[WIP] correct sac implementation
This commit is contained in:
parent
380b836eee
commit
73aa6c25f3
|
@ -0,0 +1,592 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team.
|
||||
# All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# TODO: (1) better device management
|
||||
|
||||
from collections import deque
|
||||
from typing import Callable, Optional, Sequence, Tuple, Union
|
||||
|
||||
import einops
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F # noqa: N812
|
||||
from huggingface_hub import PyTorchModelHubMixin
|
||||
from torch import Tensor
|
||||
|
||||
from lerobot.common.policies.normalize import Normalize, Unnormalize
|
||||
from lerobot.common.policies.sac.configuration_sac import SACConfig
|
||||
|
||||
|
||||
class SACPolicy(
|
||||
nn.Module,
|
||||
PyTorchModelHubMixin,
|
||||
library_name="lerobot",
|
||||
repo_url="https://github.com/huggingface/lerobot",
|
||||
tags=["robotics", "RL", "SAC"],
|
||||
):
|
||||
name = "sac"
|
||||
|
||||
def __init__(
|
||||
self, config: SACConfig | None = None, dataset_stats: dict[str, dict[str, Tensor]] | None = None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
if config is None:
|
||||
config = SACConfig()
|
||||
self.config = config
|
||||
|
||||
if config.input_normalization_modes is not None:
|
||||
self.normalize_inputs = Normalize(
|
||||
config.input_shapes, config.input_normalization_modes, dataset_stats
|
||||
)
|
||||
else:
|
||||
self.normalize_inputs = nn.Identity()
|
||||
# HACK: we need to pass the dataset_stats to the normalization functions
|
||||
dataset_stats = dataset_stats or {
|
||||
"action": {
|
||||
"min": torch.tensor([-1.0, -1.0, -1.0, -1.0]),
|
||||
"max": torch.tensor([1.0, 1.0, 1.0, 1.0]),
|
||||
}
|
||||
}
|
||||
self.normalize_targets = Normalize(
|
||||
config.output_shapes, config.output_normalization_modes, dataset_stats
|
||||
)
|
||||
self.unnormalize_outputs = Unnormalize(
|
||||
config.output_shapes, config.output_normalization_modes, dataset_stats
|
||||
)
|
||||
|
||||
encoder_critic = SACObservationEncoder(config)
|
||||
encoder_actor = SACObservationEncoder(config)
|
||||
# Define networks
|
||||
critic_nets = []
|
||||
for _ in range(config.num_critics):
|
||||
critic_net = Critic(
|
||||
encoder=encoder_critic,
|
||||
network=MLP(
|
||||
input_dim=encoder_critic.output_dim + config.output_shapes["action"][0],
|
||||
**config.critic_network_kwargs,
|
||||
),
|
||||
)
|
||||
critic_nets.append(critic_net)
|
||||
|
||||
target_critic_nets = []
|
||||
for _ in range(config.num_critics):
|
||||
target_critic_net = Critic(
|
||||
encoder=encoder_critic,
|
||||
network=MLP(
|
||||
input_dim=encoder_critic.output_dim + config.output_shapes["action"][0],
|
||||
**config.critic_network_kwargs,
|
||||
),
|
||||
)
|
||||
target_critic_nets.append(target_critic_net)
|
||||
|
||||
self.critic_ensemble = create_critic_ensemble(critic_nets, config.num_critics)
|
||||
self.critic_target = create_critic_ensemble(target_critic_nets, config.num_critics)
|
||||
self.critic_target.load_state_dict(self.critic_ensemble.state_dict())
|
||||
|
||||
self.actor = Policy(
|
||||
encoder=encoder_actor,
|
||||
network=MLP(input_dim=encoder_actor.output_dim, **config.actor_network_kwargs),
|
||||
action_dim=config.output_shapes["action"][0],
|
||||
**config.policy_kwargs,
|
||||
)
|
||||
if config.target_entropy is None:
|
||||
config.target_entropy = -np.prod(config.output_shapes["action"][0]) / 2 # (-dim(A)/2)
|
||||
# TODO: fix later device
|
||||
# TODO: Handle the case where the temparameter is a fixed
|
||||
self.log_alpha = torch.zeros(1, requires_grad=True, device="cpu")
|
||||
self.temperature = self.log_alpha.exp().item()
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Clear observation and action queues. Should be called on `env.reset()`
|
||||
queues are populated during rollout of the policy, they contain the n latest observations and actions
|
||||
"""
|
||||
|
||||
self._queues = {
|
||||
"observation.state": deque(maxlen=1),
|
||||
"action": deque(maxlen=1),
|
||||
}
|
||||
if "observation.image" in self.config.input_shapes:
|
||||
self._queues["observation.image"] = deque(maxlen=1)
|
||||
if "observation.environment_state" in self.config.input_shapes:
|
||||
self._queues["observation.environment_state"] = deque(maxlen=1)
|
||||
|
||||
@torch.no_grad()
|
||||
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
|
||||
"""Select action for inference/evaluation"""
|
||||
actions, _, _ = self.actor(batch)
|
||||
actions = self.unnormalize_outputs({"action": actions})["action"]
|
||||
return actions
|
||||
|
||||
def critic_forward(
|
||||
self, observations: dict[str, Tensor], actions: Tensor, use_target: bool = False
|
||||
) -> Tensor:
|
||||
"""Forward pass through a critic network ensemble
|
||||
|
||||
Args:
|
||||
observations: Dictionary of observations
|
||||
actions: Action tensor
|
||||
use_target: If True, use target critics, otherwise use ensemble critics
|
||||
|
||||
Returns:
|
||||
Tensor of Q-values from all critics
|
||||
"""
|
||||
critics = self.critic_target if use_target else self.critic_ensemble
|
||||
q_values = torch.stack([critic(observations, actions) for critic in critics])
|
||||
return q_values
|
||||
|
||||
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor | float]:
|
||||
"""Run the batch through the model and compute the loss.
|
||||
|
||||
Returns a dictionary with loss as a tensor, and other information as native floats.
|
||||
"""
|
||||
# We have to actualize the value of the temperature because in the previous
|
||||
self.temperature = self.log_alpha.exp().item()
|
||||
temperature = self.temperature
|
||||
|
||||
batch = self.normalize_inputs(batch)
