||||
arm.write("Operating_Mode", OperatingMode.EXTENDED_POSITION.value, all_motors_except_gripper)
|
||||
if len(all_motors_except_gripper) > 0:
|
||||
arm.write("Operating_Mode", OperatingMode.EXTENDED_POSITION.value, all_motors_except_gripper)
|
||||
|
||||
# TODO(rcadene): why?
|
||||
# Use 'position control current based' for gripper
|
||||
arm.write("Operating_Mode", OperatingMode.CURRENT_CONTROLLED_POSITION.value, "gripper")
|
||||
|
||||
# Make sure the native calibration (homing offset abd drive mode) is disabled, since we use our own calibration layer to be more generic
|
||||
arm.write("Homing_Offset", 0)
|
||||
arm.write("Drive_Mode", DriveMode.NON_INVERTED.value)
|
||||
|
||||
|
||||
def run_arm_calibration(arm: MotorsBus, name: str, arm_type: str):
|
||||
def run_arm_calibration(arm: MotorsBus, robot_type: str, arm_name: str, arm_type: str):
|
||||
"""Example of usage:
|
||||
```python
|
||||
run_arm_calibration(arm, "left", "follower")
|
||||
run_arm_calibration(arm, "aloha", "left", "follower")
|
||||
```
|
||||
"""
|
||||
reset_arm(arm)
|
||||
|
||||
print(f"\nRunning calibration of {robot_type} {arm_name} {arm_type}...")
|
||||
|
||||
# TODO(rcadene): document what position 1 mean
|
||||
print(
|
||||
f"Please move the '{name} {arm_type}' arm to the horizontal position (gripper fully closed, see {URL_HORIZONTAL_POSITION[arm_type]})"
|
||||
)
|
||||
print("\nMove arm to first target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="first"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
horizontal_homing_offset = compute_homing_offset(arm, NULL_DRIVE, TARGET_HORIZONTAL_POSITION)
|
||||
# Compute homing offset so that `present_position + homing_offset ~= target_position`
|
||||
position = arm.read("Present_Position")
|
||||
position = compute_nearest_rounded_position(position)
|
||||
first_position = get_first_position(robot_type)
|
||||
homing_offset = first_position - position
|
||||
|
||||
# TODO(rcadene): document what position 2 mean
|
||||
print(
|
||||
f"Please move the '{name} {arm_type}' arm to the 90 degree position (gripper fully open, see {URL_90_DEGREE_POSITION[arm_type]})"
|
||||
)
|
||||
print("\nMove arm to second target position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="second"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
drive_mode = compute_drive_mode(arm, horizontal_homing_offset)
|
||||
homing_offset = compute_homing_offset(arm, drive_mode, TARGET_90_DEGREE_POSITION)
|
||||
# Find drive mode by rotating each motor by 90 degree.
|
||||
# After applying homing offset, if position equals target position, then drive mode is 0,
|
||||
# to indicate an original rotation direction for the motor ; else, drive mode is 1,
|
||||
# to indicate an inverted rotation direction.
|
||||
position = arm.read("Present_Position")
|
||||
position += homing_offset
|
||||
position = compute_nearest_rounded_position(position)
|
||||
second_position = get_second_position(robot_type)
|
||||
drive_mode = (position != second_position).astype(np.int32)
|
||||
|
||||
# Invert offset for all drive_mode servos
|
||||
for i in range(len(drive_mode)):
|
||||
if drive_mode[i]:
|
||||
homing_offset[i] = -homing_offset[i]
|
||||
# Re-compute homing offset to take into account drive mode
|
||||
position = arm.read("Present_Position")
|
||||
position = apply_drive_mode(position, drive_mode)
|
||||
position = compute_nearest_rounded_position(position)
|
||||
homing_offset = second_position - position
|
||||
|
||||
print("Calibration is done!")
|
||||
print(
|
||||
rf"/!\ Please move the '{name} {arm_type}' arm to a safe rest position (same for all arms to avoid jumps during teleoperation)."
|
||||
)
|
||||
print("\nMove arm to rest position")
|
||||
print("See: " + URL_TEMPLATE.format(robot=robot_type, arm=arm_type, position="rest"))
|
||||
input("Press Enter to continue...")
