add rerun
This commit is contained in:
parent
0e097e7538
commit
6d6f1fafc8
|
@ -0,0 +1,263 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Visualize data of **all** frames of any episode of a dataset of type LeRobotDataset.
|
||||
|
||||
Note: The last frame of the episode doesnt always correspond to a final state.
|
||||
That's because our datasets are composed of transition from state to state up to
|
||||
the antepenultimate state associated to the ultimate action to arrive in the final state.
|
||||
However, there might not be a transition from a final state to another state.
|
||||
|
||||
Note: This script aims to visualize the data used to train the neural networks.
|
||||
~What you see is what you get~. When visualizing image modality, it is often expected to observe
|
||||
lossly compression artifacts since these images have been decoded from compressed mp4 videos to
|
||||
save disk space. The compression factor applied has been tuned to not affect success rate.
|
||||
|
||||
Examples:
|
||||
|
||||
- Visualize data stored on a local machine:
|
||||
```
|
||||
local$ python lerobot/scripts/visualize_dataset.py \
|
||||
--repo-id lerobot/pusht \
|
||||
--episode-index 0
|
||||
```
|
||||
|
||||
- Visualize data stored on a distant machine with a local viewer:
|
||||
```
|
||||
distant$ python lerobot/scripts/visualize_dataset.py \
|
||||
--repo-id lerobot/pusht \
|
||||
--episode-index 0 \
|
||||
--save 1 \
|
||||
--output-dir path/to/directory
|
||||
|
||||
local$ scp distant:path/to/directory/lerobot_pusht_episode_0.rrd .
|
||||
local$ rerun lerobot_pusht_episode_0.rrd
|
||||
```
|
||||
|
||||
- Visualize data stored on a distant machine through streaming:
|
||||
(You need to forward the websocket port to the distant machine, with
|
||||
`ssh -L 9087:localhost:9087 username@remote-host`)
|
||||
```
|
||||
distant$ python lerobot/scripts/visualize_dataset.py \
|
||||
--repo-id lerobot/pusht \
|
||||
--episode-index 0 \
|
||||
--mode distant \
|
||||
--ws-port 9087
|
||||
|
||||
local$ rerun ws://localhost:9087
|
||||
```
|
||||
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import gc
|
||||
import logging
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import rerun as rr
|
||||
import torch
|
||||
import tqdm
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
|
||||
|
||||
class EpisodeSampler(torch.utils.data.Sampler):
|
||||
def __init__(self, dataset, episode_index):
|
||||
from_idx = dataset.episode_data_index["from"][episode_index].item()
|
||||
to_idx = dataset.episode_data_index["to"][episode_index].item()
|
||||
self.frame_ids = range(from_idx, to_idx)
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self.frame_ids)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.frame_ids)
|
||||
|
||||
|
||||
def to_hwc_uint8_numpy(chw_float32_torch):
|
||||
assert chw_float32_torch.dtype == torch.float32
|
||||
assert chw_float32_torch.ndim == 3
|
||||
c, h, w = chw_float32_torch.shape
|
||||
assert c < h and c < w, f"expect channel first images, but instead {chw_float32_torch.shape}"
|
||||
hwc_uint8_numpy = (chw_float32_torch * 255).type(torch.uint8).permute(1, 2, 0).numpy()
|
||||
return hwc_uint8_numpy
|
||||
|
||||
|
||||
def visualize_dataset(
|
||||
repo_id: str,
|
||||
episode_index: int,
|
||||
batch_size: int = 32,
|
||||
num_workers: int = 0,
|
||||
mode: str = "local",
|
||||
web_port: int = 9090,
|
||||
ws_port: int = 9087,
|
||||
save: bool = False,
|
||||
output_dir: Path | None = None,
|
||||
) -> Path | None:
|
||||
if save:
|
||||
assert (
|
||||
output_dir is not None
|
||||
), "Set an output directory where to write .rrd files with `--output-dir path/to/directory`."
