This commit is contained in:
Remi Cadene 2025-02-20 23:04:31 +00:00
parent b520941cd9
commit 71d1f5e2c9
7 changed files with 306 additions and 92 deletions

View File

@ -17,37 +17,35 @@
For all datasets in the RLDS format.
For https://github.com/google-deepmind/open_x_embodiment (OPENX) datasets.
NOTE: You need to install tensorflow and tensorflow_datsets before running this script.
NOTE: Install `tensorflow` and `tensorflow_datasets` before running this script.
```bash
pip install tensorflow
pip install tensorflow_datasets
```
Example:
python openx_rlds.py \
--raw-dir /path/to/bridge_orig/1.0.0 \
--local-dir /path/to/local_dir \
--repo-id your_id \
--use-videos \
--push-to-hub
```bash
python examples/port_datasets/openx_rlds.py \
--raw-dir /fsx/mustafa_shukor/droid \
--repo-id cadene/droid \
--use-videos \
--push-to-hub
```
"""
import argparse
import os
import re
import shutil
import sys
from functools import partial
from pathlib import Path
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
import tqdm
from lerobot.common.datasets.lerobot_dataset import LEROBOT_HOME, LeRobotDataset
current_dir = os.path.dirname(os.path.abspath(__file__))
oxe_utils_dir = os.path.join(current_dir, "oxe_utils")
sys.path.append(oxe_utils_dir)
from oxe_utils.configs import OXE_DATASET_CONFIGS, StateEncoding
from oxe_utils.transforms import OXE_STANDARDIZATION_TRANSFORMS
from examples.port_datasets.openx_utils.configs import OXE_DATASET_CONFIGS, StateEncoding
from examples.port_datasets.openx_utils.transforms import OXE_STANDARDIZATION_TRANSFORMS
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
np.set_printoptions(precision=2)
@ -87,16 +85,23 @@ def transform_raw_dataset(episode, dataset_name):
return episode
def generate_features_from_raw(builder: tfds.core.DatasetBuilder, use_videos: bool = True):
dataset_name = builder.name
def generate_features_from_raw(dataset_name: str, builder: tfds.core.DatasetBuilder, use_videos: bool = True):
state_names = [f"motor_{i}" for i in range(8)]
if dataset_name in OXE_DATASET_CONFIGS:
state_encoding = OXE_DATASET_CONFIGS[dataset_name]["state_encoding"]
if state_encoding == StateEncoding.POS_EULER:
state_names = ["x", "y", "z", "roll", "pitch", "yaw", "pad", "gripper"]
if "libero" in dataset_name:
state_names = ["x", "y", "z", "roll", "pitch", "yaw", "gripper", "gripper"] # 2D gripper state
state_names = [
"x",
"y",
"z",
"roll",
"pitch",
"yaw",
"gripper",
"gripper",
] # 2D gripper state
elif state_encoding == StateEncoding.POS_QUAT:
state_names = ["x", "y", "z", "rx", "ry", "rz", "rw", "gripper"]
@ -126,44 +131,68 @@ def generate_features_from_raw(builder: tfds.core.DatasetBuilder, use_videos: bo
return {**features, **DEFAULT_FEATURES}
def save_as_lerobot_dataset(lerobot_dataset: LeRobotDataset, raw_dataset: tf.data.Dataset, **kwargs):
for episode in raw_dataset.as_numpy_iterator():
def save_as_lerobot_dataset(
dataset_name: str,
lerobot_dataset: LeRobotDataset,
raw_dataset: tf.data.Dataset,
num_shards: int | None = None,
shard_index: int | None = None,
):
total_num_episodes = raw_dataset.cardinality().numpy().item()
print(f"Total number of episodes {total_num_episodes}")
if num_shards is not None:
num_shards = 10000
shard_index = 9999
sharded_dataset = raw_dataset.shard(num_shards=num_shards, index=shard_index)
sharded_num_episodes = sharded_dataset.cardinality().numpy().item()
print(f"{sharded_num_episodes=}")
num_episodes = sharded_num_episodes
iter_ = iter(sharded_dataset)
else:
num_episodes = total_num_episodes
iter_ = iter(raw_dataset)
for episode_index in range(num_episodes):
print(f"{episode_index} / {num_episodes}")
episode = next(iter_)
print("\nnext\n")
episode = transform_raw_dataset(episode, dataset_name)
traj = episode["steps"]
for i in range(traj["action"].shape[0]):
for i in tqdm.tqdm(range(traj["action"].shape[0])):
image_dict = {
f"observation.images.{key}": value[i]
f"observation.images.{key}": value[i].numpy()
for key, value in traj["observation"].items()
