[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
This commit is contained in:
parent
1daa9aae9e
commit
7755d43127
|
@ -13,13 +13,15 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Any
|
||||
import warnings
|
||||
from typing import Any
|
||||
|
||||
import einops
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import Tensor
|
||||
import gym
|
||||
|
||||
from lerobot.common.envs.configs import EnvConfig
|
||||
from lerobot.common.utils.utils import get_channel_first_image_shape
|
||||
from lerobot.configs.types import FeatureType, PolicyFeature
|
||||
|
@ -89,27 +91,30 @@ def env_to_policy_features(env_cfg: EnvConfig) -> dict[str, PolicyFeature]:
|
|||
|
||||
return policy_features
|
||||
|
||||
|
||||
def check_all_envs_same_type(env: gym.vector.VectorEnv) -> bool:
|
||||
first_type = type(env.envs[0]) # Get type of first env
|
||||
return all(type(e) is first_type for e in env.envs) # Fast type check
|
||||
|
||||
|
||||
def check_env_attributes_and_types(env: gym.vector.VectorEnv) -> None:
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("once", UserWarning) # Apply filter only in this function
|
||||
|
||||
|
||||
if not (hasattr(env.envs[0], "task_description") and hasattr(env.envs[0], "task")):
|
||||
warnings.warn(
|
||||
"The environment does not have 'task_description' and 'task'. Some policies require these features.",
|
||||
UserWarning,
|
||||
stacklevel=2
|
||||
stacklevel=2,
|
||||
)
|
||||
if not check_all_envs_same_type(env):
|
||||
warnings.warn(
|
||||
"The environments have different types. Make sure you infer the right task from each environment. Empty task will be passed instead.",
|
||||
UserWarning,
|
||||
stacklevel=2
|
||||
stacklevel=2,
|
||||
)
|
||||
|
||||
|
||||
def infer_envs_task(env: gym.vector.VectorEnv, observation: dict[str, Any]) -> dict[str, Any]:
|
||||
if hasattr(env.envs[0], "task_description"):
|
||||
observation["task"] = env.call("task_description")
|
||||
|
@ -118,4 +123,4 @@ def infer_envs_task(env: gym.vector.VectorEnv, observation: dict[str, Any]) -> d
|
|||
else: # For envs without language instructions, e.g. aloha transfer cube and etc.
|
||||
num_envs = observation[list(observation.keys())[0]].shape[0]
|
||||
observation["task"] = ["" for _ in range(num_envs)]
|
||||
return observation
|
||||
return observation
|
||||
|
|
|
@ -66,7 +66,7 @@ from torch import Tensor, nn
|
|||
from tqdm import trange
|
||||
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.envs.utils import preprocess_observation, infer_envs_task, check_env_attributes_and_types
|
||||
from lerobot.common.envs.utils import check_env_attributes_and_types, infer_envs_task, preprocess_observation
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.policies.pretrained import PreTrainedPolicy
|
||||
from lerobot.common.policies.utils import get_device_from_parameters
|
||||
|
@ -158,7 +158,7 @@ def rollout(
|
|||
|
||||
# Infer "task" from envs. Works with AsyncVectorEnv.
|
||||
observation = infer_envs_task(env, observation)
|
||||
|
||||
|
||||
with torch.inference_mode():
|
||||
action = policy.select_action(observation)
|
||||
|
||||
|
|
Loading…
Reference in New Issue