|
||||
# batch shape is (b, 2, ...) where index 1 returns the current observation and
|
||||
# the next observation for calculating the right td index.
|
||||
# actions = batch["action"][:, 0]
|
||||
actions = batch["action"]
|
||||
rewards = batch["next.reward"][:, 0]
|
||||
observations = {}
|
||||
next_observations = {}
|
||||
for k in batch:
|
||||
if k.startswith("observation."):
|
||||
observations[k] = batch[k][:, 0]
|
||||
next_observations[k] = batch[k][:, 1]
|
||||
done = batch["next.done"]
|
||||
|
||||
with torch.no_grad():
|
||||
next_action_preds, next_log_probs, _ = self.actor(next_observations)
|
||||
|
||||
# 2- compute q targets
|
||||
q_targets = self.critic_forward(next_observations, next_action_preds, use_target=True)
|
||||
|
||||
# subsample critics to prevent overfitting if use high UTD (update to date)
|
||||
if self.config.num_subsample_critics is not None:
|
||||
indices = torch.randperm(self.config.num_critics)
|
||||
indices = indices[: self.config.num_subsample_critics]
|
||||
q_targets = q_targets[indices]
|
||||
|
||||
# critics subsample size
|
||||
min_q, _ = q_targets.min(dim=0) # Get values from min operation
|
||||
if self.config.use_backup_entropy:
|
||||
min_q -= self.temperature * next_log_probs
|
||||
td_target = rewards + self.config.discount * min_q * ~done
|
||||
|
||||
# 3- compute predicted qs
|
||||
q_preds = self.critic_forward(observations, actions, use_target=False)
|
||||
|
||||
# 4- Calculate loss
|
||||
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
|
||||
td_target_duplicate = einops.repeat(td_target, "b -> e b", e=q_preds.shape[0])
|
||||
# You compute the mean loss of the batch for each critic and then to compute the final loss you sum them up
|
||||
critics_loss = (
|
||||
F.mse_loss(
|
||||
input=q_preds,
|
||||
target=td_target_duplicate,
|
||||
reduction="none",
|
||||
).mean(1)
|
||||
).sum()
|
||||
|
||||
actions_pi, log_probs, _ = self.actor(observations)
|
||||
with torch.inference_mode():
|
||||
q_preds = self.critic_forward(observations, actions_pi, use_target=False)
|
||||
min_q_preds = q_preds.min(dim=0)[0]
|
||||
|
||||
actor_loss = ((temperature * log_probs) - min_q_preds).mean()
|
||||
|
||||
# calculate temperature loss
|
||||
with torch.no_grad():
|
||||
_, log_probs, _ = self.actor(observations)
|
||||
temperature_loss = (-self.log_alpha.exp() * (log_probs + self.config.target_entropy)).mean()
|
||||
|
||||
loss = critics_loss + actor_loss + temperature_loss
|
||||
|
||||
return {
|
||||
"critics_loss": critics_loss.item(),
|
||||
"actor_loss": actor_loss.item(),
|
||||
"mean_q_predicts": min_q_preds.mean().item(),
|
||||
"min_q_predicts": min_q_preds.min().item(),
|
||||
"max_q_predicts": min_q_preds.max().item(),
|
||||
"temperature_loss": temperature_loss.item(),
|
||||
"temperature": temperature,
|
||||
"mean_log_probs": log_probs.mean().item(),
|
||||
"min_log_probs": log_probs.min().item(),
|
||||
"max_log_probs": log_probs.max().item(),
|
||||
"td_target_mean": td_target.mean().item(),
|
||||
"td_target_max": td_target.max().item(),
|
||||
"action_mean": actions.mean().item(),
|
||||
"entropy": log_probs.mean().item(),
|
||||
"loss": loss,
|
||||
}
|
||||
|
||||
def update_target_networks(self):
|
||||
"""Update target networks with exponential moving average"""
|
||||
for target_critic, critic in zip(self.critic_target, self.critic_ensemble, strict=False):
|
||||
for target_param, param in zip(target_critic.parameters(), critic.parameters(), strict=False):
|
||||
target_param.data.copy_(
|
||||
param.data * self.config.critic_target_update_weight
|
||||
+ target_param.data * (1.0 - self.config.critic_target_update_weight)
|
||||
)
|
||||
|
||||
def compute_loss_critic(self, observations, actions, rewards, next_observations, done) -> Tensor:
|
||||
temperature = self.log_alpha.exp().item()
|
||||
with torch.no_grad():
|
||||
next_action_preds, next_log_probs, _ = self.actor(next_observations)
|
||||
|
||||
# 2- compute q targets
|
||||
q_targets = self.critic_forward(next_observations, next_action_preds, use_target=True)
|
||||
|
||||
# subsample critics to prevent overfitting if use high UTD (update to date)
|
||||
if self.config.num_subsample_critics is not None:
|
||||
indices = torch.randperm(self.config.num_critics)
|
||||
indices = indices[: self.config.num_subsample_critics]
|
||||
q_targets = q_targets[indices]
|
||||
|
||||
# critics subsample size
|
||||
min_q, _ = q_targets.min(dim=0) # Get values from min operation
|
||||
if self.config.use_backup_entropy:
|
||||
min_q -= temperature * next_log_probs
|
||||
td_target = rewards + self.config.discount * min_q * ~done
|
||||
|
||||
# 3- compute predicted qs
|
||||
q_preds = self.critic_forward(observations, actions, use_target=False)
|
||||
|
||||
# 4- Calculate loss
|
||||
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
|
||||
td_target_duplicate = einops.repeat(td_target, "b -> e b", e=q_preds.shape[0])
|
||||
# You compute the mean loss of the batch for each critic and then to compute the final loss you sum them up
|
||||
critics_loss = (
|
||||
F.mse_loss(
|
||||
input=q_preds,
|
||||
target=td_target_duplicate,
|
||||
reduction="none",
|
||||
).mean(1)
|
||||
).sum()
|
||||
return critics_loss
|
||||
|
||||
def compute_loss_temperature(self, observations) -> Tensor:
|
||||
breakpoint()
|
||||
"""Compute the temperature loss"""
|
||||
# calculate temperature loss
|
||||
with torch.no_grad():
|
||||
_, log_probs, _ = self.actor(observations)
|
||||
temperature_loss = (-self.log_alpha.exp() * (log_probs + self.config.target_entropy)).mean()
|
||||
return temperature_loss
|
||||
|
||||
def compute_loss_actor(self, observations) -> Tensor:
|
||||
temperature = self.log_alpha.exp().item()
|
||||
|
||||
actions_pi, log_probs, _ = self.actor(observations)
|
||||
|
||||
q_preds = self.critic_forward(observations, actions_pi, use_target=False)
|
||||
min_q_preds = q_preds.min(dim=0)[0]
|
||||
|
||||
actor_loss = ((temperature * log_probs) - min_q_preds).mean()
|
||||
return actor_loss
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
hidden_dims: list[int],
|
||||
activations: Callable[[torch.Tensor], torch.Tensor] | str = nn.SiLU(),
|
||||
activate_final: bool = False,
|
||||
dropout_rate: Optional[float] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.activate_final = activate_final
|
||||
layers = []
|
||||
|
||||
# First layer uses input_dim
|
||||
layers.append(nn.Linear(input_dim, hidden_dims[0]))
|
||||
|
||||
# Add activation after first layer
|
||||
if dropout_rate is not None and dropout_rate > 0:
|
||||
layers.append(nn.Dropout(p=dropout_rate))
|
||||
layers.append(nn.LayerNorm(hidden_dims[0]))
|
||||
layers.append(activations if isinstance(activations, nn.Module) else getattr(nn, activations)())
|
||||
|
||||
# Rest of the layers
|
||||
for i in range(1, len(hidden_dims)):
|
||||
layers.append(nn.Linear(hidden_dims[i - 1], hidden_dims[i]))
|
||||
|
||||
if i + 1 < len(hidden_dims) or activate_final:
|
||||
if dropout_rate is not None and dropout_rate > 0:
|
||||
layers.append(nn.Dropout(p=dropout_rate))
|
||||
layers.append(nn.LayerNorm(hidden_dims[i]))
|
||||
layers.append(
|
||||
activations if isinstance(activations, nn.Module) else getattr(nn, activations)()
|
||||
)
|
||||
|
||||
self.net = nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
encoder: Optional[nn.Module],
|
||||
network: nn.Module,
|
||||
init_final: Optional[float] = None,
|
||||
device: str = "cpu",
|
||||
):
|
||||
super().__init__()
|
||||
self.device = torch.device(device)
|
||||
self.encoder = encoder
|
||||
self.network = network
|
||||
self.init_final = init_final
|
||||
|
||||
# Find the last Linear layer's output dimension
|
||||
for layer in reversed(network.net):
|
||||
if isinstance(layer, nn.Linear):
|
||||
out_features = layer.out_features
|
||||
break
|
||||
|
||||
# Output layer
|
||||
if init_final is not None:
|
||||
self.output_layer = nn.Linear(out_features, 1)
|
||||
nn.init.uniform_(self.output_layer.weight, -init_final, init_final)
|
||||
nn.init.uniform_(self.output_layer.bias, -init_final, init_final)
|
||||
else:
|
||||
self.output_layer = nn.Linear(out_features, 1)
|
||||
orthogonal_init()(self.output_layer.weight)
|
||||
|
||||
self.to(self.device)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
observations: dict[str, torch.Tensor],
|
||||
actions: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
# Move each tensor in observations to device
|
||||
observations = {k: v.to(self.device) for k, v in observations.items()}
|
||||
actions = actions.to(self.device)
|
||||
|
||||
obs_enc = observations if self.encoder is None else self.encoder(observations)
|
||||
|
||||
inputs = torch.cat([obs_enc, actions], dim=-1)
|
||||
x = self.network(inputs)
|
||||
value = self.output_layer(x)
|
||||
return value.squeeze(-1)
|
||||
|
||||
|
||||
class Policy(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
encoder: Optional[nn.Module],
|
||||
network: nn.Module,
|
||||
action_dim: int,
|
||||
log_std_min: float = -5,
|
||||
log_std_max: float = 2,
|
||||
fixed_std: Optional[torch.Tensor] = None,
|
||||
init_final: Optional[float] = None,
|
||||
use_tanh_squash: bool = False,
|
||||
device: str = "cpu",
|
||||
):
|
||||
super().__init__()
|
||||
self.device = torch.device(device)
|
||||
self.encoder = encoder
|
||||
self.network = network
|
||||
self.action_dim = action_dim
|
||||
self.log_std_min = log_std_min
|
||||
self.log_std_max = log_std_max
|
||||
self.fixed_std = fixed_std.to(self.device) if fixed_std is not None else None
|
||||
self.use_tanh_squash = use_tanh_squash
|
||||
|
||||
# Find the last Linear layer's output dimension
|
||||
for layer in reversed(network.net):
|
||||
if isinstance(layer, nn.Linear):
|
||||
out_features = layer.out_features
|
||||
break
|
||||
|
||||
# Mean layer
|
||||
self.mean_layer = nn.Linear(out_features, action_dim)
|
||||
if init_final is not None:
|
||||
nn.init.uniform_(self.mean_layer.weight, -init_final, init_final)
|
||||
nn.init.uniform_(self.mean_layer.bias, -init_final, init_final)
|
||||
else:
|
||||
orthogonal_init()(self.mean_layer.weight)
|
||||
|
||||
# Standard deviation layer or parameter
|
||||
if fixed_std is None:
|
||||
self.std_layer = nn.Linear(out_features, action_dim)
|
||||
if init_final is not None:
|
||||
nn.init.uniform_(self.std_layer.weight, -init_final, init_final)
|
||||
nn.init.uniform_(self.std_layer.bias, -init_final, init_final)
|
||||
else:
|
||||
orthogonal_init()(self.std_layer.weight)
|
||||
|
||||
self.to(self.device)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
observations: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Encode observations if encoder exists
|
||||
obs_enc = observations if self.encoder is None else self.encoder(observations)
|
||||
|
||||
# Get network outputs
|
||||
outputs = self.network(obs_enc)
|
||||
means = self.mean_layer(outputs)
|
||||
|
||||
# Compute standard deviations
|
||||
if self.fixed_std is None:
|
||||
log_std = self.std_layer(outputs)
|
||||
assert not torch.isnan(log_std).any(), "[ERROR] log_std became NaN after std_layer!"