|
||||
|
||||
logging.info("Loading dataset")
|
||||
dataset = LeRobotDataset(repo_id)
|
||||
|
||||
logging.info("Loading dataloader")
|
||||
episode_sampler = EpisodeSampler(dataset, episode_index)
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=num_workers,
|
||||
batch_size=batch_size,
|
||||
sampler=episode_sampler,
|
||||
)
|
||||
|
||||
logging.info("Starting Rerun")
|
||||
|
||||
if mode not in ["local", "distant"]:
|
||||
raise ValueError(mode)
|
||||
|
||||
spawn_local_viewer = mode == "local" and not save
|
||||
rr.init(f"{repo_id}/episode_{episode_index}", spawn=spawn_local_viewer)
|
||||
|
||||
# Manually call python garbage collector after `rr.init` to avoid hanging in a blocking flush
|
||||
# when iterating on a dataloader with `num_workers` > 0
|
||||
# TODO(rcadene): remove `gc.collect` when rerun version 0.16 is out, which includes a fix
|
||||
gc.collect()
|
||||
|
||||
if mode == "distant":
|
||||
rr.serve(open_browser=False, web_port=web_port, ws_port=ws_port)
|
||||
|
||||
logging.info("Logging to Rerun")
|
||||
|
||||
for batch in tqdm.tqdm(dataloader, total=len(dataloader)):
|
||||
# iterate over the batch
|
||||
for i in range(len(batch["index"])):
|
||||
rr.set_time_sequence("frame_index", batch["frame_index"][i].item())
|
||||
rr.set_time_seconds("timestamp", batch["timestamp"][i].item())
|
||||
|
||||
# display each camera image
|
||||
for key in dataset.camera_keys:
|
||||
# TODO(rcadene): add `.compress()`? is it lossless?
|
||||
rr.log(key, rr.Image(to_hwc_uint8_numpy(batch[key][i])))
|
||||
|
||||
# display each dimension of action space (e.g. actuators command)
|
||||
if "action" in batch:
|
||||
for dim_idx, val in enumerate(batch["action"][i]):
|
||||
rr.log(f"action/{dim_idx}", rr.Scalar(val.item()))
|
||||
|
||||
# display each dimension of observed state space (e.g. agent position in joint space)
|
||||
if "observation.state" in batch:
|
||||
for dim_idx, val in enumerate(batch["observation.state"][i]):
|
||||
rr.log(f"state/{dim_idx}", rr.Scalar(val.item()))
|
||||
|
||||
if "next.done" in batch:
|
||||
rr.log("next.done", rr.Scalar(batch["next.done"][i].item()))
|
||||
|
||||
if "next.reward" in batch:
|
||||
rr.log("next.reward", rr.Scalar(batch["next.reward"][i].item()))
|
||||
|
||||
if "next.success" in batch:
|
||||
rr.log("next.success", rr.Scalar(batch["next.success"][i].item()))
|
||||
|
||||
if mode == "local" and save:
|
||||
# save .rrd locally
|
||||
output_dir = Path(output_dir)
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
repo_id_str = repo_id.replace("/", "_")
|
||||
rrd_path = output_dir / f"{repo_id_str}_episode_{episode_index}.rrd"
|
||||
rr.save(rrd_path)
|
||||
return rrd_path
|
||||
|
||||
elif mode == "distant":
|
||||
# stop the process from exiting since it is serving the websocket connection
|
||||
try:
|
||||
while True:
|
||||
time.sleep(1)
|
||||
except KeyboardInterrupt:
|
||||
print("Ctrl-C received. Exiting.")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht`).",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--episode-index",
|
||||
type=int,
|
||||
required=True,
|
||||
help="Episode to visualize.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=32,
|
||||
help="Batch size loaded by DataLoader.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-workers",
|
||||
type=int,
|
||||
default=4,
|
||||
help="Number of processes of Dataloader for loading the data.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--mode",
|
||||
type=str,
|
||||
default="local",
|
||||
help=(
|
||||
"Mode of viewing between 'local' or 'distant'. "
|
||||
"'local' requires data to be on a local machine. It spawns a viewer to visualize the data locally. "
|
||||
"'distant' creates a server on the distant machine where the data is stored. Visualize the data by connecting to the server with `rerun ws://localhost:PORT` on the local machine."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--web-port",
|
||||
type=int,
|
||||
default=9090,
|
||||
help="Web port for rerun.io when `--mode distant` is set.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ws-port",
|
||||
type=int,
|
||||
default=9087,
|
||||
help="Web socket port for rerun.io when `--mode distant` is set.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save",
|
||||
type=int,
|
||||
default=0,
|
||||
help=(
|
||||
"Save a .rrd file in the directory provided by `--output-dir`. "
|
||||
"It also deactivates the spawning of a viewer. ",
|
||||
"Visualize the data by running `rerun path/to/file.rrd` on your local machine.",
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir",
|
||||
type=str,
|
||||
help="Directory path to write a .rrd file when `--save 1` is set.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
visualize_dataset(**vars(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue