All tests passing except test_control_robot.py

This commit is contained in:
Remi Cadene 2024-07-09 22:53:39 +02:00
parent a0432f1608
commit 798373e7bf
14 changed files with 493 additions and 168 deletions

View File

@ -19,7 +19,7 @@ import gymnasium as gym
from omegaconf import DictConfig
def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv:
def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv | None:
"""Makes a gym vector environment according to the evaluation config.
n_envs can be used to override eval.batch_size in the configuration. Must be at least 1.
@ -27,6 +27,9 @@ def make_env(cfg: DictConfig, n_envs: int | None = None) -> gym.vector.VectorEnv
if n_envs is not None and n_envs < 1:
raise ValueError("`n_envs must be at least 1")
if cfg.env.name == "real_world":
return
package_name = f"gym_{cfg.env.name}"
try:

View File

@ -1,5 +1,6 @@
import argparse
import math
import threading
import time
from dataclasses import dataclass, replace
from pathlib import Path
@ -8,9 +9,8 @@ from threading import Thread
import cv2
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
# Using 1 thread to avoid blocking the main thread.
# Especially useful during data collection when other threads are used
# to save the images.
# Use 1 thread to avoid blocking the main thread. Especially useful during data collection
# when other threads are used to save the images.
cv2.setNumThreads(1)
import numpy as np
@ -89,6 +89,10 @@ class OpenCVCameraConfig:
height: int | None = None
color: str = "rgb"
def __post_init__(self):
if self.color not in ["rgb", "bgr"]:
raise ValueError(f"Expected color values are 'rgb' or 'bgr', but {self.color} is provided.")
class OpenCVCamera:
# TODO(rcadene): improve dosctring
@ -122,12 +126,10 @@ class OpenCVCamera:
if not isinstance(self.camera_index, int):
raise ValueError(f"Camera index must be provided as an int, but {self.camera_index} was given instead.")
if self.color not in ["rgb", "bgr"]:
raise ValueError(f"Expected color values are 'rgb' or 'bgr', but {self.color} is provided.")
self.camera = None
self.is_connected = False
self.thread = None
self.stop_event = None
self.color_image = None
self.logs = {}
@ -159,26 +161,26 @@ class OpenCVCamera:
# needs to be re-created.
self.camera = cv2.VideoCapture(self.camera_index)
if self.fps:
if self.fps is not None:
self.camera.set(cv2.CAP_PROP_FPS, self.fps)
if self.width:
if self.width is not None:
self.camera.set(cv2.CAP_PROP_FRAME_WIDTH, self.width)
if self.height:
if self.height is not None:
self.camera.set(cv2.CAP_PROP_FRAME_HEIGHT, self.height)
actual_fps = self.camera.get(cv2.CAP_PROP_FPS)
actual_width = self.camera.get(cv2.CAP_PROP_FRAME_WIDTH)
actual_height = self.camera.get(cv2.CAP_PROP_FRAME_HEIGHT)
if self.fps and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
if self.fps is not None and not math.isclose(self.fps, actual_fps, rel_tol=1e-3):
raise OSError(
f"Can't set {self.fps=} for camera {self.camera_index}. Actual value is {actual_fps}."
)
if self.width and self.width != actual_width:
if self.width is not None and self.width != actual_width:
raise OSError(
f"Can't set {self.width=} for camera {self.camera_index}. Actual value is {actual_width}."
)
if self.height and self.height != actual_height:
if self.height is not None and self.height != actual_height:
raise OSError(
f"Can't set {self.height=} for camera {self.camera_index}. Actual value is {actual_height}."
)
@ -216,6 +218,10 @@ class OpenCVCamera:
if requested_color == "rgb":
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
h, w, _ = color_image.shape
if h != self.height or w != self.width:
raise OSError(f"Can't capture color image with expected height and width ({self.height} x {self.width}). ({h} x {w}) returned instead.")
# log the number of seconds it took to read the image
self.logs["delta_timestamp_s"] = time.perf_counter() - start_time
@ -225,7 +231,7 @@ class OpenCVCamera:
return color_image
def read_loop(self):
while True:
while self.stop_event is None or not self.stop_event.is_set():
self.color_image = self.read()
def async_read(self):
@ -233,6 +239,7 @@ class OpenCVCamera:
raise RobotDeviceNotConnectedError(f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first.")
if self.thread is None:
self.stop_event = threading.Event()
self.thread = Thread(target=self.read_loop, args=())
self.thread.daemon = True
self.thread.start()
@ -242,27 +249,29 @@ class OpenCVCamera:
num_tries += 1
time.sleep(1/self.fps)
if num_tries > self.fps:
if self.thread.ident is None and not self.thread.is_alive():
if self.thread.ident is None or not self.thread.is_alive():
raise Exception("The thread responsible for `self.async_read()` took too much time to start. There might be an issue. Verify that `self.thread.start()` has been called.")
return self.color_image
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(f"OpenCVCamera({self.camera_index}) is not connected. Try running `camera.connect()` first.")
self.camera.release()
self.camera = None
if self.thread is not None and self.thread.is_alive():
# wait for the thread to finish
self.stop_event.set()
self.thread.join()
self.thread = None
self.stop_event = None
self.camera.release()
self.camera = None
self.is_connected = False
def __del__(self):
if self.is_connected:
if getattr(self, "is_connected", False):
self.disconnect()

View File

@ -101,6 +101,7 @@ MODEL_CONTROL_TABLE = {
}
# TODO(rcadene): find better namming for these functions
def uint32_to_int32(values: np.ndarray):
"""
Convert an unsigned 32-bit integer array to a signed 32-bit integer array.
@ -120,35 +121,18 @@ def int32_to_uint32(values: np.ndarray):
values[i] = values[i] + 4294967296
return values
def motor_position_to_angle(position: np.ndarray) -> np.ndarray:
"""
Convert from motor position in [-2048, 2048] to radian in [-pi, pi]
"""
return (position / 2048) * 3.14
def motor_angle_to_position(angle: np.ndarray) -> np.ndarray:
"""
Convert from radian in [-pi, pi] to motor position in [-2048, 2048]
"""
return ((angle / 3.14) * 2048).astype(np.int64)
# def pwm2vel(pwm: np.ndarray) -> np.ndarray:
# def motor_position_to_angle(position: np.ndarray) -> np.ndarray:
# """
# :param pwm: numpy array of pwm/s joint velocities
# :return: numpy array of rad/s joint velocities
# Convert from motor position in [-2048, 2048] to radian in [-pi, pi]
# """
# return pwm * 3.14 / 2048
# return (position / 2048) * 3.14
# def vel2pwm(vel: np.ndarray) -> np.ndarray:
# def motor_angle_to_position(angle: np.ndarray) -> np.ndarray:
# """
# :param vel: numpy array of rad/s joint velocities
# :return: numpy array of pwm/s joint velocities
# Convert from radian in [-pi, pi] to motor position in [-2048, 2048]
# """
# return (vel * 2048 / 3.14).astype(np.int64)
# return ((angle / 3.14) * 2048).astype(np.int64)
def get_group_sync_key(data_name, motor_names):
@ -285,15 +269,18 @@ class DynamixelMotorsBus:
return values
def read(self, data_name, motor_names: list[str] | None = None):
def read(self, data_name, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise ValueError(f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`.")
raise RobotDeviceNotConnectedError(f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`.")
start_time = time.perf_counter()
if motor_names is None:
motor_names = self.motor_names
if isinstance(motor_names, str):
motor_names = [motor_names]
motor_ids = []
models = []
for name in motor_names:
@ -352,7 +339,7 @@ class DynamixelMotorsBus:
def write(self, data_name, values: int | float | np.ndarray, motor_names: str | list[str] | None = None):
if not self.is_connected:
raise ValueError(f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`.")
raise RobotDeviceNotConnectedError(f"DynamixelMotorsBus({self.port}) is not connected. You need to run `motors_bus.connect()`.")
start_time = time.perf_counter()
@ -444,10 +431,17 @@ class DynamixelMotorsBus:
if not self.is_connected:
raise RobotDeviceNotConnectedError(f"DynamixelMotorsBus({self.port}) is not connected. Try running `motors_bus.connect()` first.")
closePort
if self.port_handler is not None:
self.port_handler.closePort()
self.port_handler = None
self.packet_handler = None
self.group_readers = {}
self.group_writers = {}
self.is_connected = False
def __del__(self):
if self.is_connected:
if getattr(self, "is_connected", False):
self.disconnect()

View File

@ -14,15 +14,21 @@ from lerobot.common.robot_devices.motors.dynamixel import (
TorqueMode,
)
from lerobot.common.robot_devices.motors.utils import MotorsBus
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
URL_HORIZONTAL_POSITION = {
"follower": "https://raw.githubusercontent.com/huggingface/lerobot/main/media/koch/follower_horizontal.png",
"leader": "https://raw.githubusercontent.com/huggingface/lerobot/main/media/koch/leader_horizontal.png",
}
URL_90_DEGREE_POSITION = {
"follower": "https://raw.githubusercontent.com/huggingface/lerobot/main/media/koch/follower_90_degree.png",
"leader": "https://raw.githubusercontent.com/huggingface/lerobot/main/media/koch/leader_90_degree.png",
}
########################################################################
# Calibration logic
########################################################################
# TARGET_HORIZONTAL_POSITION = motor_position_to_angle(np.array([0, -1024, 1024, 0, -1024, 0]))
# TARGET_90_DEGREE_POSITION = motor_position_to_angle(np.array([1024, 0, 0, 1024, 0, -1024]))
# GRIPPER_OPEN = motor_position_to_angle(np.array([-400]))
TARGET_HORIZONTAL_POSITION = np.array([0, -1024, 1024, 0, -1024, 0])
TARGET_90_DEGREE_POSITION = np.array([1024, 0, 0, 1024, 0, -1024])
GRIPPER_OPEN = np.array([-400])
@ -137,11 +143,16 @@ def reset_arm(arm: MotorsBus):
arm.write("Drive_Mode", DriveMode.NON_INVERTED.value)
def run_arm_calibration(arm: MotorsBus, name: str):
def run_arm_calibration(arm: MotorsBus, name: str, arm_type: str):
""" Example of usage:
```python
run_arm_calibration(arm, "left", "follower")
```
"""
reset_arm(arm)
# TODO(rcadene): document what position 1 mean
print(f"Please move the '{name}' arm to the horizontal position (gripper fully closed)")
print(f"Please move the '{name} {arm_type}' arm to the horizontal position (gripper fully closed, see {URL_HORIZONTAL_POSITION[arm_type]})")
input("Press Enter to continue...")
horizontal_homing_offset = compute_homing_offset(
@ -149,7 +160,7 @@ def run_arm_calibration(arm: MotorsBus, name: str):
)
# TODO(rcadene): document what position 2 mean
print(f"Please move the '{name}' arm to the 90 degree position (gripper fully open)")
print(f"Please move the '{name} {arm_type}' arm to the 90 degree position (gripper fully open, see {URL_90_DEGREE_POSITION[arm_type]})")
input("Press Enter to continue...")
drive_mode = compute_drive_mode(arm, horizontal_homing_offset)
@ -184,42 +195,15 @@ class KochRobotConfig:
```
"""
# Define all the components of the robot
# Define all components of the robot
leader_arms: dict[str, MotorsBus] = field(
default_factory=lambda: {
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0031751",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl330-m077"),
"shoulder_lift": (2, "xl330-m077"),
"elbow_flex": (3, "xl330-m077"),
"wrist_flex": (4, "xl330-m077"),
"wrist_roll": (5, "xl330-m077"),
"gripper": (6, "xl330-m077"),
},
),
}
default_factory=lambda: {}
)
follower_arms: dict[str, MotorsBus] = field(
default_factory=lambda: {
"main": DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0032081",
motors={
# name: (index, model)
"shoulder_pan": (1, "xl430-w250"),
"shoulder_lift": (2, "xl430-w250"),
"elbow_flex": (3, "xl330-m288"),
"wrist_flex": (4, "xl330-m288"),
"wrist_roll": (5, "xl330-m288"),
"gripper": (6, "xl330-m288"),
},
),
}
default_factory=lambda: {}
)
cameras: dict[str, Camera] = field(default_factory=lambda: {})
class KochRobot:
"""Tau Robotics: https://tau-robotics.com
@ -306,6 +290,11 @@ class KochRobot:
# Orders the robot to move
robot.send_action(action)
```
Example of disconnecting which is not mandatory since we disconnect when the object is deleted:
```python
robot.disconnect()
```
"""
def __init__(
@ -328,59 +317,68 @@ class KochRobot:
def connect(self):
if self.is_connected:
raise ValueError(f"KochRobot is already connected.")
raise RobotDeviceAlreadyConnectedError(f"KochRobot is already connected. Do not run `robot.connect()` twice.")
if not self.leader_arms and not self.follower_arms and not self.cameras:
raise ValueError("KochRobot doesn't have any device to connect. See example of usage in docstring of the class.")
# Connect the arms
for name in self.follower_arms:
self.follower_arms[name].connect()
self.leader_arms[name].connect()
# Reset the arms and load or run calibration
if self.calibration_path.exists():
# Reset all arms before setting calibration
for name in self.follower_arms:
reset_arm(self.follower_arms[name])
for name in self.leader_arms:
reset_arm(self.leader_arms[name])
with open(self.calibration_path, "rb") as f:
calibration = pickle.load(f)
else:
# Run calibration process which begins by reseting all arms
calibration = self.run_calibration()
self.calibration_path.parent.mkdir(parents=True, exist_ok=True)
with open(self.calibration_path, "wb") as f:
pickle.dump(calibration, f)
# Set calibration
for name in self.follower_arms:
self.follower_arms[name].set_calibration(calibration[f"follower_{name}"])
self.follower_arms[name].write("Torque_Enable", 1)
for name in self.leader_arms:
self.leader_arms[name].set_calibration(calibration[f"leader_{name}"])
# TODO(rcadene): add comments
self.leader_arms[name].write("Goal_Position", GRIPPER_OPEN, "gripper")
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
# Enable torque on all motors of the follower arms
for name in self.follower_arms:
self.follower_arms[name].write("Torque_Enable", 1)
# Enable torque on the gripper of the leader arms, and move it to 45 degrees,
# so that we can use it as a trigger to close the gripper of the follower arms.
for name in self.leader_arms:
self.leader_arms[name].write("Torque_Enable", 1, "gripper")
self.leader_arms[name].write("Goal_Position", GRIPPER_OPEN, "gripper")
# Connect the cameras
for name in self.cameras:
self.cameras[name].connect()
self.is_connected = True
def run_calibration(self):
if not self.is_connected:
raise ValueError(f"KochRobot is not connected. You need to run `robot.connect()`.")
calibration = {}
for name in self.follower_arms:
homing_offset, drive_mode = run_arm_calibration(self.follower_arms[name], f"{name} follower")
homing_offset, drive_mode = run_arm_calibration(self.follower_arms[name], name, "follower")
calibration[f"follower_{name}"] = {}
for idx, motor_name in enumerate(self.follower_arms[name].motor_names):
calibration[f"follower_{name}"][motor_name] = (homing_offset[idx], drive_mode[idx])
for name in self.leader_arms:
homing_offset, drive_mode = run_arm_calibration(self.leader_arms[name], f"{name} leader")
homing_offset, drive_mode = run_arm_calibration(self.leader_arms[name], name, "leader")
calibration[f"leader_{name}"] = {}
for idx, motor_name in enumerate(self.leader_arms[name].motor_names):
@ -392,7 +390,7 @@ class KochRobot:
self, record_data=False
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
if not self.is_connected:
raise ValueError(f"KochRobot is not connected. You need to run `robot.connect()`.")
raise RobotDeviceNotConnectedError(f"KochRobot is not connected. You need to run `robot.connect()`.")
# Prepare to assign the positions of the leader to the follower
leader_pos = {}
@ -455,7 +453,7 @@ class KochRobot:
def capture_observation(self):
if not self.is_connected:
raise ValueError(f"KochRobot is not connected. You need to run `robot.connect()`.")
raise RobotDeviceNotConnectedError(f"KochRobot is not connected. You need to run `robot.connect()`.")
# Read follower position
follower_pos = {}
@ -481,9 +479,9 @@ class KochRobot:
obs_dict[f"observation.images.{name}"] = torch.from_numpy(images[name])
return obs_dict
def send_action(self, action):
def send_action(self, action: torch.Tensor):
if not self.is_connected:
raise ValueError(f"KochRobot is not connected. You need to run `robot.connect()`.")
raise RobotDeviceNotConnectedError(f"KochRobot is not connected. You need to run `robot.connect()`.")
from_idx = 0
to_idx = 0
@ -496,3 +494,22 @@ class KochRobot:
for name in self.follower_arms:
self.follower_arms[name].write("Goal_Position", follower_goal_pos[name].astype(np.int32))
def disconnect(self):
if not self.is_connected:
raise RobotDeviceNotConnectedError(f"KochRobot is not connected. You need to run `robot.connect()` before disconnecting.")
for name in self.follower_arms:
self.follower_arms[name].disconnect()
for name in self.leader_arms:
self.leader_arms[name].disconnect()
for name in self.cameras:
self.cameras[name].disconnect()
self.is_connected = False
def __del__(self):
if getattr(self, "is_connected", False):
self.disconnect()

View File

@ -0,0 +1,102 @@
# @package _global_
# Use `act_koch_real.yaml` to train on real-world datasets collected on Alexander Koch's robots.
# Compared to `act.yaml`, it contains 2 cameras (i.e. laptop, phone) instead of 1 camera (i.e. top).
# Also, `training.eval_freq` is set to -1. This config is used to evaluate checkpoints at a certain frequency of training steps.
# When it is set to -1, it deactivates evaluation. This is because real-world evaluation is done through our `control_robot.py` script.
# Look at the documentation in header of `control_robot.py` for more information on how to collect data , train and evaluate a policy.
#
# Example of usage for training:
# ```bash
# python lerobot/scripts/train.py \
# policy=act_koch_real \
# env=koch_real
# ```
seed: 1000
dataset_repo_id: lerobot/koch_pick_place_lego
override_dataset_stats:
observation.images.laptop:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
observation.images.phone:
# stats from imagenet, since we use a pretrained vision model
mean: [[[0.485]], [[0.456]], [[0.406]]] # (c,1,1)
std: [[[0.229]], [[0.224]], [[0.225]]] # (c,1,1)
training:
offline_steps: 80000
online_steps: 0
eval_freq: -1
save_freq: 10000
log_freq: 100
save_checkpoint: true
batch_size: 8
lr: 1e-5
lr_backbone: 1e-5
weight_decay: 1e-4
grad_clip_norm: 10
online_steps_between_rollouts: 1
delta_timestamps:
action: "[i / ${fps} for i in range(${policy.chunk_size})]"
eval:
n_episodes: 50
batch_size: 50
# See `configuration_act.py` for more details.
policy:
name: act
# Input / output structure.
n_obs_steps: 1
chunk_size: 100
n_action_steps: 100
input_shapes:
# TODO(rcadene, alexander-soare): add variables for height and width from the dataset/env?
observation.images.laptop: [3, 480, 640]
observation.images.phone: [3, 480, 640]
observation.state: ["${env.state_dim}"]
output_shapes:
action: ["${env.action_dim}"]
# Normalization / Unnormalization
input_normalization_modes:
observation.images.laptop: mean_std
observation.images.phone: mean_std
observation.state: mean_std
output_normalization_modes:
action: mean_std
# Architecture.
# Vision backbone.
vision_backbone: resnet18
pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1
replace_final_stride_with_dilation: false
# Transformer layers.
pre_norm: false
dim_model: 512
n_heads: 8
dim_feedforward: 3200
feedforward_activation: relu
n_encoder_layers: 4
# Note: Although the original ACT implementation has 7 for `n_decoder_layers`, there is a bug in the code
# that means only the first layer is used. Here we match the original implementation by setting this to 1.
# See this issue https://github.com/tonyzhaozh/act/issues/25#issue-2258740521.
n_decoder_layers: 1
# VAE.
use_vae: true
latent_dim: 32
n_vae_encoder_layers: 4
# Inference.
temporal_ensemble_momentum: null
# Training and loss computation.
dropout: 0.1
kl_weight: 10.0