|
||||
|
||||
if self.use_tanh_squash:
|
||||
log_std = torch.tanh(log_std)
|
||||
log_std = self.log_std_min + 0.5 * (self.log_std_max - self.log_std_min) * (log_std + 1.0)
|
||||
else:
|
||||
log_std = torch.clamp(log_std, self.log_std_min, self.log_std_max)
|
||||
else:
|
||||
log_std = self.fixed_std.expand_as(means)
|
||||
|
||||
# uses tanh activation function to squash the action to be in the range of [-1, 1]
|
||||
normal = torch.distributions.Normal(means, torch.exp(log_std))
|
||||
x_t = normal.rsample() # Reparameterization trick (mean + std * N(0,1))
|
||||
log_probs = normal.log_prob(x_t) # Base log probability before Tanh
|
||||
|
||||
if self.use_tanh_squash:
|
||||
actions = torch.tanh(x_t)
|
||||
log_probs -= torch.log((1 - actions.pow(2)) + 1e-6) # Adjust log-probs for Tanh
|
||||
else:
|
||||
actions = x_t # No Tanh; raw Gaussian sample
|
||||
|
||||
log_probs = log_probs.sum(-1) # Sum over action dimensions
|
||||
means = torch.tanh(means) if self.use_tanh_squash else means
|
||||
return actions, log_probs, means
|
||||
|
||||
def get_features(self, observations: torch.Tensor) -> torch.Tensor:
|
||||
"""Get encoded features from observations"""
|
||||
observations = observations.to(self.device)
|
||||
if self.encoder is not None:
|
||||
with torch.inference_mode():
|
||||
return self.encoder(observations)
|
||||
return observations
|
||||
|
||||
|
||||
class SACObservationEncoder(nn.Module):
|
||||
"""Encode image and/or state vector observations.
|
||||
TODO(ke-wang): The original work allows for (1) stacking multiple history frames and (2) using pretrained resnet encoders.
|
||||
"""
|
||||
|
||||
def __init__(self, config: SACConfig):
|
||||
"""
|
||||
Creates encoders for pixel and/or state modalities.
|
||||
"""
|
||||
super().__init__()
|
||||
self.config = config
|
||||
|
||||
if "observation.image" in config.input_shapes:
|
||||
self.image_enc_layers = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
config.input_shapes["observation.image"][0], config.image_encoder_hidden_dim, 7, stride=2
|
||||
),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 5, stride=2),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
|
||||
nn.ReLU(),
|
||||
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
|
||||
nn.ReLU(),
|
||||
)
|
||||
dummy_batch = torch.zeros(1, *config.input_shapes["observation.image"])
|
||||
with torch.inference_mode():
|
||||
out_shape = self.image_enc_layers(dummy_batch).shape[1:]
|
||||
self.image_enc_layers.extend(
|
||||
nn.Sequential(
|
||||
nn.Flatten(),
|
||||
nn.Linear(np.prod(out_shape), config.latent_dim),
|
||||
nn.LayerNorm(config.latent_dim),
|
||||
nn.Tanh(),
|
||||
)
|
||||
)
|
||||
if "observation.state" in config.input_shapes:
|
||||
self.state_enc_layers = nn.Sequential(
|
||||
nn.Linear(config.input_shapes["observation.state"][0], config.latent_dim),
|
||||
nn.LayerNorm(config.latent_dim),
|
||||
nn.Tanh(),
|
||||
)
|
||||
if "observation.environment_state" in config.input_shapes:
|
||||
self.env_state_enc_layers = nn.Sequential(
|
||||
nn.Linear(config.input_shapes["observation.environment_state"][0], config.latent_dim),
|
||||
nn.LayerNorm(config.latent_dim),
|
||||
nn.Tanh(),
|
||||
)
|
||||
|
||||
def forward(self, obs_dict: dict[str, Tensor]) -> Tensor:
|
||||
"""Encode the image and/or state vector.
|
||||
|
||||
Each modality is encoded into a feature vector of size (latent_dim,) and then a uniform mean is taken
|
||||
over all features.
|
||||
"""
|
||||
feat = []
|
||||
# Concatenate all images along the channel dimension.
|
||||
image_keys = [k for k in self.config.input_shapes if k.startswith("observation.image")]
|
||||
for image_key in image_keys:
|
||||
feat.append(flatten_forward_unflatten(self.image_enc_layers, obs_dict[image_key]))
|
||||
if "observation.environment_state" in self.config.input_shapes:
|
||||
feat.append(self.env_state_enc_layers(obs_dict["observation.environment_state"]))
|
||||
if "observation.state" in self.config.input_shapes:
|
||||
feat.append(self.state_enc_layers(obs_dict["observation.state"]))
|
||||
# TODO(ke-wang): currently average over all features, concatenate all features maybe a better way
|
||||
return torch.stack(feat, dim=0).mean(0)
|
||||
|
||||
@property
|
||||
def output_dim(self) -> int:
|
||||
"""Returns the dimension of the encoder output"""
|
||||
return self.config.latent_dim
|
||||
|
||||
|
||||
def orthogonal_init():
|
||||
return lambda x: torch.nn.init.orthogonal_(x, gain=1.0)
|
||||
|
||||
|
||||
def create_critic_ensemble(critics: list[nn.Module], num_critics: int, device: str = "cpu") -> nn.ModuleList:
|
||||
"""Creates an ensemble of critic networks"""
|
||||
assert len(critics) == num_critics, f"Expected {num_critics} critics, got {len(critics)}"
|
||||
return nn.ModuleList(critics).to(device)
|
||||
|
||||
|
||||
# borrowed from tdmpc
|
||||
def flatten_forward_unflatten(fn: Callable[[Tensor], Tensor], image_tensor: Tensor) -> Tensor:
|
||||
"""Helper to temporarily flatten extra dims at the start of the image tensor.
|
||||
|
||||
Args:
|
||||
fn: Callable that the image tensor will be passed to. It should accept (B, C, H, W) and return
|
||||
(B, *), where * is any number of dimensions.
|
||||
image_tensor: An image tensor of shape (**, C, H, W), where ** is any number of dimensions and
|
||||
can be more than 1 dimensions, generally different from *.
|
||||
Returns:
|
||||
A return value from the callable reshaped to (**, *).
|
||||
"""
|
||||
if image_tensor.ndim == 4:
|
||||
return fn(image_tensor)
|
||||
start_dims = image_tensor.shape[:-3]
|
||||
inp = torch.flatten(image_tensor, end_dim=-4)
|
||||
flat_out = fn(inp)
|
||||
return torch.reshape(flat_out, (*start_dims, *flat_out.shape[1:]))
|
|
@ -0,0 +1,991 @@
|
|||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import time
|
||||
from contextlib import nullcontext
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from pprint import pformat
|
||||
import random
|
||||
from typing import Optional, Sequence, TypedDict
|
||||
|
||||
import hydra
|
||||
import numpy as np
|
||||
import torch
|
||||
from deepdiff import DeepDiff
|
||||
from omegaconf import DictConfig, ListConfig, OmegaConf
|
||||
from termcolor import colored
|
||||
from torch import nn
|
||||
from torch.cuda.amp import GradScaler
|
||||
|
||||
from lerobot.common.datasets.factory import make_dataset, resolve_delta_timestamps
|
||||
from lerobot.common.datasets.lerobot_dataset import MultiLeRobotDataset
|
||||
from lerobot.common.datasets.online_buffer import OnlineBuffer, compute_sampler_weights
|
||||
from lerobot.common.datasets.sampler import EpisodeAwareSampler
|
||||
from lerobot.common.datasets.utils import cycle
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.envs.utils import preprocess_observation
|
||||
from lerobot.common.logger import Logger, log_output_dir
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.policies.policy_protocol import PolicyWithUpdate
|
||||
from lerobot.common.policies.sac.modeling_sac import SACPolicy
|
||||
from lerobot.common.policies.utils import get_device_from_parameters
|
||||
from lerobot.common.utils.utils import (
|
||||
format_big_number,
|
||||
get_safe_torch_device,
|
||||
init_hydra_config,
|
||||
init_logging,
|
||||
set_global_seed,
|
||||
)
|
||||
from lerobot.scripts.eval import eval_policy
|
||||
|
||||
|
||||
def make_optimizers_and_scheduler(cfg, policy):
|
||||
optimizer_actor = torch.optim.Adam(
|
||||
params=policy.actor.parameters(),
|
||||
lr=policy.config.actor_lr,
|
||||
)
|
||||
optimizer_critic = torch.optim.Adam(
|
||||
params=policy.critic_ensemble.parameters(), lr=policy.config.critic_lr
|
||||
)
|
||||
# We wrap policy log temperature in list because this is a torch tensor and not a nn.Module
|
||||
optimizer_temperature = torch.optim.Adam(params=[policy.log_alpha], lr=policy.config.critic_lr)
|
||||
lr_scheduler = None
|
||||
|
||||
optimizers = {
|
||||
"actor": optimizer_actor,
|
||||
"critic": optimizer_critic,
|
||||
"temperature": optimizer_temperature,
|
||||
}
|
||||
return optimizers, lr_scheduler
|
||||
|
||||
|
||||
# def update_policy(policy, batch, optimizers, grad_clip_norm):
|
||||
|
||||
# NOTE: This is temporary, online buffer or query lerobot dataset is not performant enough yet
|
||||
|
||||
|
||||
class Transition(TypedDict):
|
||||
state: dict[str, torch.Tensor]
|
||||
action: torch.Tensor
|
||||
reward: float
|
||||
next_state: dict[str, torch.Tensor]
|
||||
done: bool
|
||||
complementary_info: dict[str, torch.Tensor] = None
|
||||
|
||||
|
||||
class BatchTransition(TypedDict):
|
||||
state: dict[str, torch.Tensor]
|
||||
action: torch.Tensor
|
||||
reward: torch.Tensor
|
||||
next_state: dict[str, torch.Tensor]
|
||||
done: torch.Tensor
|
||||
|
||||
|
||||
class ReplayBuffer:
|
||||
def __init__(self, capacity: int, device: str = "cuda:0", state_keys: Optional[Sequence[str]] = None):
|
||||
"""
|
||||
Args:
|
||||
capacity (int): Maximum number of transitions to store in the buffer.