if "depth" not in key and any(x in key for x in ["image", "rgb"])
}
lerobot_dataset.add_frame(
{
**image_dict,
"observation.state": traj["proprio"][i],
"action": traj["action"][i],
"observation.state": traj["proprio"][i].numpy(),
"action": traj["action"][i].numpy(),
"task": traj["task"][i].numpy().decode(),
}
)
lerobot_dataset.save_episode(task=traj["task"][0].decode())
lerobot_dataset.consolidate(
run_compute_stats=True,
keep_image_files=kwargs["keep_images"],
stat_kwargs={"batch_size": kwargs["batch_size"], "num_workers": kwargs["num_workers"]},
)
print()
lerobot_dataset.save_episode()
print("\nsave_episode\n")
break
def create_lerobot_dataset(
raw_dir: Path,
repo_id: str = None,
local_dir: Path = None,
push_to_hub: bool = False,
fps: int = None,
robot_type: str = None,
use_videos: bool = True,
batch_size: int = 32,
num_workers: int = 8,
image_writer_process: int = 5,
image_writer_threads: int = 10,
keep_images: bool = True,
num_shards: int | None = None,
shard_index: int | None = None,
):
last_part = raw_dir.name
if re.match(r"^\d+\.\d+\.\d+$", last_part):
@ -175,15 +204,9 @@ def create_lerobot_dataset(
dataset_name = last_part
data_dir = raw_dir.parent
if local_dir is None:
local_dir = Path(LEROBOT_HOME)
local_dir /= f"{dataset_name}_{version}_lerobot"
if local_dir.exists():
shutil.rmtree(local_dir)
builder = tfds.builder(dataset_name, data_dir=data_dir, version=version)
features = generate_features_from_raw(builder, use_videos)
raw_dataset = builder.as_dataset(split="train").map(partial(transform_raw_dataset, dataset_name=dataset_name))
features = generate_features_from_raw(dataset_name, builder, use_videos)
raw_dataset = builder.as_dataset(split="train")
if fps is None:
if dataset_name in OXE_DATASET_CONFIGS:
@ -201,7 +224,6 @@ def create_lerobot_dataset(
lerobot_dataset = LeRobotDataset.create(
repo_id=repo_id,
robot_type=robot_type,
root=local_dir,
fps=fps,
use_videos=use_videos,
features=features,
@ -210,16 +232,18 @@ def create_lerobot_dataset(
)
save_as_lerobot_dataset(
lerobot_dataset, raw_dataset, keep_images=keep_images, batch_size=batch_size, num_workers=num_workers
dataset_name,
lerobot_dataset,
raw_dataset,
num_shards=num_shards,
shard_index=shard_index,
)
if push_to_hub:
assert repo_id is not None
tags = ["LeRobot", dataset_name, "rlds"]
tags = []
if dataset_name in OXE_DATASET_CONFIGS:
tags.append("openx")
if robot_type != "unknown":
tags.append(robot_type)
lerobot_dataset.push_to_hub(
tags=tags,
private=False,
@ -237,12 +261,6 @@ def main():
required=True,
help="Directory containing input raw datasets (e.g. `path/to/dataset` or `path/to/dataset/version).",
)
parser.add_argument(
"--local-dir",
type=Path,
required=True,
help="When provided, writes the dataset converted to LeRobotDataset format in this directory (e.g. `data/lerobot/aloha_mobile_chair`).",
)
parser.add_argument(
"--repo-id",
type=str,
@ -270,37 +288,25 @@ def main():
action="store_true",
help="Convert each episode of the raw dataset to an mp4 video. This option allows 60 times lower disk space consumption and 25 faster loading time during training.",
)
parser.add_argument(
"--batch-size",
type=int,
default=32,
help="Batch size loaded by DataLoader for computing the dataset statistics.",
)
parser.add_argument(
"--num-workers",
type=int,
default=8,
help="Number of processes of Dataloader for computing the dataset statistics.",
)
parser.add_argument(
"--image-writer-process",
type=int,
default=5,
default=0,
help="Number of processes of image writer for saving images.",
)
parser.add_argument(
"--image-writer-threads",
type=int,
default=10,
default=8,
help="Number of threads per process of image writer for saving images.",
)
parser.add_argument(
"--keep-images",
action="store_true",
help="Whether to keep the cached images.",
)
args = parser.parse_args()
droid_dir = Path("/fsx/remi_cadene/.cache/huggingface/lerobot/cadene/droid")
if droid_dir.exists():
shutil.rmtree(droid_dir)
create_lerobot_dataset(**vars(args))