View File

@ -1,5 +1,5 @@
"""
Example of usage:
Examples of usage:
- Unlimited teleoperation at highest frequency (~200 Hz is expected), to exit with CTRL+C:
```bash
@ -49,15 +49,19 @@ python lerobot/scripts/control_robot.py record_dataset \
--run-compute-stats 1
```
- Train on this dataset (TODO(rcadene)):
- Train on this dataset with the ACT policy:
```bash
python lerobot/scripts/train.py
DATA_DIR=data python lerobot/scripts/train.py \
policy=act_koch_real \
env=koch_real \
dataset_repo_id=$USER/koch_pick_place_lego \
hydra.run.dir=outputs/train/act_koch_real
```
- Run the pretrained policy on the robot:
```bash
python lerobot/scripts/control_robot.py run_policy \
-p TODO(rcadene)
-p outputs/train/act_koch_real/checkpoints/080000/pretrained_model
```
"""
@ -117,29 +121,37 @@ def log_control_info(robot, dt_s, episode_index=None, frame_index=None):
log_items += [f"ep:{episode_index}"]
if frame_index is not None:
log_items += [f"frame:{frame_index}"]
# total step time displayed in milliseconds and its frequency
log_items += [f"dt:{dt_s * 1000:5.2f}={1/ dt_s:3.1f}hz"]
def log_dt(shortname, dt_val_s):
nonlocal log_items
log_items += [f"{shortname}:{dt_val_s * 1000:5.2f}={1/ dt_val_s:3.1f}hz"]
# total step time displayed in milliseconds and its frequency
log_dt("dt", dt_s)
for name in robot.leader_arms:
read_dt_s = robot.logs[f'read_leader_{name}_pos_dt_s']
log_items += [
f"dtRlead{name[0]}:{read_dt_s * 1000:5.2f}={1/ read_dt_s:3.1f}hz",
]
key = f'read_leader_{name}_pos_dt_s'
if key in robot.logs:
log_dt("dtRlead", robot.logs[key])
for name in robot.follower_arms:
write_dt_s = robot.logs[f'write_follower_{name}_goal_pos_dt_s']
read_dt_s = robot.logs[f'read_follower_{name}_pos_dt_s']
log_items += [
f"dtRfoll{name[0]}:{write_dt_s * 1000:5.2f}={1/ write_dt_s:3.1f}hz",
f"dtWfoll{name[0]}:{read_dt_s * 1000:5.2f}={1/ read_dt_s:3.1f}hz",
]
key = f'write_follower_{name}_goal_pos_dt_s'
if key in robot.logs:
log_dt("dtRfoll", robot.logs[key])
key = f'read_follower_{name}_pos_dt_s'
if key in robot.logs:
log_dt("dtWfoll", robot.logs[key])
for name in robot.cameras:
read_dt_s = robot.logs[f"read_camera_{name}_dt_s"]
async_read_dt_s = robot.logs[f"async_read_camera_{name}_dt_s"]
log_items += [
f"dtRcam{name[0]}:{read_dt_s * 1000:5.2f}={1/read_dt_s:3.1f}hz",
f"dtARcam{name[0]}:{async_read_dt_s * 1000:5.2f}={1/async_read_dt_s:3.1f}hz",
]
key = f"read_camera_{name}_dt_s"
if key in robot.logs:
log_dt("dtRcam", robot.logs[key])
key = f"async_read_camera_{name}_dt_s"
if key in robot.logs:
log_dt("dtARcam", robot.logs[key])
logging.info(" ".join(log_items))
########################################################################################
@ -147,10 +159,12 @@ def log_control_info(robot, dt_s, episode_index=None, frame_index=None):
########################################################################################
def teleoperate(robot: Robot, fps: int | None = None):
def teleoperate(robot: Robot, fps: int | None = None, teleop_time_s: float | None = None):
# TODO(rcadene): Add option to record logs
if not robot.is_connected:
robot.connect()
start_time = time.perf_counter()
while True:
now = time.perf_counter()
robot.teleop_step()
@ -162,6 +176,9 @@ def teleoperate(robot: Robot, fps: int | None = None):
dt_s = time.perf_counter() - now
log_control_info(robot, dt_s)
if teleop_time_s is not None and time.perf_counter() - start_time > teleop_time_s:
break
def record_dataset(
robot: Robot,
@ -174,6 +191,8 @@ def record_dataset(
video=True,
run_compute_stats=True,
):
# TODO(rcadene): Add option to record logs
if not video:
raise NotImplementedError()
@ -327,8 +346,11 @@ def record_dataset(
# TODO(rcadene): push to hub
return lerobot_dataset
def replay_episode(robot: Robot, episode: int, fps: int | None = None, root="data", repo_id="lerobot/debug"):
# TODO(rcadene): Add option to record logs
local_dir = Path(root) / repo_id
if not local_dir.exists():
raise ValueError(local_dir)
@ -357,7 +379,8 @@ def replay_episode(robot: Robot, episode: int, fps: int | None = None, root="dat
log_control_info(robot, dt_s)
def run_policy(robot: Robot, policy: torch.nn.Module, hydra_cfg: DictConfig):
def run_policy(robot: Robot, policy: torch.nn.Module, hydra_cfg: DictConfig, run_time_s: float | None = None):
# TODO(rcadene): Add option to record eval dataset and logs
policy.eval()
# Check device is available
@ -372,6 +395,7 @@ def run_policy(robot: Robot, policy: torch.nn.Module, hydra_cfg: DictConfig):
if not robot.is_connected:
robot.connect()
start_time = time.perf_counter()
while True:
now = time.perf_counter()
@ -391,6 +415,9 @@ def run_policy(robot: Robot, policy: torch.nn.Module, hydra_cfg: DictConfig):
dt_s = time.perf_counter() - now
log_control_info(robot, dt_s)
if run_time_s is not None and time.perf_counter() - start_time > run_time_s:
break
if __name__ == "__main__":
parser = argparse.ArgumentParser()

Binary file not shown.

After

Width:  |  Height:  |  Size: 416 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 446 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 318 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 420 KiB

View File

@ -1,5 +1,6 @@
from pathlib import Path
import numpy as np
import pytest
@ -7,17 +8,28 @@ from lerobot.common.robot_devices.cameras.opencv import OpenCVCamera
from lerobot.common.robot_devices.utils import RobotDeviceNotConnectedError, RobotDeviceAlreadyConnectedError
def test_camera():
# Test instantiating with missing camera index raises an error
with pytest.raises(ValueError):
camera = OpenCVCamera()
CAMERA_INDEX = 2
# Maximum absolute difference between two consecutive images recored by a camera.
# This value differs with respect to the camera.
MAX_PIXEL_DIFFERENCE = 25
# Test instantiating with a wrong camera index raises an error
with pytest.raises(ValueError):
camera = OpenCVCamera(-1)
def compute_max_pixel_difference(first_image, second_image):
return np.abs(first_image.astype(float) - second_image.astype(float)).max()
def test_camera():
"""Test assumes that `camera.read()` returns the same image when called multiple times in a row.
So the environment should not change (you shouldnt be in front of the camera) and the camera should not be moving.
Warning: The tests worked for a macbookpro camera, but I am getting assertion error (`np.allclose(color_image, async_color_image)`)
for my iphone camera and my LG monitor camera.
"""
# TODO(rcadene): measure fps in nightly?
# TODO(rcadene): test logs
# TODO(rcadene): add compatibility with other camera APIs
# Test instantiating
camera = OpenCVCamera(0)
camera = OpenCVCamera(CAMERA_INDEX)
# Test reading, async reading, disconnecting before connecting raises an error
with pytest.raises(RobotDeviceNotConnectedError):
@ -31,7 +43,7 @@ def test_camera():
del camera
# Test connecting
camera = OpenCVCamera(0)
camera = OpenCVCamera(CAMERA_INDEX)
camera.connect()
assert camera.is_connected
assert camera.fps is not None
@ -50,9 +62,14 @@ def test_camera():
assert c == 3
assert w > h
# Test reading asynchronously from the camera and image is similar
# Test read and async_read outputs similar images
# ...warming up as the first frames can be black
for _ in range(30):
camera.read()
color_image = camera.read()
async_color_image = camera.async_read()
assert np.allclose(color_image, async_color_image)
print("max_pixel_difference between read() and async_read()", compute_max_pixel_difference(color_image, async_color_image))
assert np.allclose(color_image, async_color_image, rtol=1e-5, atol=MAX_PIXEL_DIFFERENCE)
# Test disconnecting
camera.disconnect()
@ -60,27 +77,29 @@ def test_camera():
assert camera.thread is None
# Test disconnecting with `__del__`
camera = OpenCVCamera(0)
camera = OpenCVCamera(CAMERA_INDEX)
camera.connect()
del camera
# Test acquiring a bgr image
camera = OpenCVCamera(0, color="bgr")
camera = OpenCVCamera(CAMERA_INDEX, color="bgr")
camera.connect()
assert camera.color == "bgr"
bgr_color_image = camera.read()
assert np.allclose(color_image, bgr_color_image[[2,1,0]])
assert np.allclose(color_image, bgr_color_image[:, :, [2,1,0]], rtol=1e-5, atol=MAX_PIXEL_DIFFERENCE)
del camera
# Test fps can be set
camera = OpenCVCamera(0, fps=60)
camera.connect()
assert camera.fps == 60
# TODO(rcadene): measure fps in nightly?
# TODO(rcadene): Add a test for a camera that doesnt support fps=60 and raises an OSError
# TODO(rcadene): Add a test for a camera that supports fps=60
# Test fps=10 raises an OSError
camera = OpenCVCamera(CAMERA_INDEX, fps=10)
with pytest.raises(OSError):
camera.connect()
del camera
# Test width and height can be set
camera = OpenCVCamera(0, fps=30, width=1280, height=720)
camera = OpenCVCamera(CAMERA_INDEX, fps=30, width=1280, height=720)
camera.connect()
assert camera.fps == 30
assert camera.width == 1280
@ -92,7 +111,9 @@ def test_camera():
assert c == 3
del camera
# Test not supported width and height raise an error
camera = OpenCVCamera(CAMERA_INDEX, fps=30, width=0, height=0)
with pytest.raises(OSError):
camera.connect()
del camera

