refactor(robots): lewiki v0.1

This commit is contained in:
Steven Palma 2025-03-12 19:12:27 +01:00
parent 99c0938b42
commit 6a3cdc0489
No known key found for this signature in database
6 changed files with 315 additions and 638 deletions

View File

@ -0,0 +1,35 @@
def main():
teleop_arm_config = SO100TeleopConfig(port="/dev/tty.usbmodem585A0085511")
teleop_arm = SO100Teleop(teleop_arm_config)
keyboard_config = KeyboardTeleopConfig()
keyboard = KeyboardTeleop(keyboard_config)
robot_config = kiwiconfig(port="/dev/tty.usbmodem575E0032081")
robot = KiwiRobotDaemon(robot_config)
teleop_arm.connect()
keyboard.connect()
robot.connect() # Establish ZMQ sockets with the mobile robot
start = time.perf_counter()
duration = 0
while duration < 20:
arm_action = teleop_arm.get_action()
base_action = keyboard.get_action()
action = {
**arm_action,
# **base_action ??
}
robot.send_action(action) # sends over ZMQ
# robot.get_observation() # receives over ZMQ
print(action)
duration = time.perf_counter() - start
robot.disconnect() # cleans ZMQ comms
teleop.disconnect()
if __name__ == "__main__":
main()

View File

@ -1,17 +1,3 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import json
import os
@ -407,19 +393,21 @@ class MobileManipulator:
for name in self.leader_arms:
pos = self.leader_arms[name].read("Present_Position")
pos_tensor = torch.from_numpy(pos).float()
# Instead of pos_tensor.item(), use tolist() to convert the entire tensor to a list
arm_positions.extend(pos_tensor.tolist())
y_cmd = 0.0 # m/s forward/backward
x_cmd = 0.0 # m/s lateral
# (The rest of your code for generating wheel commands remains unchanged)
x_cmd = 0.0 # m/s forward/backward
y_cmd = 0.0 # m/s lateral
theta_cmd = 0.0 # deg/s rotation
if self.pressed_keys["forward"]:
y_cmd += xy_speed
if self.pressed_keys["backward"]:
y_cmd -= xy_speed
if self.pressed_keys["left"]:
x_cmd += xy_speed
if self.pressed_keys["right"]:
if self.pressed_keys["backward"]:
x_cmd -= xy_speed
if self.pressed_keys["left"]:
y_cmd += xy_speed
if self.pressed_keys["right"]:
y_cmd -= xy_speed
if self.pressed_keys["rotate_left"]:
theta_cmd += theta_speed
if self.pressed_keys["rotate_right"]:
@ -597,8 +585,8 @@ class MobileManipulator:
# Create the body velocity vector [x, y, theta_rad].
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
# Define the wheel mounting angles (defined from y axis cw)
angles = np.radians(np.array([300, 180, 60]))
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
# Build the kinematic matrix: each row maps body velocities to a wheels linear speed.
# The third column (base_radius) accounts for the effect of rotation.
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
@ -654,8 +642,8 @@ class MobileManipulator:
# Compute each wheels linear speed (m/s) from its angular speed.
wheel_linear_speeds = wheel_radps * wheel_radius
# Define the wheel mounting angles (defined from y axis cw)
angles = np.radians(np.array([300, 180, 60]))
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.

View File

@ -1,692 +1,339 @@
import base64
import json
import os
import sys
from pathlib import Path
#!/usr/bin/env python
import cv2
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import time
import threading
import numpy as np
import torch
import zmq
import time
# import torch
from lerobot.common.cameras.utils import make_cameras_from_configs
from lerobot.common.errors import DeviceNotConnectedError
from lerobot.common.motors.feetech.feetech import TorqueMode
from lerobot.common.motors.feetech.feetech_calibration import run_full_arm_calibration
from lerobot.common.motors.motors_bus import MotorsBus
from lerobot.common.motors.utils import make_motors_buses_from_configs
from lerobot.common.robots.lekiwi.configuration_lekiwi import LeKiwiRobotConfig
from lerobot.common.robots.utils import get_arm_id
from lerobot.common.constants import OBS_IMAGES, OBS_STATE
from lerobot.common.errors import DeviceAlreadyConnectedError, DeviceNotConnectedError
from ..robot import Robot
from ..utils import ensure_safe_goal_position
from .configuration_lekiwi import LeKiwiRobotConfig
from lerobot.common.motors.feetech import (
FeetechMotorsBus,
TorqueMode,
run_arm_manual_calibration,
)
import zmq
PYNPUT_AVAILABLE = True
try:
# Only import if there's a valid X server or if we're not on a Pi
if ("DISPLAY" not in os.environ) and ("linux" in sys.platform):
print("No DISPLAY set. Skipping pynput import.")
raise ImportError("pynput blocked intentionally due to no display.")
from pynput import keyboard
except ImportError:
keyboard = None
PYNPUT_AVAILABLE = False
except Exception as e:
keyboard = None
PYNPUT_AVAILABLE = False
print(f"Could not import pynput: {e}")
class MobileManipulator:
class LeKiwiRobot(Robot):
"""
MobileManipulator is a class for connecting to and controlling a remote mobile manipulator robot.
The robot includes a three omniwheel mobile base and a remote follower arm.
The leader arm is connected locally (on the laptop) and its joint positions are recorded and then
forwarded to the remote follower arm (after applying a safety clamp).
In parallel, keyboard teleoperation is used to generate raw velocity commands for the wheels.
"""
config_class = LeKiwiRobotConfig
name = "lekiwi"
def __init__(self, config: LeKiwiRobotConfig):
"""
Expected keys in config:
- ip, port, video_port for the remote connection.
- calibration_dir, leader_arms, follower_arms, max_relative_target, etc.
"""
self.robot_type = config.type
super().__init__(config)
self.config = config
# self.robot_type = config.type
# self.id = config.id
self.remote_ip = config.ip
self.remote_port = config.port
self.remote_port_video = config.video_port
self.calibration_dir = Path(self.config.calibration_dir)
self.logs = {}
# self.logs = {}
# TODO(Steven): This should go to teleop
# self.teleop_keys = self.config.teleop_keys
self.teleop_keys = self.config.teleop_keys
# TODO(Steven): Consider in the future using S100 robot class
# TODO(Steven): Another option is to use the motorbus factory, but in this case we assume that
# what we consider 'lekiwi robot' always uses the FeetechMotorsBus
# TODO(Steve): We will need to have a key for arm and base for calibration
self.actuators = FeetechMotorsBus(
port=self.config.port,
motors={
"shoulder_pan": config.shoulder_pan,
"shoulder_lift": config.shoulder_lift,
"elbow_flex": config.elbow_flex,
"wrist_flex": config.wrist_flex,
"wrist_roll": config.wrist_roll,
"gripper": config.gripper,
"left_wheel": config.left_wheel,
"right_wheel": config.right_wheel,
"back_wheel": config.back_wheel,
},
)
# For teleoperation, the leader arm (local) is used to record the desired arm pose.
self.leader_arms = make_motors_buses_from_configs(self.config.leader_arms)
self.follower_arms = make_motors_buses_from_configs(self.config.follower_arms)
self.cameras = make_cameras_from_configs(self.config.cameras)
#TODO(Steven): Consider removing cameras from configs
self.cameras = make_cameras_from_configs(config.cameras)
self.is_connected = False
self.logs = {}
self.last_frames = {}
self.last_present_speed = {}
self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)
# Define three speed levels and a current index
self.speed_levels = [
{"xy": 0.1, "theta": 30}, # slow
{"xy": 0.2, "theta": 60}, # medium
{"xy": 0.3, "theta": 90}, # fast
]
self.speed_index = 0 # Start at slow
self.observation_lock = threading.Lock()
self.last_observation = None
# self.last_frames = {}
# self.last_present_speed = {}
# self.last_remote_arm_state = torch.zeros(6, dtype=torch.float32)
# ZeroMQ context and sockets.
self.context = None
self.cmd_socket = None
self.video_socket = None
self.observation_socket = None
# Keyboard state for base teleoperation.
self.running = True
self.pressed_keys = {
"forward": False,
"backward": False,
"left": False,
"right": False,
"rotate_left": False,
"rotate_right": False,
}
if PYNPUT_AVAILABLE:
print("pynput is available - enabling local keyboard listener.")
self.listener = keyboard.Listener(
on_press=self.on_press,
on_release=self.on_release,
)
self.listener.start()
else:
print("pynput not available - skipping local keyboard listener.")