View File

@ -0,0 +1,106 @@
import datetime as dt
import shutil
from pathlib import Path
from datatrove.executor import LocalPipelineExecutor
from datatrove.executor.slurm import SlurmPipelineExecutor
from datatrove.pipeline.base import PipelineStep
class PortOpenXDataset(PipelineStep):
def __init__(
self,
raw_dir: Path,
repo_id: str = None,
image_writer_process: int = 0,
image_writer_threads: int = 8,
):
super().__init__()
self.raw_dir = raw_dir
self.repo_id = repo_id
self.image_writer_process = image_writer_process
self.image_writer_threads = image_writer_threads
def run(self, data=None, rank: int = 0, world_size: int = 1):
from examples.port_datasets.openx_rlds import create_lerobot_dataset
from examples.port_datasets.openx_utils.test import display_slurm_info, display_system_info
display_system_info()
display_slurm_info()
create_lerobot_dataset(
self.raw_dir,
f"{self.repo_id}_world_{world_size}_rank_{rank}",
image_writer_process=self.image_writer_process,
image_writer_threads=self.image_writer_threads,
push_to_hub=False,
num_shards=world_size,
shard_index=rank,
)
class AggregateDatasets(PipelineStep):
def run(self, data=None, rank: int = 0, world_size: int = 1):
print("aggregation")
def main(slurm=True):
for dir_ in Path("/fsx/remi_cadene/.cache/huggingface/lerobot/cadene").glob("droid_world*"):
shutil.rmtree(dir_)
now = dt.datetime.now()
port_job_name = "port_openx_droid"
logs_dir = Path("/fsx/remi_cadene/logs")
port_log_dir = logs_dir / f"{now:%Y-%m-%d}_{now:%H-%M-%S}_{port_job_name}"
if slurm:
executor_class = SlurmPipelineExecutor
dist_extra_kwargs = {
"job_name": port_job_name,
"tasks": 10000,
"workers": 24,
"time": "00:30:00",
"partition": "hopper-cpu",
"cpus_per_task": 12,
"mem_per_cpu_gb": 4,
}
else:
executor_class = LocalPipelineExecutor
dist_extra_kwargs = {
"tasks": 1,
"workers": 1,
}
port_executor = executor_class(
pipeline=[
PortOpenXDataset(raw_dir=Path("/fsx/mustafa_shukor/droid"), repo_id="cadene/droid"),
],
logging_dir=str(port_log_dir),
**dist_extra_kwargs,
)
port_executor.run()
# if slurm:
# merge_extra_kwargs = {}
# else:
# merge_extra_kwargs = {
# "job_name": "aggregate",
# "time": "00:01:00",
# "partition": "hopper-cpu",
# }
# merge_executor = executor_class(
# depends=dist_executor,
# pipeline=[
# Aggregate(),
# ],
# logging_dir=f"/fsx/remi_cadene/logs/openx_rlds_merge",
# tasks=1,
# workers=1,
# **merge_extra_kwargs,
# )
# merge_executor.run()
if __name__ == "__main__":
main()

View File

@ -56,7 +56,9 @@ def zero_action_filter(traj: Dict) -> bool:
0.8897542208433151,
]
)
DROID_NORM_0_ACT = 2 * (tf.zeros_like(traj["action"][:, :6]) - DROID_Q01) / (DROID_Q99 - DROID_Q01 + 1e-8) - 1
DROID_NORM_0_ACT = (
2 * (tf.zeros_like(traj["action"][:, :6]) - DROID_Q01) / (DROID_Q99 - DROID_Q01 + 1e-8) - 1
)
return tf.reduce_any(tf.math.abs(traj["action"][:, :6] - DROID_NORM_0_ACT) > 1e-5)
@ -799,7 +801,11 @@ OXE_DATASET_CONFIGS = {
},
### DROID Finetuning datasets
"droid_wipe": {
"image_obs_keys": {"primary": "exterior_image_2_left", "secondary": None, "wrist": "wrist_image_left"},
"image_obs_keys": {
"primary": "exterior_image_2_left",
"secondary": None,
"wrist": "wrist_image_left",
},
"depth_obs_keys": {"primary": None, "secondary": None, "wrist": None},
"state_obs_keys": ["proprio"],
"state_encoding": StateEncoding.POS_EULER,