View File

@ -1,13 +1,47 @@
from pathlib import Path
from lerobot.common.policies.factory import make_policy
from lerobot.common.robot_devices.robots.factory import make_robot
from lerobot.common.utils.utils import init_hydra_config
from lerobot.scripts.control_robot import record_dataset, replay_episode, run_policy, teleoperate
from tests.utils import DEFAULT_CONFIG_PATH, DEVICE
def test_teleoperate():
pass
robot = make_robot("koch")
teleoperate(robot, teleop_time_s=1)
teleoperate(robot, fps=30, teleop_time_s=1)
teleoperate(robot, fps=60, teleop_time_s=1)
del robot
def test_record_dataset():
pass
def test_replay_episode():
pass
def test_record_dataset_and_replay_episode_and_run_policy(tmpdir):
robot_name = "koch"
env_name = "koch_real"
policy_name = "act_real"
#root = Path(tmpdir)
root = Path("tmp/data")
repo_id = "lerobot/debug"
robot = make_robot(robot_name)
dataset = record_dataset(robot, fps=30, root=root, repo_id=repo_id, warmup_time_s=2, episode_time_s=2, num_episodes=2)
replay_episode(robot, episode=0, fps=30, root=root, repo_id=repo_id)
cfg = init_hydra_config(
DEFAULT_CONFIG_PATH,
overrides=[
f"env={env_name}",
f"policy={policy_name}",
f"device={DEVICE}",
]
)
policy = make_policy(hydra_cfg=cfg, dataset_stats=dataset.stats)
run_policy(robot, policy, cfg, run_time_s=1)
del robot
def test_run_policy():
pass

View File

@ -3,11 +3,18 @@ import time
import numpy as np
import pytest
from lerobot.common.robot_devices.motors.dynamixel import DynamixelMotorsBus
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
def test_motors_bus():
# TODO(rcadene): measure fps in nightly?
# TODO(rcadene): test logs
# TODO(rcadene): test calibration
# TODO(rcadene): add compatibility with other motors bus
# Test instantiating a common motors structure.
# Here the one from Alexander Koch follower arm.
port = "/dev/tty.usbmodem575E0032081"
motors = {
# name: (index, model)
"shoulder_pan": (1, "xl430-w250"),
@ -17,24 +24,29 @@ def test_motors_bus():
"wrist_roll": (5, "xl330-m288"),
"gripper": (6, "xl330-m288"),
}
motors_bus = DynamixelMotorsBus(
port="/dev/tty.usbmodem575E0032081",
motors=motors,
)
motors_bus = DynamixelMotorsBus(port, motors)
# Test reading and writting before connecting raises an error
with pytest.raises(ValueError):
with pytest.raises(RobotDeviceNotConnectedError):
motors_bus.read("Torque_Enable")
with pytest.raises(ValueError):
motors_bus.write("Torque_Enable")
with pytest.raises(RobotDeviceNotConnectedError):
motors_bus.write("Torque_Enable", 1)
with pytest.raises(RobotDeviceNotConnectedError):
motors_bus.disconnect()
# Test deleting the object without connecting first
del motors_bus
# Test connecting
motors_bus = DynamixelMotorsBus(port, motors)
motors_bus.connect()
# Test connecting twice raises an error
with pytest.raises(ValueError):
with pytest.raises(RobotDeviceAlreadyConnectedError):
motors_bus.connect()
# Test reading torque on all motors and its 0 after first connection
# Test disabling torque and reading torque on all motors
motors_bus.write("Torque_Enable", 0)
values = motors_bus.read("Torque_Enable")
assert isinstance(values, np.ndarray)
assert len(values) == len(motors)
@ -67,7 +79,5 @@ def test_motors_bus():
# Give time for the motors to move to the goal position
time.sleep(1)
new_values = motors_bus.read("Present_Position")
assert new_values == values
assert (new_values == values).all()
# TODO(rcadene): test calibration
# TODO(rcadene): test logs?