self.listener = None
def get_motor_names(self, arms: dict[str, MotorsBus]) -> list:
return [f"{arm}_{motor}" for arm, bus in arms.items() for motor in bus.motors]
@property
def camera_features(self) -> dict:
def state_feature(self) -> dict:
return {
"dtype": "float32",
"shape": (len(self.actuators),),
"names": {"motors": list(self.actuators.motors)},
}
@property
def action_feature(self) -> dict:
return self.state_feature
@property
def camera_features(self) -> dict[str, dict]:
cam_ft = {}
for cam_key, cam in self.cameras.items():
key = f"observation.images.{cam_key}"
cam_ft[key] = {
cam_ft[cam_key] = {
"shape": (cam.height, cam.width, cam.channels),
"names": ["height", "width", "channels"],
"info": None,
}
return cam_ft
@property
def motor_features(self) -> dict:
follower_arm_names = [
"shoulder_pan",
"shoulder_lift",
"elbow_flex",
"wrist_flex",
"wrist_roll",
"gripper",
]
observations = ["x_mm", "y_mm", "theta"]
combined_names = follower_arm_names + observations
return {
"action": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
"observation.state": {
"dtype": "float32",
"shape": (len(combined_names),),
"names": combined_names,
},
}
def setup_zmq_sockets(self, config):
context = zmq.Context()
cmd_socket = context.socket(zmq.PULL)
cmd_socket.setsockopt(zmq.CONFLATE, 1)
cmd_socket.bind(f"tcp://*:{config.port}")
@property
def features(self):
return {**self.motor_features, **self.camera_features}
observation_socket = context.socket(zmq.PUSH)
observation_socket.setsockopt(zmq.CONFLATE, 1)
observation_socket.bind(f"tcp://*:{config.video_port}")
@property
def has_camera(self):
return len(self.cameras) > 0
return context, cmd_socket, observation_socket
def setup_actuators(self):
# We assume that at connection time, arm is in a rest position,
# and torque can be safely disabled to run calibration.
self.actuators.write("Torque_Enable", TorqueMode.DISABLED.value)
self.calibrate()
@property
def num_cameras(self):
return len(self.cameras)
# Mode=0 for Position Control
# TODO(Steven): Base robots should actually be in vel mode
self.actuators.write("Mode", 0)
# Set P_Coefficient to lower value to avoid shakiness (Default is 32)
self.actuators.write("P_Coefficient", 16)
# Set I_Coefficient and D_Coefficient to default value 0 and 32
self.actuators.write("I_Coefficient", 0)
self.actuators.write("D_Coefficient", 32)
# Close the write lock so that Maximum_Acceleration gets written to EPROM address,
# which is mandatory for Maximum_Acceleration to take effect after rebooting.
self.actuators.write("Lock", 0)
# Set Maximum_Acceleration to 254 to speedup acceleration and deceleration of
# the motors. Note: this configuration is not in the official STS3215 Memory Table
self.actuators.write("Maximum_Acceleration", 254)
self.actuators.write("Acceleration", 254)
@property
def available_arms(self):
available = []
for name in self.leader_arms:
available.append(get_arm_id(name, "leader"))
for name in self.follower_arms:
available.append(get_arm_id(name, "follower"))
return available
logging.info("Activating torque.")
self.actuators.write("Torque_Enable", TorqueMode.ENABLED.value)
def on_press(self, key):
try:
# Movement
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = True
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = True
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = True
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = True
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = True
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = True
# Check arm can be read
self.actuators.read("Present_Position")
# Quit teleoperation
elif key.char == self.teleop_keys["quit"]:
self.running = False
return False
def connect(self) -> None:
if self.is_connected:
raise DeviceAlreadyConnectedError(
"LeKiwi Robot is already connected. Do not run `robot.connect()` twice."
)
# Speed control
elif key.char == self.teleop_keys["speed_up"]:
self.speed_index = min(self.speed_index + 1, 2)
print(f"Speed index increased to {self.speed_index}")
elif key.char == self.teleop_keys["speed_down"]:
self.speed_index = max(self.speed_index - 1, 0)
print(f"Speed index decreased to {self.speed_index}")
logging.info("Connecting actuators.")
self.actuators.connect()
self.setup_actuators()
except AttributeError:
# e.g., if key is special like Key.esc
if key == keyboard.Key.esc:
self.running = False
return False
logging.info("Connecting cameras.")
for cam in self.cameras.values():
cam.connect()
def on_release(self, key):
try:
if hasattr(key, "char"):
if key.char == self.teleop_keys["forward"]:
self.pressed_keys["forward"] = False
elif key.char == self.teleop_keys["backward"]:
self.pressed_keys["backward"] = False
elif key.char == self.teleop_keys["left"]:
self.pressed_keys["left"] = False
elif key.char == self.teleop_keys["right"]:
self.pressed_keys["right"] = False
elif key.char == self.teleop_keys["rotate_left"]:
self.pressed_keys["rotate_left"] = False
elif key.char == self.teleop_keys["rotate_right"]:
self.pressed_keys["rotate_right"] = False
except AttributeError:
pass
logging.info("Connecting ZMQ sockets.")
self.context, self.cmd_socket, self.observation_socket = self.setup_zmq_sockets(self.config)
def connect(self):
if not self.leader_arms:
raise ValueError("MobileManipulator has no leader arm to connect.")
for name in self.leader_arms:
print(f"Connecting {name} leader arm.")
self.calibrate_leader()
# Set up ZeroMQ sockets to communicate with the remote mobile robot.
self.context = zmq.Context()
self.cmd_socket = self.context.socket(zmq.PUSH)
connection_string = f"tcp://{self.remote_ip}:{self.remote_port}"
self.cmd_socket.connect(connection_string)
self.cmd_socket.setsockopt(zmq.CONFLATE, 1)
self.video_socket = self.context.socket(zmq.PULL)
video_connection = f"tcp://{self.remote_ip}:{self.remote_port_video}"
self.video_socket.connect(video_connection)
self.video_socket.setsockopt(zmq.CONFLATE, 1)
print(
f"[INFO] Connected to remote robot at {connection_string} and video stream at {video_connection}."
)
self.is_connected = True
def load_or_run_calibration_(self, name, arm, arm_type):
arm_id = get_arm_id(name, arm_type)
arm_calib_path = self.calibration_dir / f"{arm_id}.json"
def calibrate(self) -> None:
# Copied from S100 robot
"""After calibration all motors function in human interpretable ranges.
Rotations are expressed in degrees in nominal range of [-180, 180],
and linear motions (like gripper of Aloha) in nominal range of [0, 100].
"""
actuators_calib_path = self.calibration_dir / f"{self.config.id}.json"
if arm_calib_path.exists():
with open(arm_calib_path) as f:
if actuators_calib_path.exists():
with open(actuators_calib_path) as f:
calibration = json.load(f)
else:
print(f"Missing calibration file '{arm_calib_path}'")
calibration = run_full_arm_calibration(arm, self.robot_type, name, arm_type)
print(f"Calibration is done! Saving calibration file '{arm_calib_path}'")
arm_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(arm_calib_path, "w") as f:
# TODO(rcadene): display a warning in __init__ if calibration file not available
logging.info(f"Missing calibration file '{actuators_calib_path}'")
calibration = run_arm_manual_calibration(self.actuators, self.robot_type, self.name, "follower")
logging.info(f"Calibration is done! Saving calibration file '{actuators_calib_path}'")
actuators_calib_path.parent.mkdir(parents=True, exist_ok=True)
with open(actuators_calib_path, "w") as f:
json.dump(calibration, f)
return calibration
self.actuators.set_calibration(calibration)
def calibrate_leader(self):
for name, arm in self.leader_arms.items():
# Connect the bus
arm.connect()
# Disable torque on all motors
for motor_id in arm.motors:
arm.write("Torque_Enable", TorqueMode.DISABLED.value, motor_id)
# Now run calibration
calibration = self.load_or_run_calibration_(name, arm, "leader")
arm.set_calibration(calibration)
def calibrate_follower(self):
for name, bus in self.follower_arms.items():
bus.connect()
# Disable torque on all motors
for motor_id in bus.motors:
bus.write("Torque_Enable", 0, motor_id)
# Then filter out wheels
arm_only_dict = {k: v for k, v in bus.motors.items() if not k.startswith("wheel_")}
if not arm_only_dict:
continue
original_motors = bus.motors
bus.motors = arm_only_dict
calibration = self.load_or_run_calibration_(name, bus, "follower")
bus.set_calibration(calibration)
bus.motors = original_motors
def _get_data(self):
"""
Polls the video socket for up to 15 ms. If data arrives, decode only
the *latest* message, returning frames, speed, and arm state. If
nothing arrives for any field, use the last known values.
"""
frames = {}
present_speed = {}
remote_arm_state_tensor = torch.zeros(6, dtype=torch.float32)
# Poll up to 15 ms
poller = zmq.Poller()
poller.register(self.video_socket, zmq.POLLIN)
socks = dict(poller.poll(15))
if self.video_socket not in socks or socks[self.video_socket] != zmq.POLLIN:
# No new data arrived → reuse ALL old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Drain all messages, keep only the last
last_msg = None
while True:
try:
obs_string = self.video_socket.recv_string(zmq.NOBLOCK)
last_msg = obs_string
except zmq.Again:
break
if not last_msg:
# No new message → also reuse old
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
# Decode only the final message
try:
observation = json.loads(last_msg)
images_dict = observation.get("images", {})
new_speed = observation.get("present_speed", {})
new_arm_state = observation.get("follower_arm_state", None)
# Convert images
for cam_name, image_b64 in images_dict.items():
if image_b64:
jpg_data = base64.b64decode(image_b64)
np_arr = np.frombuffer(jpg_data, dtype=np.uint8)
frame_candidate = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)
if frame_candidate is not None:
frames[cam_name] = frame_candidate
# If remote_arm_state is None and frames is None there is no message then use the previous message
if new_arm_state is not None and frames is not None:
self.last_frames = frames
remote_arm_state_tensor = torch.tensor(new_arm_state, dtype=torch.float32)
self.last_remote_arm_state = remote_arm_state_tensor
present_speed = new_speed
self.last_present_speed = new_speed
else:
frames = self.last_frames
remote_arm_state_tensor = self.last_remote_arm_state
present_speed = self.last_present_speed
except Exception as e:
print(f"[DEBUG] Error decoding video message: {e}")
# If decode fails, fall back to old data
return (self.last_frames, self.last_present_speed, self.last_remote_arm_state)
return frames, present_speed, remote_arm_state_tensor
def _process_present_speed(self, present_speed: dict) -> torch.Tensor:
state_tensor = torch.zeros(3, dtype=torch.int32)
if present_speed:
decoded = {key: MobileManipulator.raw_to_degps(value) for key, value in present_speed.items()}
if "1" in decoded:
state_tensor[0] = decoded["1"]
if "2" in decoded:
state_tensor[1] = decoded["2"]
if "3" in decoded:
state_tensor[2] = decoded["3"]
return state_tensor
def teleop_step(
self, record_data: bool = False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
def get_observation(self) -> dict[str, np.ndarray]:
"""The returned observations do not have a batch dimension."""
if not self.is_connected:
raise DeviceNotConnectedError("MobileManipulator is not connected. Run `connect()` first.")
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
speed_setting = self.speed_levels[self.speed_index]
xy_speed = speed_setting["xy"] # e.g. 0.1, 0.25, or 0.4
theta_speed = speed_setting["theta"] # e.g. 30, 60, or 90
obs_dict = {}
# Prepare to assign the position of the leader to the follower
arm_positions = []
for name in self.leader_arms:
pos = self.leader_arms[name].read("Present_Position")
pos_tensor = torch.from_numpy(pos).float()
# Instead of pos_tensor.item(), use tolist() to convert the entire tensor to a list
arm_positions.extend(pos_tensor.tolist())
# Read actuators position
# TODO(Steven): Base motors should return a vel instead of a pos
before_read_t = time.perf_counter()
obs_dict[OBS_STATE] = self.actuators.read("Present_Position")
self.logs["read_pos_dt_s"] = time.perf_counter() - before_read_t
# (The rest of your code for generating wheel commands remains unchanged)
x_cmd = 0.0 # m/s forward/backward
y_cmd = 0.0 # m/s lateral
theta_cmd = 0.0 # deg/s rotation
if self.pressed_keys["forward"]:
x_cmd += xy_speed
if self.pressed_keys["backward"]:
x_cmd -= xy_speed
if self.pressed_keys["left"]:
y_cmd += xy_speed
if self.pressed_keys["right"]:
y_cmd -= xy_speed
if self.pressed_keys["rotate_left"]:
theta_cmd += theta_speed
if self.pressed_keys["rotate_right"]:
theta_cmd -= theta_speed
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions}
self.cmd_socket.send_string(json.dumps(message))
if not record_data:
return
obs_dict = self.capture_observation()
arm_state_tensor = torch.tensor(arm_positions, dtype=torch.float32)
wheel_velocity_tuple = self.wheel_raw_to_body(wheel_commands)
wheel_velocity_mm = (
wheel_velocity_tuple[0] * 1000.0,
wheel_velocity_tuple[1] * 1000.0,
wheel_velocity_tuple[2],
)
wheel_tensor = torch.tensor(wheel_velocity_mm, dtype=torch.float32)
action_tensor = torch.cat([arm_state_tensor, wheel_tensor])
action_dict = {"action": action_tensor}
return obs_dict, action_dict
def capture_observation(self) -> dict:
"""
Capture observations from the remote robot: current follower arm positions,
present wheel speeds (converted to body-frame velocities: x, y, theta),
and a camera frame.
