Centralize availables

This commit is contained in:
Simon Alibert 2024-04-17 16:40:40 +02:00
parent 0928afd37d
commit 6dbbe87c2c
6 changed files with 100 additions and 55 deletions

View File

@ -7,16 +7,22 @@ Example:
import lerobot
print(lerobot.available_envs)
print(lerobot.available_tasks_per_env)
print(lerobot.available_datasets_per_env)
print(lerobot.available_datasets)
print(lerobot.available_policies)
print(lerobot.available_policies_per_env)
```
When implementing a new dataset (e.g. `AlohaDataset`), policy (e.g. `DiffusionPolicy`), or environment, follow these steps:
- Set the required class attributes: `available_datasets`.
- Set the required class attributes: `name`.
- Update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
- Update variables in `tests/test_available.py` by importing your new class
When implementing a new dataset class (e.g. `AlohaDataset`) follow these steps:
- Update `available_datasets` in `lerobot/__init__.py`
- Set the required `available_datasets` class attribute using the previously updated `lerobot.available_datasets`
When implementing a new environment (e.g. `gym_aloha`), follow these steps:
- Update `available_envs`, `available_tasks_per_env` and `available_datasets` in `lerobot/__init__.py`
When implementing a new policy class (e.g. `DiffusionPolicy`) follow these steps:
- Update `available_policies` in `lerobot/__init__.py`
- Set the required `name` class attribute.
- Update variables in `tests/test_available.py` by importing your new Policy class
"""
from lerobot.__version__ import __version__ # noqa: F401
@ -36,7 +42,7 @@ available_tasks_per_env = {
"xarm": ["XarmLift-v0"],
}
available_datasets_per_env = {
available_datasets = {
"aloha": [
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
@ -47,10 +53,23 @@ available_datasets_per_env = {
"xarm": ["xarm_lift_medium"],
}
available_datasets = [dataset for env in available_envs for dataset in available_datasets_per_env[env]]
available_policies = [
"act",
"diffusion",
"tdmpc",
]
available_policies_per_env = {
"aloha": ["act"],
"pusht": ["diffusion"],
"xarm": ["tdmpc"],
}
env_task_pairs = [(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks]
env_dataset_pairs = [(env, dataset) for env, datasets in available_datasets.items() for dataset in datasets]
env_dataset_policy_triplets = [
(env, dataset, policy)
for env, datasets in available_datasets.items()
for dataset in datasets
for policy in available_policies_per_env[env]
]

View File

@ -3,6 +3,7 @@ from pathlib import Path
import torch
from datasets import load_dataset, load_from_disk
import lerobot
from lerobot.common.datasets.utils import load_previous_and_future_frames
@ -14,12 +15,7 @@ class AlohaDataset(torch.utils.data.Dataset):
https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_scripted
"""
available_datasets = [
"aloha_sim_insertion_human",
"aloha_sim_insertion_scripted",
"aloha_sim_transfer_cube_human",
"aloha_sim_transfer_cube_scripted",
]
available_datasets = lerobot.available_datasets["aloha"]
fps = 50
image_keys = ["observation.images.top"]

View File

@ -3,6 +3,7 @@ from pathlib import Path
import torch
from datasets import load_dataset, load_from_disk
import lerobot
from lerobot.common.datasets.utils import load_previous_and_future_frames
@ -17,7 +18,7 @@ class PushtDataset(torch.utils.data.Dataset):
If `None`, no shift is applied to current timestamp and the data from the current frame is loaded.
"""
available_datasets = ["pusht"]
available_datasets = lerobot.available_datasets["pusht"]
fps = 10
image_keys = ["observation.image"]

View File

@ -3,6 +3,7 @@ from pathlib import Path
import torch
from datasets import load_dataset, load_from_disk
import lerobot
from lerobot.common.datasets.utils import load_previous_and_future_frames
@ -11,9 +12,7 @@ class XarmDataset(torch.utils.data.Dataset):
https://huggingface.co/datasets/lerobot/xarm_lift_medium
"""
available_datasets = [
"xarm_lift_medium",
]
available_datasets = lerobot.available_datasets["xarm"]
fps = 15
image_keys = ["observation.image"]

View File

@ -0,0 +1,44 @@
import importlib
import logging
def is_package_available(pkg_name: str, return_version: bool = False) -> tuple[bool, str] | bool:
"""Copied from https://github.com/huggingface/transformers/blob/main/src/transformers/utils/import_utils.py
Check if the package spec exists and grab its version to avoid importing a local directory.
**Note:** this doesn't work for all packages.
"""
package_exists = importlib.util.find_spec(pkg_name) is not None
package_version = "N/A"
if package_exists:
try:
# Primary method to get the package version
package_version = importlib.metadata.version(pkg_name)
except importlib.metadata.PackageNotFoundError:
# Fallback method: Only for "torch" and versions containing "dev"
if pkg_name == "torch":
try:
package = importlib.import_module(pkg_name)
temp_version = getattr(package, "__version__", "N/A")
# Check if the version contains "dev"
if "dev" in temp_version:
package_version = temp_version
package_exists = True
else:
package_exists = False
except ImportError:
# If the package can't be imported, it's not available
package_exists = False
else:
# For packages other than "torch", don't attempt the fallback and set as not available
package_exists = False
logging.debug(f"Detected {pkg_name} version: {package_version}")
if return_version:
return package_exists, package_version
else:
return package_exists
_torch_available, _torch_version = is_package_available("torch", return_version=True)
_gym_xarm_available = is_package_available("gym_xarm")
_gym_aloha_available = is_package_available("gym_aloha")
_gym_pusht_available = is_package_available("gym_pusht")

View File

@ -1,53 +1,39 @@
"""
This test verifies that all environments, datasets, policies listed in `lerobot/__init__.py` can be sucessfully
imported and that their class attributes (eg. `available_datasets`, `name`, `available_tasks`) are valid.
When implementing a new dataset (e.g. `AlohaDataset`), policy (e.g. `DiffusionPolicy`), or environment, follow these steps:
- Set the required class attributes: `available_datasets`.
- Set the required class attributes: `name`.
- Update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
- Update variables in `tests/test_available.py` by importing your new class
"""
import importlib
import pytest
import lerobot
import gymnasium as gym
from lerobot.common.datasets.xarm import XarmDataset
from lerobot.common.datasets.aloha import AlohaDataset
from lerobot.common.datasets.pusht import PushtDataset
from lerobot.common.import_utils import is_package_available
from lerobot.common.policies.act.modeling_act import ActionChunkingTransformerPolicy
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
from lerobot.common.policies.tdmpc.policy import TDMPCPolicy
def test_available():
@pytest.mark.parametrize("env_name, task_name", lerobot.env_task_pairs)
def test_available_env_task(env_name: str, task_name: list):
"""
This test verifies that all environments listed in `lerobot/__init__.py` can
be sucessfully imported if they're installed — and that their
`available_tasks_per_env` are valid.
"""
package_name = f"gym_{env_name}"
if not is_package_available(package_name):
pytest.skip(f"gym-{env_name} not installed")
importlib.import_module(package_name)
gym_handle = f"{package_name}/{task_name}"
assert gym_handle in gym.envs.registry.keys(), gym_handle
def test_available_policies():
"""
This test verifies that the class attribute `name` for all policies is
consistent with those listed in `lerobot/__init__.py`.
"""
policy_classes = [
ActionChunkingTransformerPolicy,
DiffusionPolicy,
TDMPCPolicy,
]
dataset_class_per_env = {
"aloha": AlohaDataset,
"pusht": PushtDataset,
"xarm": XarmDataset,
}
policies = [pol_cls.name for pol_cls in policy_classes]
assert set(policies) == set(lerobot.available_policies), policies
for env_name in lerobot.available_envs:
for task_name in lerobot.available_tasks_per_env[env_name]:
package_name = f"gym_{env_name}"
importlib.import_module(package_name)
gym_handle = f"{package_name}/{task_name}"
assert gym_handle in gym.envs.registry.keys(), gym_handle
dataset_class = dataset_class_per_env[env_name]
available_datasets = lerobot.available_datasets_per_env[env_name]
assert set(available_datasets) == set(dataset_class.available_datasets), f"{env_name=} {available_datasets=}"