View File

@ -0,0 +1,108 @@
from pathlib import Path
import pickle
import pytest
import torch
from lerobot.common.robot_devices.robots.factory import make_robot
from lerobot.common.robot_devices.robots.koch import KochRobot
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
def test_robot(tmpdir):
# TODO(rcadene): measure fps in nightly?
# TODO(rcadene): test logs
# TODO(rcadene): add compatibility with other robots
# Save calibration preset
calibration = {'follower_main': {'shoulder_pan': (-2048, False), 'shoulder_lift': (2048, True), 'elbow_flex': (-1024, False), 'wrist_flex': (2048, True), 'wrist_roll': (2048, True), 'gripper': (2048, True)}, 'leader_main': {'shoulder_pan': (-2048, False), 'shoulder_lift': (1024, True), 'elbow_flex': (2048, True), 'wrist_flex': (-2048, False), 'wrist_roll': (2048, True), 'gripper': (2048, True)}}
tmpdir = Path(tmpdir)
calibration_path = tmpdir / "calibration.pkl"
calibration_path.parent.mkdir(parents=True, exist_ok=True)
with open(calibration_path, "wb") as f:
pickle.dump(calibration, f)
# Test connecting without devices raises an error
robot = KochRobot()
with pytest.raises(ValueError):
robot.connect()
del robot
# Test using robot before connecting raises an error
robot = KochRobot()
with pytest.raises(RobotDeviceNotConnectedError):
robot.teleop_step()
with pytest.raises(RobotDeviceNotConnectedError):
robot.teleop_step(record_data=True)
with pytest.raises(RobotDeviceNotConnectedError):
robot.capture_observation()
with pytest.raises(RobotDeviceNotConnectedError):
robot.send_action(None)
with pytest.raises(RobotDeviceNotConnectedError):
robot.disconnect()
# Test deleting the object without connecting first
del robot
# Test connecting
robot = make_robot("koch")
# TODO(rcadene): proper monkey patch
robot.calibration_path = calibration_path
robot.connect() # run the manual calibration precedure
assert robot.is_connected
# Test connecting twice raises an error
with pytest.raises(RobotDeviceAlreadyConnectedError):
robot.connect()
# Test disconnecting with `__del__`
del robot
# Test teleop can run
robot = make_robot("koch")
robot.calibration_path = calibration_path
robot.connect()
robot.teleop_step()
# Test data recorded during teleop are well formated
observation, action = robot.teleop_step(record_data=True)
# State
assert "observation.state" in observation
assert isinstance(observation["observation.state"], torch.Tensor)
assert observation["observation.state"].ndim == 1
dim_state = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms)
assert observation["observation.state"].shape[0] == dim_state
# Cameras
for name in robot.cameras:
assert f"observation.images.{name}" in observation
assert isinstance(observation[f"observation.images.{name}"], torch.Tensor)
assert observation[f"observation.images.{name}"].ndim == 3
# Action
assert "action" in action
assert isinstance(action["action"], torch.Tensor)
assert action["action"].ndim == 1
dim_action = sum(len(robot.follower_arms[name].motors) for name in robot.follower_arms)
assert action["action"].shape[0] == dim_action
# TODO(rcadene): test if observation and action data are returned as expected
# Test capture_observation can run and observation returned are the same (since the arm didnt move)
captured_observation = robot.capture_observation()
assert set(captured_observation.keys()) == set(observation.keys())
for name in captured_observation:
if "image" in name:
# TODO(rcadene): skipping image for now as it's challenging to assess equality between two consecutive frames
continue
assert torch.allclose(captured_observation[name], observation[name], atol=1)
# Test send_action can run
robot.send_action(action["action"])
# Test disconnecting
robot.disconnect()
assert not robot.is_connected
for name in robot.follower_arms:
assert not robot.follower_arms[name].is_connected
for name in robot.leader_arms:
assert not robot.leader_arms[name].is_connected
for name in robot.cameras:
assert not robot.cameras[name].is_connected
del robot