|
||||
device (str): The device where the tensors will be moved ("cuda:0" or "cpu").
|
||||
state_keys (List[str]): The list of keys that appear in `state` and `next_state`.
|
||||
"""
|
||||
self.capacity = capacity
|
||||
self.device = device
|
||||
self.memory: list[Transition] = []
|
||||
self.position = 0
|
||||
|
||||
# If no state_keys provided, default to an empty list
|
||||
# (you can handle this differently if needed)
|
||||
self.state_keys = state_keys if state_keys is not None else []
|
||||
|
||||
def add(
|
||||
self,
|
||||
state: dict[str, torch.Tensor],
|
||||
action: torch.Tensor,
|
||||
reward: float,
|
||||
next_state: dict[str, torch.Tensor],
|
||||
done: bool,
|
||||
complementary_info: Optional[dict[str, torch.Tensor]] = None,
|
||||
):
|
||||
"""Saves a transition."""
|
||||
if len(self.memory) < self.capacity:
|
||||
self.memory.append(None)
|
||||
|
||||
# Create and store the Transition
|
||||
self.memory[self.position] = Transition(
|
||||
state=state,
|
||||
action=action,
|
||||
reward=reward,
|
||||
next_state=next_state,
|
||||
done=done,
|
||||
complementary_info=complementary_info,
|
||||
)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size: int) -> BatchTransition:
|
||||
"""Sample a random batch of transitions and collate them into batched tensors."""
|
||||
list_of_transitions = random.sample(self.memory, batch_size)
|
||||
|
||||
# -- Build batched states --
|
||||
batch_state = {}
|
||||
for key in self.state_keys:
|
||||
batch_state[key] = torch.cat([t["state"][key] for t in list_of_transitions], dim=0).to(
|
||||
self.device
|
||||
)
|
||||
|
||||
# -- Build batched actions --
|
||||
batch_actions = torch.cat([t["action"] for t in list_of_transitions]).to(self.device)
|
||||
|
||||
# -- Build batched rewards --
|
||||
batch_rewards = torch.tensor([t["reward"] for t in list_of_transitions], dtype=torch.float32).to(
|
||||
self.device
|
||||
)
|
||||
|
||||
# -- Build batched next states --
|
||||
batch_next_state = {}
|
||||
for key in self.state_keys:
|
||||
batch_next_state[key] = torch.cat([t["next_state"][key] for t in list_of_transitions], dim=0).to(
|
||||
self.device
|
||||
)
|
||||
|
||||
# -- Build batched dones --
|
||||
batch_dones = torch.tensor([t["done"] for t in list_of_transitions], dtype=torch.bool).to(self.device)
|
||||
|
||||
# Return a BatchTransition typed dict
|
||||
return BatchTransition(
|
||||
state=batch_state,
|
||||
action=batch_actions,
|
||||
reward=batch_rewards,
|
||||
next_state=batch_next_state,
|
||||
done=batch_dones,
|
||||
)
|
||||
|
||||
# def sample(self, batch_size: int):
|
||||
# # 1) Randomly sample transitions
|
||||
# transitions = random.sample(self.memory, batch_size)
|
||||
|
||||
# # 2) For each key in state_keys, gather states [b, state_dim], next_states [b, state_dim]
|
||||
# batch_state = {}
|
||||
# batch_next_state = {}
|
||||
# for key in self.state_keys:
|
||||
# batch_state[key] = torch.cat([t["state"][key] for t in transitions], dim=0).to(
|
||||
# self.device
|
||||
# ) # shape [b, state_dim, ...] depending on your data
|
||||
# batch_next_state[key] = torch.cat([t["next_state"][key] for t in transitions], dim=0).to(
|
||||
# self.device
|
||||
# ) # shape [b, state_dim, ...]
|
||||
|
||||
# # 3) Build the other tensors
|
||||
# batch_action = torch.cat([t["action"] for t in transitions], dim=0).to(
|
||||
# self.device
|
||||
# ) # shape [b, ...] or [b, action_dim, ...]
|
||||
|
||||
# batch_reward = torch.tensor(
|
||||
# [t["reward"] for t in transitions], dtype=torch.float32, device=self.device
|
||||
# ).unsqueeze(dim=-1) # shape [b, 1]
|
||||
|
||||
# batch_done = torch.tensor(
|
||||
# [t["done"] for t in transitions], dtype=torch.bool, device=self.device
|
||||
# ) # shape [b]
|
||||
|
||||
# # 4) Create the observation and next_observation dicts
|
||||
# #
|
||||
# # Each key is stacked along dim=1 so final shape is [b, 2, state_dim, ...]
|
||||
# # - observation[key][..., 0, :] is the current state
|
||||
# # - observation[key][..., 1, :] is the next state
|
||||
# # - next_observation[key] duplicates the next state to shape [b, 2, ...]
|
||||
# observation = {}
|
||||
# for key in self.state_keys:
|
||||
# observation[key] = torch.stack([batch_state[key], batch_next_state[key]], dim=1)
|
||||
|
||||
# # 5) Return your structure
|
||||
# ret = observation | {"action": batch_action, "next.reward": batch_reward, "next.done": batch_done}
|
||||
# return ret
|
||||
|
||||
|
||||
def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
|
||||
if out_dir is None:
|
||||
raise NotImplementedError()
|
||||
if job_name is None:
|
||||
raise NotImplementedError()
|
||||
|
||||
init_logging()
|
||||
logging.info(pformat(OmegaConf.to_container(cfg)))
|
||||
|
||||
if cfg.training.online_steps > 0 and isinstance(cfg.dataset_repo_id, ListConfig):
|
||||
raise NotImplementedError("Online training with LeRobotMultiDataset is not implemented.")
|
||||
|
||||
# Create an env dedicated to online episodes collection from policy rollout.
|
||||
# online_env = make_env(cfg, n_envs=cfg.training.online_rollout_batch_size)
|
||||
# NOTE: Off policy algorithm are efficient enought to use a single environment
|
||||
logging.info("make_env online")
|
||||
online_env = make_env(cfg, n_envs=1)
|
||||
|
||||
if cfg.training.eval_freq > 0:
|
||||
logging.info("make_env eval")
|
||||
eval_env = make_env(cfg, n_envs=1)
|
||||
|
||||
# TODO: Add a way to resume training
|
||||
|
||||
# log metrics to terminal and wandb
|
||||
logger = Logger(cfg, out_dir, wandb_job_name=job_name)
|
||||
|
||||
set_global_seed(cfg.seed)
|
||||
|
||||
# Check device is available
|
||||
device = get_safe_torch_device(cfg.device, log=True)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
logging.info("make_policy")
|
||||
# TODO: At some point we should just need make sac policy
|
||||
policy: SACPolicy = make_policy(
|
||||
hydra_cfg=cfg,
|
||||
# dataset_stats=offline_dataset.meta.stats if not cfg.resume else None,
|
||||
# Hack: But if we do online traning, we do not need dataset_stats
|
||||
dataset_stats=None,
|
||||
pretrained_policy_name_or_path=str(logger.last_pretrained_model_dir) if cfg.resume else None,
|
||||
)
|
||||
assert isinstance(policy, nn.Module)
|
||||
|
||||
optimizers, lr_scheduler = make_optimizers_and_scheduler(cfg, policy)
|
||||
|
||||
step = 0 # number of policy updates (forward + backward + optim)
|
||||
|
||||
# TODO: Handle resume
|
||||
|
||||
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
|
||||
num_total_params = sum(p.numel() for p in policy.parameters())
|
||||
|
||||
log_output_dir(out_dir)
|
||||
logging.info(f"{cfg.env.task=}")
|
||||
# TODO: Handle offline steps
|
||||
# logging.info(f"{cfg.training.offline_steps=} ({format_big_number(cfg.training.offline_steps)})")
|
||||
logging.info(f"{cfg.training.online_steps=}")
|
||||
# logging.info(f"{offline_dataset.num_frames=} ({format_big_number(offline_dataset.num_frames)})")
|
||||
# logging.info(f"{offline_dataset.num_episodes=}")
|
||||
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
|
||||
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
|
||||
|
||||
obs, info = online_env.reset()
|
||||
|
||||
obs = preprocess_observation(obs)
|
||||
obs = {key: obs[key].to(device, non_blocking=True) for key in obs}
|
||||
|
||||
replay_buffer = ReplayBuffer(
|
||||
capacity=cfg.training.online_buffer_capacity, device=device, state_keys=cfg.policy.input_shapes.keys()
|
||||
)
|
||||
# NOTE: For the moment we will solely handle the case of a single environment
|
||||
sum_reward_episode = 0
|
||||
|
||||
for interaction_step in range(cfg.training.online_steps):
|
||||
# NOTE: At some point we should use a wrapper to handle the observation
|
||||
|
||||
if interaction_step >= cfg.training.online_step_before_learning:
|
||||
with torch.inference_mode():
|
||||
action = policy.select_action(batch=obs)
|
||||
next_obs, reward, done, truncated, info = online_env.step(action.cpu().numpy())
|
||||
else:
|
||||
action = online_env.action_space.sample()
|
||||
next_obs, reward, done, truncated, info = online_env.step(action)
|
||||
# HACK
|
||||
action = torch.tensor(action, dtype=torch.float32).to(device, non_blocking=True)
|
||||
|
||||
next_obs = preprocess_observation(next_obs)
|
||||
next_obs = {key: next_obs[key].to(device, non_blocking=True) for key in obs}
|
||||
sum_reward_episode += float(reward[0])
|
||||
# Because we are using a single environment
|
||||
# we can safely assume that the episode is done
|
||||
if done[0] or truncated[0]:
|
||||
logging.info(f"Global step {interaction_step}: Episode reward: {sum_reward_episode}")
|
||||
logger.log_dict({"Sum episode reward": sum_reward_episode}, interaction_step)
|
||||
sum_reward_episode = 0
|
||||
|
||||
replay_buffer.add(
|
||||
state=obs,
|
||||
action=action,
|
||||
reward=float(reward[0]),
|
||||
next_state=next_obs,
|
||||
done=done[0],
|
||||
)
|
||||
obs = next_obs
|
||||
|
||||
if interaction_step >= cfg.training.online_step_before_learning:
|
||||
batch = replay_buffer.sample(cfg.training.batch_size)
|
||||
# 'observation.state', 'action', 'next.reward', 'next.done'
|
||||
# TODO: (azouitine) interface to refine
|
||||
# TODO: At some point we should find a way to normalize the inputs
|
||||
# batch = policy.normalize_inputs(batch)
|
||||
|
||||
actions = batch["action"]
|
||||
rewards = batch["reward"]
|
||||
observations = batch["state"]
|
||||
next_observations = batch["next_state"]
|
||||
done = batch["done"]
|
||||
|
||||
loss_critic = policy.compute_loss_critic(
|
||||
observations=observations,
|
||||
actions=actions,
|
||||
rewards=rewards,
|
||||
next_observations=next_observations,
|
||||
done=done,
|
||||
)
|
||||
optimizers["critic"].zero_grad()
|
||||
loss_critic.backward()
|
||||
optimizers["critic"].step()
|
||||
|
||||
training_infos = {}
|
||||
training_infos["loss_critic"] = loss_critic.item()
|
||||
|
||||
if interaction_step % cfg.training.policy_update_freq == 0:
|
||||
# TD3 Trick
|
||||
for _ in range(cfg.training.policy_update_freq):
|
||||
loss_actor = policy.compute_loss_actor(observations=observations)
|
||||
|
||||
optimizers["actor"].zero_grad()
|
||||
loss_actor.backward()
|
||||
optimizers["actor"].step()
|
||||
|
||||
training_infos["loss_actor"] = loss_actor.item()
|
||||
|
||||
loss_temperature = policy.compute_loss_temperature(observations=observations)
|
||||
optimizers["temperature"].zero_grad()
|
||||
loss_temperature.backward()
|
||||
optimizers["temperature"].step()
|
||||
|
||||
training_infos["loss_temperature"] = loss_temperature.item()
|
||||
|
||||
if interaction_step % cfg.training.log_freq == 0:
|
||||
logger.log_dict(training_infos, interaction_step, mode="train")
|
||||
|
||||
policy.update_target_networks()
|
||||
|
||||
|
||||
def clip_grad_norm(loss, clip_grad_norm_value, parameters):
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
parameters=parameters,
|
||||
max_norm=clip_grad_norm_value,
|
||||
error_if_nonfinite=False,
|
||||
)
|
||||
return grad_norm
|
||||
|
||||
|
||||
def update_policy(
|
||||
policy,
|
||||
batch,
|
||||
optimizer,
|
||||
grad_clip_norm,
|
||||
grad_scaler: GradScaler,
|
||||
lr_scheduler=None,
|
||||
use_amp: bool = False,
|
||||
lock=None,
|
||||
):
|
||||
"""Returns a dictionary of items for logging."""
|
||||
start_time = time.perf_counter()
|
||||
device = get_device_from_parameters(policy)
|
||||
policy.train()
|
||||
with torch.autocast(device_type=device.type) if use_amp else nullcontext():
|
||||
output_dict = policy.forward(batch)
|
||||
# TODO(rcadene): policy.unnormalize_outputs(out_dict)
|
||||
loss = output_dict["loss"]
|
||||
grad_scaler.scale(loss).backward()
|
||||
|
||||
# Unscale the graident of the optimzer's assigned params in-place **prior to gradient clipping**.
|
||||
grad_scaler.unscale_(optimizer)
|
||||
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(
|
||||
policy.parameters(),
|
||||
grad_clip_norm,
|
||||
error_if_nonfinite=False,
|
||||
)
|
||||
|
||||
# Optimizer's gradients are already unscaled, so scaler.step does not unscale them,
|
||||
# although it still skips optimizer.step() if the gradients contain infs or NaNs.
|
||||
with lock if lock is not None else nullcontext():
|
||||
grad_scaler.step(optimizer)
|
||||
# Updates the scale for next iteration.
|
||||
grad_scaler.update()
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
if lr_scheduler is not None:
|
||||
lr_scheduler.step()
|
||||
|
||||
if isinstance(policy, PolicyWithUpdate):