"""
if not self.is_connected:
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
frames, present_speed, remote_arm_state_tensor = self._get_data()
body_state = self.wheel_raw_to_body(present_speed)
body_state_mm = (body_state[0] * 1000.0, body_state[1] * 1000.0, body_state[2]) # Convert x,y to mm/s
wheel_state_tensor = torch.tensor(body_state_mm, dtype=torch.float32)
combined_state_tensor = torch.cat((remote_arm_state_tensor, wheel_state_tensor), dim=0)
obs_dict = {"observation.state": combined_state_tensor}
# Loop over each configured camera
for cam_name, cam in self.cameras.items():
frame = frames.get(cam_name, None)
if frame is None:
# Create a black image using the camera's configured width, height, and channels
frame = np.zeros((cam.height, cam.width, cam.channels), dtype=np.uint8)
obs_dict[f"observation.images.{cam_name}"] = torch.from_numpy(frame)
# Capture images from cameras
for cam_key, cam in self.cameras.items():
before_camread_t = time.perf_counter()
obs_dict[f"{OBS_IMAGES}.{cam_key}"] = cam.async_read()
self.logs[f"read_camera_{cam_key}_dt_s"] = cam.logs["delta_timestamp_s"]
self.logs[f"async_read_camera_{cam_key}_dt_s"] = time.perf_counter() - before_camread_t
return obs_dict
def send_action(self, action: torch.Tensor) -> torch.Tensor:
def send_action(self, action: np.ndarray) -> np.ndarray:
# Copied from S100 robot
"""Command lekiwi to move to a target joint configuration.
The relative action magnitude may be clipped depending on the configuration parameter
`max_relative_target`. In this case, the action sent differs from original action.
Thus, this function always returns the action actually sent.
Args:
action (np.ndarray): array containing the goal positions for the motors.
Raises:
RobotDeviceNotConnectedError: if robot is not connected.
Returns:
np.ndarray: the action sent to the motors, potentially clipped.
"""
if not self.is_connected:
raise DeviceNotConnectedError("Not connected. Run `connect()` first.")
raise DeviceNotConnectedError(
"ManipulatorRobot is not connected. You need to run `robot.connect()`."
)
# Ensure the action tensor has at least 9 elements:
# - First 6: arm positions.
# - Last 3: base commands.
if action.numel() < 9:
# Pad with zeros if there are not enough elements.
padded = torch.zeros(9, dtype=action.dtype)
padded[: action.numel()] = action
action = padded
goal_pos = action
# Extract arm and base actions.
arm_actions = action[:6].flatten()
base_actions = action[6:].flatten()
# Cap goal position when too far away from present position.
# /!\ Slower fps expected due to reading from the follower.
if self.config.max_relative_target is not None:
present_pos = self.actuators.read("Present_Position")
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
x_cmd_mm = base_actions[0].item() # mm/s
y_cmd_mm = base_actions[1].item() # mm/s
theta_cmd = base_actions[2].item() # deg/s
# Send goal position to the actuators
# TODO(Steven): Base motors should set a vel instead
self.actuators.write("Goal_Position", goal_pos.astype(np.int32))
# Convert mm/s to m/s for the kinematics calculations.
x_cmd = x_cmd_mm / 1000.0 # m/s
y_cmd = y_cmd_mm / 1000.0 # m/s
return goal_pos
# Compute wheel commands from body commands.
wheel_commands = self.body_to_wheel_raw(x_cmd, y_cmd, theta_cmd)
def update_last_observation(self, stop_event):
while not stop_event.is_set():
with self.observation_lock:
self.last_observation = self.get_observation()
# TODO(Steven): Consider adding a delay to not starve the CPU
arm_positions_list = arm_actions.tolist()
def run(self):
# Copied from run_lekiwi in lekiwi_remote.py
# TODO(Steven): Csnsider with, finally
if not self.is_connected:
self.connect()
stop_event = threading.Event()
observation_thread = threading.Thread(
target=self.update_last_observation, args=(stop_event), daemon=True
)
observation_thread.start()
message = {"raw_velocity": wheel_commands, "arm_positions": arm_positions_list}
self.cmd_socket.send_string(json.dumps(message))
last_cmd_time = time.time()
logging.info("LeKiwi robot server started. Waiting for commands...")