View File

@ -0,0 +1,30 @@
#!/bin/bash
#SBATCH --job-name=openx_rlds
#SBATCH --partition=hopper-cpu
#SBATCH --requeue
#SBATCH --time=00:01:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --output=/fsx/%u/slurm/%j-%x.out
OUTPUT_DIR="/fsx/${USER}/slurm/${SLURM_JOB_NAME}-${SLURM_JOB_ID}-tasks"
mkdir -p $OUTPUT_DIR
# Function to run a task and redirect output to a separate file
run_task() {
local task_id=$1
local output_file="${OUTPUT_DIR}/task-${task_id}-${SLURM_JOB_ID}.out"
# Run the task and redirect output
python examples/port_datasets/openx_utils/test.py > $output_file 2>&1
}
echo $SBATCH_OUTPUT
# node has 380850M and 96 cpus
trap 'scontrol requeue ${SLURM_JOB_ID}; exit 15' SIGUSR1
echo "Starting job"
# note the "&" to start srun as a background thread
srun python examples/port_datasets/openx_utils/test.py &
# wait for signals...
wait

View File

@ -0,0 +1,54 @@
import os
import psutil
def display_system_info():
# Get the number of CPUs
num_cpus = psutil.cpu_count(logical=True)
print(f"Number of CPUs: {num_cpus}")
# Get memory information
memory_info = psutil.virtual_memory()
total_memory = memory_info.total / (1024**3) # Convert bytes to GB
available_memory = memory_info.available / (1024**3) # Convert bytes to GB
used_memory = memory_info.used / (1024**3) # Convert bytes to GB
print(f"Total Memory: {total_memory:.2f} GB")
print(f"Available Memory: {available_memory:.2f} GB")
print(f"Used Memory: {used_memory:.2f} GB")
def display_slurm_info():
# Get SLURM job ID
job_id = os.getenv("SLURM_JOB_ID")
print(f"SLURM Job ID: {job_id}")
# Get SLURM job name
job_name = os.getenv("SLURM_JOB_NAME")
print(f"SLURM Job Name: {job_name}")
# Get the number of tasks
num_tasks = os.getenv("SLURM_NTASKS")
print(f"Number of Tasks: {num_tasks}")
# Get the number of nodes
num_nodes = os.getenv("SLURM_NNODES")
print(f"Number of Nodes: {num_nodes}")
# Get the number of CPUs per task
cpus_per_task = os.getenv("SLURM_CPUS_PER_TASK")
print(f"CPUs per Task: {cpus_per_task}")
# Get the node list
node_list = os.getenv("SLURM_NODELIST")
print(f"Node List: {node_list}")
# Get the task ID (only available within an srun task)
task_id = os.getenv("SLURM_PROCID")
print(f"Task ID: {task_id}")
if __name__ == "__main__":
display_system_info()
display_slurm_info()

View File

@ -2,7 +2,6 @@
Copied from https://github.com/openvla/openvla/blob/main/prismatic/vla/datasets/rlds/utils/data_utils.py
"""
from typing import Any, Dict
import tensorflow as tf
@ -66,6 +65,7 @@ def rel2abs_gripper_actions(actions: tf.Tensor) -> tf.Tensor:
return new_actions
# === Bridge-V2 =>> Dataset-Specific Transform ===
def relabel_bridge_actions(traj: Dict[str, Any]) -> Dict[str, Any]:
"""Relabels actions to use reached proprioceptive state; discards last timestep (no-action)."""