|
||||
# To possibly update an internal buffer (for instance an Exponential Moving Average like in TDMPC).
|
||||
policy.update()
|
||||
|
||||
info = {
|
||||
"loss": loss.item(),
|
||||
"grad_norm": float(grad_norm),
|
||||
"lr": optimizer.param_groups[0]["lr"],
|
||||
"update_s": time.perf_counter() - start_time,
|
||||
**{k: v for k, v in output_dict.items() if k != "loss"},
|
||||
}
|
||||
info.update({k: v for k, v in output_dict.items() if k not in info})
|
||||
|
||||
return info
|
||||
|
||||
|
||||
def log_train_info(logger: Logger, info, step, cfg, dataset, is_online):
|
||||
loss = info["loss"]
|
||||
grad_norm = info["grad_norm"]
|
||||
lr = info["lr"]
|
||||
update_s = info["update_s"]
|
||||
dataloading_s = info["dataloading_s"]
|
||||
|
||||
# A sample is an (observation,action) pair, where observation and action
|
||||
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
|
||||
num_samples = (step + 1) * cfg.training.batch_size
|
||||
avg_samples_per_ep = dataset.num_frames / dataset.num_episodes
|
||||
num_episodes = num_samples / avg_samples_per_ep
|
||||
num_epochs = num_samples / dataset.num_frames
|
||||
log_items = [
|
||||
f"step:{format_big_number(step)}",
|
||||
# number of samples seen during training
|
||||
f"smpl:{format_big_number(num_samples)}",
|
||||
# number of episodes seen during training
|
||||
f"ep:{format_big_number(num_episodes)}",
|
||||
# number of time all unique samples are seen
|
||||
f"epch:{num_epochs:.2f}",
|
||||
f"loss:{loss:.3f}",
|
||||
f"grdn:{grad_norm:.3f}",
|
||||
f"lr:{lr:0.1e}",
|
||||
# in seconds
|
||||
f"updt_s:{update_s:.3f}",
|
||||
f"data_s:{dataloading_s:.3f}", # if not ~0, you are bottlenecked by cpu or io
|
||||
]
|
||||
logging.info(" ".join(log_items))
|
||||
|
||||
info["step"] = step
|
||||
info["num_samples"] = num_samples
|
||||
info["num_episodes"] = num_episodes
|
||||
info["num_epochs"] = num_epochs
|
||||
info["is_online"] = is_online
|
||||
|
||||
logger.log_dict(info, step, mode="train")
|
||||
|
||||
|
||||
def log_eval_info(logger, info, step, cfg, dataset, is_online):
|
||||
eval_s = info["eval_s"]
|
||||
avg_sum_reward = info["avg_sum_reward"]
|
||||
pc_success = info["pc_success"]
|
||||
|
||||
# A sample is an (observation,action) pair, where observation and action
|
||||
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
|
||||
num_samples = (step + 1) * cfg.training.batch_size
|
||||
avg_samples_per_ep = dataset.num_frames / dataset.num_episodes
|
||||
num_episodes = num_samples / avg_samples_per_ep
|
||||
num_epochs = num_samples / dataset.num_frames
|
||||
log_items = [
|
||||
f"step:{format_big_number(step)}",
|
||||
# number of samples seen during training
|
||||
f"smpl:{format_big_number(num_samples)}",
|
||||
# number of episodes seen during training
|
||||
f"ep:{format_big_number(num_episodes)}",
|
||||
# number of time all unique samples are seen
|
||||
f"epch:{num_epochs:.2f}",
|
||||
f"∑rwrd:{avg_sum_reward:.3f}",
|
||||
f"success:{pc_success:.1f}%",
|
||||
f"eval_s:{eval_s:.3f}",
|
||||
]
|
||||
logging.info(" ".join(log_items))
|
||||
|
||||
info["step"] = step
|
||||
info["num_samples"] = num_samples
|
||||
info["num_episodes"] = num_episodes
|
||||
info["num_epochs"] = num_epochs
|
||||
info["is_online"] = is_online
|
||||
|
||||
logger.log_dict(info, step, mode="eval")
|
||||
|
||||
|
||||
# def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
|
||||
# if out_dir is None:
|
||||
# raise NotImplementedError()
|
||||
# if job_name is None:
|
||||
# raise NotImplementedError()
|
||||
|
||||
# init_logging()
|
||||
# logging.info(pformat(OmegaConf.to_container(cfg)))
|
||||
|
||||
# if cfg.training.online_steps > 0 and isinstance(cfg.dataset_repo_id, ListConfig):
|
||||
# raise NotImplementedError("Online training with LeRobotMultiDataset is not implemented.")
|
||||
|
||||
# # Create an env dedicated to online episodes collection from policy rollout.
|
||||
# online_env = make_env(cfg, n_envs=cfg.training.online_rollout_batch_size)
|
||||
|
||||
# if cfg.training.eval_freq > 0:
|
||||
# logging.info("make_env")
|
||||
# eval_env = make_env(cfg)
|
||||
|
||||
# # If we are resuming a run, we need to check that a checkpoint exists in the log directory, and we need
|
||||
# # to check for any differences between the provided config and the checkpoint's config.
|
||||
# if cfg.resume:
|
||||
# if not Logger.get_last_checkpoint_dir(out_dir).exists():
|
||||
# raise RuntimeError(
|
||||
# "You have set resume=True, but there is no model checkpoint in "
|
||||
# f"{Logger.get_last_checkpoint_dir(out_dir)}"
|
||||
# )
|
||||
# checkpoint_cfg_path = str(Logger.get_last_pretrained_model_dir(out_dir) / "config.yaml")
|
||||
# logging.info(
|
||||
# colored(
|
||||
# "You have set resume=True, indicating that you wish to resume a run",
|
||||
# color="yellow",
|
||||
# attrs=["bold"],
|
||||
# )
|
||||
# )
|
||||
# # Get the configuration file from the last checkpoint.
|
||||
# checkpoint_cfg = init_hydra_config(checkpoint_cfg_path)
|
||||
# # Check for differences between the checkpoint configuration and provided configuration.
|
||||
# # Hack to resolve the delta_timestamps ahead of time in order to properly diff.
|
||||
# resolve_delta_timestamps(cfg)
|
||||
# diff = DeepDiff(OmegaConf.to_container(checkpoint_cfg), OmegaConf.to_container(cfg))
|
||||
# # Ignore the `resume` and parameters.
|
||||
# if "values_changed" in diff and "root['resume']" in diff["values_changed"]:
|
||||
# del diff["values_changed"]["root['resume']"]
|
||||
# # Log a warning about differences between the checkpoint configuration and the provided
|
||||
# # configuration.
|
||||
# if len(diff) > 0:
|
||||
# logging.warning(
|
||||
# "At least one difference was detected between the checkpoint configuration and "
|
||||
# f"the provided configuration: \n{pformat(diff)}\nNote that the checkpoint configuration "
|
||||
# "takes precedence.",
|
||||
# )
|
||||
# # Use the checkpoint config instead of the provided config (but keep `resume` parameter).
|
||||
# cfg = checkpoint_cfg
|
||||
# cfg.resume = True
|
||||
# elif Logger.get_last_checkpoint_dir(out_dir).exists():
|
||||
# raise RuntimeError(
|
||||
# f"The configured output directory {Logger.get_last_checkpoint_dir(out_dir)} already exists. If "
|
||||
# "you meant to resume training, please use `resume=true` in your command or yaml configuration."
|
||||
# )
|
||||
|
||||
# if cfg.eval.batch_size > cfg.eval.n_episodes:
|
||||
# raise ValueError(
|
||||
# "The eval batch size is greater than the number of eval episodes "
|
||||
# f"({cfg.eval.batch_size} > {cfg.eval.n_episodes}). As a result, {cfg.eval.batch_size} "
|
||||
# f"eval environments will be instantiated, but only {cfg.eval.n_episodes} will be used. "
|
||||
# "This might significantly slow down evaluation. To fix this, you should update your command "
|
||||
# f"to increase the number of episodes to match the batch size (e.g. `eval.n_episodes={cfg.eval.batch_size}`), "
|
||||
# f"or lower the batch size (e.g. `eval.batch_size={cfg.eval.n_episodes}`)."
|
||||
# )
|
||||
|
||||
# # log metrics to terminal and wandb
|
||||
# logger = Logger(cfg, out_dir, wandb_job_name=job_name)
|
||||
|
||||
# set_global_seed(cfg.seed)
|
||||
|
||||
# # Check device is available
|
||||
# device = get_safe_torch_device(cfg.device, log=True)
|
||||
|
||||
# torch.backends.cudnn.benchmark = True
|
||||
# torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
# logging.info("make_dataset")
|
||||
# # offline_dataset = make_dataset(cfg)
|
||||
# # TODO (michel-aractingi): temporary fix to avoid datasets with task_index key that doesn't exist in online environment