return action
try:
while True:
loop_start_time = time.time()
try:
msg = self.cmd_socket.recv_string(zmq.NOBLOCK)
data = json.loads(msg)
# TODO(Steven): Process data correctly
self.send_action(data)
last_cmd_time = time.time()
# except zmq.Again:
# logging.warning("ZMQ again")
except Exception as e:
logging.warning(f"[ERROR] Message fetching failed: {e}")
# Watchdog: stop the robot if no command is received for over 0.5 seconds.
now = time.time()
if now - last_cmd_time > 0.5:
# TODO(Steven): Implement stop()
#self.stop()
pass
with self.observation_lock:
self.observation_socket.send_string(json.dumps(self.last_observation))
# Ensure a short sleep to avoid overloading the CPU.
elapsed = time.time() - loop_start_time
time.sleep(
max(0.033 - elapsed, 0)
) # If robot jitters increase the sleep and monitor cpu load with `top` in cmd
except KeyboardInterrupt:
print("Shutting down LeKiwi server.")
finally:
#TODO(Steven): Implement finally
pass
def print_logs(self):
# TODO(aliberts): move robot-specific logs logic here
pass
def disconnect(self):
if not self.is_connected:
raise DeviceNotConnectedError("Not connected.")
if self.cmd_socket:
stop_cmd = {
"raw_velocity": {"left_wheel": 0, "back_wheel": 0, "right_wheel": 0},
"arm_positions": {},
}
self.cmd_socket.send_string(json.dumps(stop_cmd))
self.cmd_socket.close()
if self.video_socket:
self.video_socket.close()
if self.context:
self.context.term()
if PYNPUT_AVAILABLE:
self.listener.stop()
raise DeviceNotConnectedError(
"LeKiwi is not connected. You need to run `robot.connect()` before disconnecting."
)
# TODO(Steven): Base motors speed should be set to 0
# TODO(Steven): Close ZMQ sockets
# TODO(Steven): Stop main loop threads
self.actuators.disconnect()
for cam in self.cameras.values():
cam.disconnect()
self.is_connected = False
print("[INFO] Disconnected from remote robot.")
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()
if PYNPUT_AVAILABLE:
self.listener.stop()
@staticmethod
def degps_to_raw(degps: float) -> int:
steps_per_deg = 4096.0 / 360.0
speed_in_steps = abs(degps) * steps_per_deg
speed_int = int(round(speed_in_steps))
if speed_int > 0x7FFF:
speed_int = 0x7FFF
if degps < 0:
return speed_int | 0x8000
else:
return speed_int & 0x7FFF
@staticmethod
def raw_to_degps(raw_speed: int) -> float:
steps_per_deg = 4096.0 / 360.0
magnitude = raw_speed & 0x7FFF
degps = magnitude / steps_per_deg
if raw_speed & 0x8000:
degps = -degps
return degps
def body_to_wheel_raw(
self,
x_cmd: float,
y_cmd: float,
theta_cmd: float,
wheel_radius: float = 0.05,
base_radius: float = 0.125,
max_raw: int = 3000,
) -> dict:
"""
Convert desired body-frame velocities into wheel raw commands.
Parameters:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity (deg/s).
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the center of rotation to each wheel (meters).
max_raw : Maximum allowed raw command (ticks) per wheel.
Returns:
A dictionary with wheel raw commands:
{"left_wheel": value, "back_wheel": value, "right_wheel": value}.
Notes:
- Internally, the method converts theta_cmd to rad/s for the kinematics.
- The raw command is computed from the wheels angular speed in deg/s
using degps_to_raw(). If any command exceeds max_raw, all commands
are scaled down proportionally.
"""
# Convert rotational velocity from deg/s to rad/s.
theta_rad = theta_cmd * (np.pi / 180.0)
# Create the body velocity vector [x, y, theta_rad].
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
# Build the kinematic matrix: each row maps body velocities to a wheels linear speed.
# The third column (base_radius) accounts for the effect of rotation.
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Compute each wheels linear speed (m/s) and then its angular speed (rad/s).
wheel_linear_speeds = m.dot(velocity_vector)
wheel_angular_speeds = wheel_linear_speeds / wheel_radius
# Convert wheel angular speeds from rad/s to deg/s.
wheel_degps = wheel_angular_speeds * (180.0 / np.pi)
# Scaling
steps_per_deg = 4096.0 / 360.0
raw_floats = [abs(degps) * steps_per_deg for degps in wheel_degps]
max_raw_computed = max(raw_floats)
if max_raw_computed > max_raw:
scale = max_raw / max_raw_computed
wheel_degps = wheel_degps * scale
# Convert each wheels angular speed (deg/s) to a raw integer.
wheel_raw = [MobileManipulator.degps_to_raw(deg) for deg in wheel_degps]
return {"left_wheel": wheel_raw[0], "back_wheel": wheel_raw[1], "right_wheel": wheel_raw[2]}
def wheel_raw_to_body(
self, wheel_raw: dict, wheel_radius: float = 0.05, base_radius: float = 0.125
) -> tuple:
"""
Convert wheel raw command feedback back into body-frame velocities.