|
||||
|
||||
print("=====================================")
|
||||
print(" HOMING_OFFSET: ", " ".join([str(i) for i in homing_offset]))
|
||||
print(" DRIVE_MODE: ", " ".join([str(i) for i in drive_mode]))
|
||||
print("=====================================")
|
||||
print()
|
||||
|
||||
return homing_offset, drive_mode
|
||||
|
||||
|
@ -208,11 +179,15 @@ class KochRobotConfig:
|
|||
```
|
||||
"""
|
||||
|
||||
robot_type: str = "koch"
|
||||
# Define all components of the robot
|
||||
leader_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
|
||||
follower_arms: dict[str, MotorsBus] = field(default_factory=lambda: {})
|
||||
cameras: dict[str, Camera] = field(default_factory=lambda: {})
|
||||
|
||||
def __post_init__(self):
|
||||
assert_robot_type(self.robot_type)
|
||||
|
||||
|
||||
class KochRobot:
|
||||
# TODO(rcadene): Implement force feedback
|
||||
|
@ -320,6 +295,7 @@ class KochRobot:
|
|||
self.config = replace(config, **kwargs)
|
||||
self.calibration_path = Path(calibration_path)
|
||||
|
||||
self.robot_type = self.config.robot_type
|
||||
self.leader_arms = self.config.leader_arms
|
||||
self.follower_arms = self.config.follower_arms
|
||||
self.cameras = self.config.cameras
|
||||
|
@ -391,11 +367,7 @@ class KochRobot:
|
|||
for name in self.follower_arms:
|
||||
self.follower_arms[name].write("Torque_Enable", 1)
|
||||
|
||||
# Enable torque on the gripper of the leader arms, and move it to 45 degrees,
|
||||
# so that we can use it as a trigger to close the gripper of the follower arms.
|
||||
# for name in self.leader_arms:
|
||||
# self.leader_arms[name].write("Torque_Enable", 1, "gripper")
|
||||
# self.leader_arms[name].write("Goal_Position", GRIPPER_OPEN, "gripper")
|
||||
init_robot(self)
|
||||
|
||||
# Connect the cameras
|
||||
for name in self.cameras:
|
||||
|
@ -407,14 +379,18 @@ class KochRobot:
|
|||
calibration = {}
|
||||
|
||||
for name in self.follower_arms:
|
||||
homing_offset, drive_mode = run_arm_calibration(self.follower_arms[name], name, "follower")
|
||||
homing_offset, drive_mode = run_arm_calibration(
|
||||
self.follower_arms[name], self.robot_type, name, "follower"
|
||||
)
|
||||
|
||||
calibration[f"follower_{name}"] = {}
|
||||
for idx, motor_name in enumerate(self.follower_arms[name].motor_names):
|
||||
calibration[f"follower_{name}"][motor_name] = (homing_offset[idx], drive_mode[idx])
|
||||
|
||||
for name in self.leader_arms:
|
||||
homing_offset, drive_mode = run_arm_calibration(self.leader_arms[name], name, "leader")
|
||||
homing_offset, drive_mode = run_arm_calibration(
|
||||
self.leader_arms[name], self.robot_type, name, "leader"
|
||||
)
|
||||
|
||||
calibration[f"leader_{name}"] = {}
|
||||
for idx, motor_name in enumerate(self.leader_arms[name].motor_names):
|
||||
|
@ -430,7 +406,7 @@ class KochRobot:
|
|||
"KochRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
# Prepare to assign the positions of the leader to the follower
|
||||
# Prepare to assign the position of the leader to the follower
|
||||
leader_pos = {}
|
||||
for name in self.leader_arms:
|
||||
now = time.perf_counter()
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
_target_: lerobot.common.robot_devices.robots.koch.KochRobot
|
||||
robot_type: aloha
|
||||
calibration_path: .cache/calibration/aloha.pkl
|
||||
leader_arms:
|
||||
left:
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
_target_: lerobot.common.robot_devices.robots.koch.KochRobot
|
||||
calibration_path: .cache/calibration/koch.pkl
|
||||
robot_type: koch
|
||||
leader_arms:
|
||||
main:
|
||||
_target_: lerobot.common.robot_devices.motors.dynamixel.DynamixelMotorsBus
|
||||
|
|
Before Width: | Height: | Size: 416 KiB |
After Width: | Height: | Size: 394 KiB |
Before Width: | Height: | Size: 446 KiB |
After Width: | Height: | Size: 386 KiB |
After Width: | Height: | Size: 373 KiB |
Before Width: | Height: | Size: 318 KiB |
After Width: | Height: | Size: 371 KiB |
Before Width: | Height: | Size: 420 KiB |
After Width: | Height: | Size: 377 KiB |
After Width: | Height: | Size: 346 KiB |