|
||||
# # i.e., pusht
|
||||
# # if "task_index" in offline_dataset.hf_dataset[0]:
|
||||
# # offline_dataset.hf_dataset = offline_dataset.hf_dataset.remove_columns(["task_index"])
|
||||
|
||||
# # if isinstance(offline_dataset, MultiLeRobotDataset):
|
||||
# # logging.info(
|
||||
# # "Multiple datasets were provided. Applied the following index mapping to the provided datasets: "
|
||||
# # f"{pformat(offline_dataset.repo_id_to_index , indent=2)}"
|
||||
# # )
|
||||
|
||||
# # Create environment used for evaluating checkpoints during training on simulation data.
|
||||
# # On real-world data, no need to create an environment as evaluations are done outside train.py,
|
||||
# # using the eval.py instead, with gym_dora environment and dora-rs.
|
||||
# eval_env = None
|
||||
# if cfg.training.eval_freq > 0:
|
||||
# logging.info("make_env")
|
||||
# eval_env = make_env(cfg)
|
||||
|
||||
# logging.info("make_policy")
|
||||
# policy = make_policy(
|
||||
# hydra_cfg=cfg,
|
||||
# # dataset_stats=offline_dataset.meta.stats if not cfg.resume else None,
|
||||
# # Hack: But if we do online traning, we do not need dataset_stats
|
||||
# dataset_stats=None,
|
||||
# pretrained_policy_name_or_path=str(logger.last_pretrained_model_dir) if cfg.resume else None,
|
||||
# )
|
||||
# assert isinstance(policy, nn.Module)
|
||||
# # Create optimizer and scheduler
|
||||
# # Temporary hack to move optimizer out of policy
|
||||
# optimizer, lr_scheduler = make_optimizer_and_scheduler(cfg, policy)
|
||||
# grad_scaler = GradScaler(enabled=cfg.use_amp)
|
||||
|
||||
# step = 0 # number of policy updates (forward + backward + optim)
|
||||
|
||||
# if cfg.resume:
|
||||
# step = logger.load_last_training_state(optimizer, lr_scheduler)
|
||||
|
||||
# num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
|
||||
# num_total_params = sum(p.numel() for p in policy.parameters())
|
||||
|
||||
# log_output_dir(out_dir)
|
||||
# logging.info(f"{cfg.env.task=}")
|
||||
# logging.info(f"{cfg.training.offline_steps=} ({format_big_number(cfg.training.offline_steps)})")
|
||||
# logging.info(f"{cfg.training.online_steps=}")
|
||||
# # logging.info(f"{offline_dataset.num_frames=} ({format_big_number(offline_dataset.num_frames)})")
|
||||
# # logging.info(f"{offline_dataset.num_episodes=}")
|
||||
# logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
|
||||
# logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
|
||||
|
||||
# # Note: this helper will be used in offline and online training loops.
|
||||
# def evaluate_and_checkpoint_if_needed(step, is_online):
|
||||
# _num_digits = max(6, len(str(cfg.training.offline_steps + cfg.training.online_steps)))
|
||||
# step_identifier = f"{step:0{_num_digits}d}"
|
||||
|
||||
# if cfg.training.eval_freq > 0 and step % cfg.training.eval_freq == 0:
|
||||
# logging.info(f"Eval policy at step {step}")
|
||||
# with torch.no_grad(), torch.autocast(device_type=device.type) if cfg.use_amp else nullcontext():
|
||||
# assert eval_env is not None
|
||||
# eval_info = eval_policy(
|
||||
# eval_env,
|
||||
# policy,
|
||||
# cfg.eval.n_episodes,
|
||||
# videos_dir=Path(out_dir) / "eval" / f"videos_step_{step_identifier}",
|
||||
# max_episodes_rendered=4,
|
||||
# start_seed=cfg.seed,
|
||||
# )
|
||||
# # log_eval_info(logger, eval_info["aggregated"], step, cfg, offline_dataset, is_online=is_online)
|
||||
# log_eval_info(logger, eval_info["aggregated"], step, cfg, online_dataset, is_online=is_online)
|
||||
# if cfg.wandb.enable:
|
||||
# logger.log_video(eval_info["video_paths"][0], step, mode="eval")
|
||||
# logging.info("Resume training")
|
||||
|
||||
# if cfg.training.save_checkpoint and (
|
||||
# step % cfg.training.save_freq == 0
|
||||
# or step == cfg.training.offline_steps + cfg.training.online_steps
|
||||
# ):
|
||||
# logging.info(f"Checkpoint policy after step {step}")
|
||||
# # Note: Save with step as the identifier, and format it to have at least 6 digits but more if
|
||||
# # needed (choose 6 as a minimum for consistency without being overkill).
|
||||
# logger.save_checkpoint(
|
||||
# step,
|
||||
# policy,
|
||||
# optimizer,
|
||||
# lr_scheduler,
|
||||
# identifier=step_identifier,
|
||||
# )
|
||||
# logging.info("Resume training")
|
||||
|
||||
# # create dataloader for offline training
|
||||
# # if cfg.training.get("drop_n_last_frames"):
|
||||
# # shuffle = False
|
||||
# # sampler = EpisodeAwareSampler(
|
||||
# # offline_dataset.episode_data_index,
|
||||
# # drop_n_last_frames=cfg.training.drop_n_last_frames,
|
||||
# # shuffle=True,
|
||||
# # )
|
||||
# # else:
|
||||
# # shuffle = True
|
||||
# # sampler = None
|
||||
# # dataloader = torch.utils.data.DataLoader(
|
||||
# # offline_dataset,
|
||||
# # num_workers=cfg.training.num_workers,
|
||||
# # batch_size=cfg.training.batch_size,
|
||||
# # shuffle=shuffle,
|
||||
# # sampler=sampler,
|
||||
# # pin_memory=device.type != "cpu",
|
||||
# # drop_last=False,
|
||||
# # )
|
||||
# # dl_iter = cycle(dataloader)
|
||||
|
||||
# policy.train()
|
||||
# # offline_step = 0
|
||||
# # for _ in range(step, cfg.training.offline_steps):
|
||||
# # if offline_step == 0:
|
||||
# # logging.info("Start offline training on a fixed dataset")
|
||||
|
||||
# # start_time = time.perf_counter()
|
||||
# # batch = next(dl_iter)
|
||||
# # dataloading_s = time.perf_counter() - start_time
|
||||
|
||||
# # for key in batch:
|
||||
# # batch[key] = batch[key].to(device, non_blocking=True)
|
||||
|
||||
# # train_info = update_policy(
|
||||
# # policy,
|
||||
# # batch,
|
||||
# # optimizer,
|
||||
# # cfg.training.grad_clip_norm,
|
||||
# # grad_scaler=grad_scaler,
|
||||
# # lr_scheduler=lr_scheduler,
|
||||
# # use_amp=cfg.use_amp,
|
||||
# # )
|
||||
|
||||
# # train_info["dataloading_s"] = dataloading_s
|
||||
|
||||
# # if step % cfg.training.log_freq == 0:
|
||||
# # log_train_info(logger, train_info, step, cfg, offline_dataset, is_online=False)
|
||||
|
||||
# # # Note: evaluate_and_checkpoint_if_needed happens **after** the `step`th training update has completed,
|
||||
# # # so we pass in step + 1.
|
||||
# # evaluate_and_checkpoint_if_needed(step + 1, is_online=False)
|
||||
|
||||
# # step += 1
|
||||
# # offline_step += 1 # noqa: SIM113
|
||||
|
||||
# # if cfg.training.online_steps == 0:
|
||||
# # if eval_env:
|
||||
# # eval_env.close()
|
||||
# # logging.info("End of training")
|
||||
# # return
|
||||
|
||||
# # Online training.
|
||||
|
||||
# # Create an env dedicated to online episodes collection from policy rollout.
|
||||
# online_env = make_env(cfg, n_envs=cfg.training.online_rollout_batch_size)
|
||||
# resolve_delta_timestamps(cfg)
|
||||
# online_buffer_path = logger.log_dir / "online_buffer"
|
||||
# if cfg.resume and not online_buffer_path.exists():
|
||||
# # If we are resuming a run, we default to the data shapes and buffer capacity from the saved online
|
||||
# # buffer.
|
||||
# logging.warning(
|
||||
# "When online training is resumed, we load the latest online buffer from the prior run, "
|
||||
# "and this might not coincide with the state of the buffer as it was at the moment the checkpoint "
|
||||
# "was made. This is because the online buffer is updated on disk during training, independently "
|
||||
# "of our explicit checkpointing mechanisms."
|
||||
# )
|
||||
# online_dataset = OnlineBuffer(
|
||||
# online_buffer_path,
|
||||
# data_spec={
|
||||
# **{k: {"shape": v, "dtype": np.dtype("float32")} for k, v in policy.config.input_shapes.items()},
|
||||
# **{k: {"shape": v, "dtype": np.dtype("float32")} for k, v in policy.config.output_shapes.items()},
|
||||
# "next.reward": {"shape": (), "dtype": np.dtype("float32")},
|
||||
# "next.done": {"shape": (), "dtype": np.dtype("?")},
|
||||
# "next.success": {"shape": (), "dtype": np.dtype("?")},
|
||||
# },
|
||||
# buffer_capacity=cfg.training.online_buffer_capacity,
|
||||
# fps=online_env.unwrapped.metadata["render_fps"],
|
||||
# delta_timestamps=cfg.training.delta_timestamps,
|
||||
# )
|
||||
|
||||
# # If we are doing online rollouts asynchronously, deepcopy the policy to use for online rollouts (this
|
||||
# # makes it possible to do online rollouts in parallel with training updates).
|
||||
# online_rollout_policy = deepcopy(policy) if cfg.training.do_online_rollout_async else policy
|
||||
|
||||
# # Create dataloader for online training.
|
||||
# # concat_dataset = torch.utils.data.ConcatDataset([offline_dataset, online_dataset])
|
||||
# # sampler_weights = compute_sampler_weights(
|
||||
# # offline_dataset,
|