Parameters:
wheel_raw : Dictionary with raw wheel commands (keys: "left_wheel", "back_wheel", "right_wheel").
wheel_radius: Radius of each wheel (meters).
base_radius : Distance from the robot center to each wheel (meters).
Returns:
A tuple (x_cmd, y_cmd, theta_cmd) where:
x_cmd : Linear velocity in x (m/s).
y_cmd : Linear velocity in y (m/s).
theta_cmd : Rotational velocity in deg/s.
"""
# Extract the raw values in order.
raw_list = [
int(wheel_raw.get("left_wheel", 0)),
int(wheel_raw.get("back_wheel", 0)),
int(wheel_raw.get("right_wheel", 0)),
]
# Convert each raw command back to an angular speed in deg/s.
wheel_degps = np.array([MobileManipulator.raw_to_degps(r) for r in raw_list])
# Convert from deg/s to rad/s.
wheel_radps = wheel_degps * (np.pi / 180.0)
# Compute each wheels linear speed (m/s) from its angular speed.
wheel_linear_speeds = wheel_radps * wheel_radius
# Define the wheel mounting angles with a -90° offset.
angles = np.radians(np.array([240, 120, 0]) - 90)
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
m_inv = np.linalg.inv(m)
velocity_vector = m_inv.dot(wheel_linear_speeds)
x_cmd, y_cmd, theta_rad = velocity_vector
theta_cmd = theta_rad * (180.0 / np.pi)
return (x_cmd, y_cmd, theta_cmd)
class LeKiwi:
def __init__(self, motor_bus):
"""
Initializes the LeKiwi with Feetech motors bus.
"""
self.motor_bus = motor_bus
self.motor_ids = ["left_wheel", "back_wheel", "right_wheel"]
# Initialize motors in velocity mode.
self.motor_bus.write("Lock", 0)
self.motor_bus.write("Mode", [1, 1, 1], self.motor_ids)
self.motor_bus.write("Lock", 1)
print("Motors set to velocity mode.")
def read_velocity(self):
"""
Reads the raw speeds for all wheels. Returns a dictionary with motor names:
"""
raw_speeds = self.motor_bus.read("Present_Speed", self.motor_ids)
return {
"left_wheel": int(raw_speeds[0]),
"back_wheel": int(raw_speeds[1]),
"right_wheel": int(raw_speeds[2]),
}
def set_velocity(self, command_speeds):
"""
Sends raw velocity commands (16-bit encoded values) directly to the motor bus.
The order of speeds must correspond to self.motor_ids.
"""
self.motor_bus.write("Goal_Speed", command_speeds, self.motor_ids)
def stop(self):
"""Stops the robot by setting all motor speeds to zero."""
self.motor_bus.write("Goal_Speed", [0, 0, 0], self.motor_ids)
print("Motors stopped.")

View File

@ -64,6 +64,7 @@ class KeyboardTeleop(Teleoperator):
@property
def action_feature(self) -> dict:
#TODO(Steven): Verify this is correct
return {
"dtype": "float32",
"shape": (len(self.arm),),
@ -75,6 +76,12 @@ class KeyboardTeleop(Teleoperator):
return {}
def connect(self) -> None:
#TODO(Steven): Consider instead of raising a warning and then returning the status
# if self.is_connected:
# logging.warning(
# "ManipulatorRobot is already connected. Do not run `robot.connect()` twice."
# )
# return self.is_connected
if self.is_connected:
raise DeviceAlreadyConnectedError(
"ManipulatorRobot is already connected. Do not run `robot.connect()` twice."

View File

@ -379,7 +379,7 @@ def control_robot(cfg: ControlPipelineConfig):
elif isinstance(cfg.control, ReplayControlConfig):
replay(robot, cfg.control)
elif isinstance(cfg.control, RemoteRobotConfig):
from lerobot.common.robots.lekiwi.lekiwi_remote import run_lekiwi
from lerobot.common.robots.lekiwi.old_lekiwi_remote import run_lekiwi
run_lekiwi(cfg.robot)