View File

@ -19,7 +19,8 @@ Transforms adopt the following structure:
from typing import Any, Dict
import tensorflow as tf
from oxe_utils.transform_utils import (
from examples.port_datasets.openx_utils.transform_utils import (
binarize_gripper_actions,
invert_gripper_actions,
rel2abs_gripper_actions,
@ -31,6 +32,7 @@ def droid_baseact_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
"""
DROID dataset transformation for actions expressed in *base* frame of the robot.
"""
def rand_swap_exterior_images(img1, img2):
"""
Randomly swaps the two exterior images (for training with single exterior input).
@ -55,11 +57,11 @@ def droid_baseact_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
)
)
# trajectory["observation"]["proprio"] = tf.concat(
# (
# trajectory["observation"]["cartesian_position"],
# trajectory["observation"]["gripper_position"],
# ),
# axis=-1,
# (
# trajectory["observation"]["cartesian_position"],
# trajectory["observation"]["gripper_position"],
# ),
# axis=-1,
# )
trajectory["observation"]["EEF_state"] = trajectory["observation"]["cartesian_position"]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["gripper_position"]
@ -96,7 +98,7 @@ def bridge_oxe_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
Note =>> In original Bridge V2 dataset, the first timestep has an all-zero action, so we remove it!
"""
for key in trajectory.keys():
for key in trajectory:
if key == "traj_metadata":
continue
elif key in ["observation", "action"]:
@ -126,7 +128,7 @@ def bridge_orig_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
Note =>> In original Bridge V2 dataset, the first timestep has an all-zero action, so we remove it!
"""
for key in trajectory.keys():
for key in trajectory:
if key == "traj_metadata":
continue
elif key == "observation":
@ -198,7 +200,9 @@ def kuka_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
)
eef_value = tf.io.decode_raw(eef_value, tf.float32)
trajectory["observation"]["clip_function_input/base_pose_tool_reached"] = tf.reshape(eef_value, (-1, 7))
gripper_value = tf.io.decode_compressed(trajectory["observation"]["gripper_closed"], compression_type="ZLIB")
gripper_value = tf.io.decode_compressed(
trajectory["observation"]["gripper_closed"], compression_type="ZLIB"
)
gripper_value = tf.io.decode_raw(gripper_value, tf.float32)
trajectory["observation"]["gripper_closed"] = tf.reshape(gripper_value, (-1, 1))
# trajectory["language_instruction"] = tf.fill(
@ -228,7 +232,9 @@ def taco_play_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
def jaco_play_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
trajectory["observation"]["state_eef"] = trajectory["observation"]["end_effector_cartesian_pos"][:, :6]
trajectory["observation"]["state_gripper"] = trajectory["observation"]["end_effector_cartesian_pos"][:, -1:]
trajectory["observation"]["state_gripper"] = trajectory["observation"]["end_effector_cartesian_pos"][
:, -1:
]
# make gripper action absolute action, +1 = open, 0 = close
gripper_action = trajectory["action"]["gripper_closedness_action"][:, 0]
@ -264,7 +270,9 @@ def berkeley_cable_routing_dataset_transform(trajectory: Dict[str, Any]) -> Dict
def roboturk_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
# invert absolute gripper action, +1 = open, 0 = close
gripper_action = invert_gripper_actions(tf.clip_by_value(trajectory["action"]["gripper_closedness_action"], 0, 1))
gripper_action = invert_gripper_actions(
tf.clip_by_value(trajectory["action"]["gripper_closedness_action"], 0, 1)
)
trajectory["action"] = tf.concat(
(
@ -374,7 +382,9 @@ def language_table_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, An
instruction_bytes = trajectory["observation"]["instruction"]
instruction_encoded = tf.strings.unicode_encode(instruction_bytes, output_encoding="UTF-8")
# Remove trailing padding --> convert RaggedTensor to regular Tensor.
trajectory["language_instruction"] = tf.strings.split(instruction_encoded, "\x00")[:, :1].to_tensor()[:, 0]
trajectory["language_instruction"] = tf.strings.split(instruction_encoded, "\x00")[:, :1].to_tensor()[
:, 0
]
return trajectory
@ -900,7 +910,9 @@ def libero_dataset_transform(trajectory: Dict[str, Any]) -> Dict[str, Any]:
axis=1,
)
trajectory["observation"]["EEF_state"] = trajectory["observation"]["state"][:, :6]
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][:, -2:] # 2D gripper state
trajectory["observation"]["gripper_state"] = trajectory["observation"]["state"][
:, -2:
] # 2D gripper state
return trajectory