||||
# # offline_drop_n_last_frames=cfg.training.get("drop_n_last_frames", 0),
|
||||
# # online_dataset=online_dataset,
|
||||
# # # +1 because online rollouts return an extra frame for the "final observation". Note: we don't have
|
||||
# # # this final observation in the offline datasets, but we might add them in future.
|
||||
# # online_drop_n_last_frames=cfg.training.get("drop_n_last_frames", 0) + 1,
|
||||
# # online_sampling_ratio=cfg.training.online_sampling_ratio,
|
||||
# # )
|
||||
# # sampler = torch.utils.data.WeightedRandomSampler(
|
||||
# # sampler_weights,
|
||||
# # num_samples=len(concat_dataset),
|
||||
# # replacement=True,
|
||||
# # )
|
||||
# # dataloader = torch.utils.data.DataLoader(
|
||||
# # concat_dataset,
|
||||
# # batch_size=cfg.training.batch_size,
|
||||
# # num_workers=cfg.training.num_workers,
|
||||
# # sampler=sampler,
|
||||
# # pin_memory=device.type != "cpu",
|
||||
# # drop_last=True,
|
||||
# # )
|
||||
|
||||
# dataloader = torch.utils.data.DataLoader(
|
||||
# online_dataset,
|
||||
# batch_size=cfg.training.batch_size,
|
||||
# # num_workers=cfg.training.num_workers,
|
||||
# num_workers=0,
|
||||
# # sampler=sampler,
|
||||
# pin_memory=device.type != "cpu",
|
||||
# drop_last=True,
|
||||
# )
|
||||
# dl_iter = cycle(dataloader)
|
||||
|
||||
# # Lock and thread pool executor for asynchronous online rollouts. When asynchronous mode is disabled,
|
||||
# # these are still used but effectively do nothing.
|
||||
# # Hack: Comment the lock
|
||||
# # lock = Lock()
|
||||
# # Note: 1 worker because we only ever want to run one set of online rollouts at a time. Batch
|
||||
# # parallelization of rollouts is handled within the job.
|
||||
|
||||
# # Hack: ThreadPoolExecutor
|
||||
# # executor = ThreadPoolExecutor(max_workers=1)
|
||||
|
||||
# online_step = 0
|
||||
# online_rollout_s = 0 # time take to do online rollout
|
||||
# update_online_buffer_s = 0 # time taken to update the online buffer with the online rollout data
|
||||
# # Time taken waiting for the online buffer to finish being updated. This is relevant when using the async
|
||||
# # online rollout option.
|
||||
# await_update_online_buffer_s = 0
|
||||
# rollout_start_seed = cfg.training.online_env_seed
|
||||
|
||||
# while True:
|
||||
# if online_step == cfg.training.online_steps:
|
||||
# break
|
||||
|
||||
# if online_step == 0:
|
||||
# logging.info("Start online training by interacting with environment")
|
||||
|
||||
# def sample_trajectory_and_update_buffer():
|
||||
# nonlocal rollout_start_seed
|
||||
# # with lock:
|
||||
# online_rollout_policy.load_state_dict(policy.state_dict())
|
||||
|
||||
# online_rollout_policy.eval()
|
||||
# start_rollout_time = time.perf_counter()
|
||||
# with torch.no_grad():
|
||||
# eval_info = eval_policy(
|
||||
# online_env,
|
||||
# online_rollout_policy,
|
||||
# n_episodes=cfg.training.online_rollout_n_episodes,
|
||||
# max_episodes_rendered=min(10, cfg.training.online_rollout_n_episodes),
|
||||
# videos_dir=logger.log_dir / "online_rollout_videos",
|
||||
# return_episode_data=True,
|
||||
# start_seed=(
|
||||
# rollout_start_seed := (rollout_start_seed + cfg.training.batch_size) % 1000000
|
||||
# ),
|
||||
# )
|
||||
# online_rollout_s = time.perf_counter() - start_rollout_time
|
||||
|
||||
# # with lock:
|
||||
# start_update_buffer_time = time.perf_counter()
|
||||
# online_dataset.add_data(eval_info["episodes"])
|
||||
|
||||
# # Update the concatenated dataset length used during sampling.
|
||||
# # concat_dataset.cumulative_sizes = concat_dataset.cumsum(concat_dataset.datasets)
|
||||
# # HACK: We do only online training, so we don't need update dataset length because
|
||||
# # we do not concatenate offline and online datasets.
|
||||
# # online_dataset.cumulative_sizes = online_dataset.cumsum(online_dataset.datasets)
|
||||
|
||||
# # Update the sampling weights.
|
||||
# # sampler.weights = compute_sampler_weights(
|
||||
# # offline_dataset,
|
||||
# # offline_drop_n_last_frames=cfg.training.get("drop_n_last_frames", 0),
|
||||
# # online_dataset=online_dataset,
|
||||
# # # +1 because online rollouts return an extra frame for the "final observation". Note: we don't have
|
||||
# # # this final observation in the offline datasets, but we might add them in future.
|
||||
# # online_drop_n_last_frames=cfg.training.get("drop_n_last_frames", 0) + 1,
|
||||
# # online_sampling_ratio=cfg.training.online_sampling_ratio,
|
||||
# # )
|
||||
# # sampler.num_frames = len(concat_dataset)
|
||||
|
||||
# update_online_buffer_s = time.perf_counter() - start_update_buffer_time
|
||||
|
||||
# return online_rollout_s, update_online_buffer_s
|
||||
|
||||
# # Hack:Comment it
|
||||
# # future = executor.submit(sample_trajectory_and_update_buffer)
|
||||
# # sample_trajectory_and_update_buffer()
|
||||
# # If we aren't doing async rollouts, or if we haven't yet gotten enough examples in our buffer, wait
|
||||
# # here until the rollout and buffer update is done, before proceeding to the policy update steps.
|
||||
# if (
|
||||
# not cfg.training.do_online_rollout_async
|
||||
# or len(online_dataset) <= cfg.training.online_buffer_seed_size
|
||||
# ):
|
||||
# # online_rollout_s, update_online_buffer_s = future.result()
|
||||
# online_rollout_s, update_online_buffer_s = sample_trajectory_and_update_buffer()
|
||||
|
||||
# if len(online_dataset) <= cfg.training.online_buffer_seed_size:
|
||||
# logging.info(
|
||||
# f"Seeding online buffer: {len(online_dataset)}/{cfg.training.online_buffer_seed_size}"
|
||||
# )
|
||||
# continue
|
||||
|
||||
# policy.train()
|
||||
# for _ in range(cfg.training.online_steps_between_rollouts):
|
||||
# # Hack: Comment the lock and reindent
|
||||
# # with lock:
|
||||
# start_time = time.perf_counter()
|
||||
# batch = next(dl_iter)
|
||||
# dataloading_s = time.perf_counter() - start_time
|
||||
|
||||
# for key in batch:
|
||||
# batch[key] = batch[key].to(cfg.device, non_blocking=True)
|
||||
|
||||
# train_info = update_policy(
|
||||
# policy,
|
||||
# batch,
|
||||
# optimizer,
|
||||
# cfg.training.grad_clip_norm,
|
||||
# grad_scaler=grad_scaler,
|
||||
# lr_scheduler=lr_scheduler,
|
||||
# use_amp=cfg.use_amp,
|
||||
# # lock=lock,
|
||||
# # Hack: Comment the lock
|
||||
# lock=None,
|
||||
# )
|
||||
|
||||
# train_info["dataloading_s"] = dataloading_s
|
||||
# train_info["online_rollout_s"] = online_rollout_s
|
||||
# train_info["update_online_buffer_s"] = update_online_buffer_s
|
||||
# train_info["await_update_online_buffer_s"] = await_update_online_buffer_s
|
||||
# # Hack: Comment the lock and reindent
|
||||
# # with lock:
|
||||
# train_info["online_buffer_size"] = len(online_dataset)
|
||||
|
||||
# if step % cfg.training.log_freq == 0:
|
||||
# log_train_info(logger, train_info, step, cfg, online_dataset, is_online=True)
|
||||
|
||||
# # Note: evaluate_and_checkpoint_if_needed happens **after** the `step`th training update has completed,
|
||||
# # so we pass in step + 1.
|
||||
# evaluate_and_checkpoint_if_needed(step + 1, is_online=True)
|
||||
|
||||
# step += 1
|
||||
# online_step += 1
|
||||
|
||||
# # If we're doing async rollouts, we should now wait until we've completed them before proceeding
|
||||
# # to do the next batch of rollouts.
|
||||
# # Hack: comment it
|
||||
# # if future.running():
|
||||
# start = time.perf_counter()
|
||||
# # online_rollout_s, update_online_buffer_s = future.result()
|
||||
# online_rollout_s, update_online_buffer_s = sample_trajectory_and_update_buffer()
|
||||
# await_update_online_buffer_s = time.perf_counter() - start
|
||||
|
||||
# if online_step >= cfg.training.online_steps:
|
||||
# break
|
||||
|
||||
# if eval_env:
|
||||
# eval_env.close()
|
||||
# logging.info("End of training")
|
||||
|
||||
|
||||
@hydra.main(version_base="1.2", config_name="default", config_path="../configs")
|
||||
def train_cli(cfg: dict):
|
||||
train(
|
||||
cfg,
|
||||
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
|
||||
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
|
||||
)
|
||||
|
||||
|
||||
def train_notebook(out_dir=None, job_name=None, config_name="default", config_path="../configs"):
|
||||
from hydra import compose, initialize
|
||||
|
||||
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
||||
initialize(config_path=config_path)
|
||||
cfg = compose(config_name=config_name)
|
||||
train(cfg, out_dir=out_dir, job_name=job_name)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train_cli()
|
Loading…
Reference in New Issue