Tests cleaning & simplification (#81)
This commit is contained in:
parent
0928afd37d
commit
7ad1909641
|
@ -11,7 +11,7 @@ body:
|
|||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: If needed, you can share your lerobot configuration with us by running `python -m lerobot.commands.env` and copy-pasting its outputs below
|
||||
description: If needed, you can share your lerobot configuration with us by running `python -m lerobot.scripts.display_sys_info` and copy-pasting its outputs below
|
||||
render: Shell
|
||||
placeholder: lerobot version, OS, python version, numpy version, torch version, and lerobot's configuration
|
||||
validations:
|
||||
|
|
|
@ -117,11 +117,9 @@ jobs:
|
|||
# run tests & coverage
|
||||
#----------------------------------------------
|
||||
- name: Run tests
|
||||
env:
|
||||
LEROBOT_TESTS_DEVICE: cpu
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
pytest --cov=./lerobot --cov-report=xml tests
|
||||
pytest -v --cov=./lerobot --cov-report=xml tests
|
||||
|
||||
# TODO(aliberts): Link with HF Codecov account
|
||||
# - name: Upload coverage reports to Codecov with GitHub Action
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
exclude: ^(data/|tests/)
|
||||
exclude: ^(data/|tests/data)
|
||||
default_language_version:
|
||||
python: python3.10
|
||||
repos:
|
||||
|
|
|
@ -65,6 +65,26 @@ A good feature request addresses the following points:
|
|||
If your issue is well written we're already 80% of the way there by the time you
|
||||
post it.
|
||||
|
||||
## Adding new policies, datasets or environments
|
||||
|
||||
Look at our implementations for [datasets](./lerobot/common/datasets/), [policies](./lerobot/common/policies/),
|
||||
environments ([aloha](https://github.com/huggingface/gym-aloha),
|
||||
[xarm](https://github.com/huggingface/gym-xarm),
|
||||
[pusht](https://github.com/huggingface/gym-pusht))
|
||||
and follow the same api design.
|
||||
|
||||
When implementing a new dataset class (e.g. `AlohaDataset`) follow these steps:
|
||||
- Update `available_datasets` in `lerobot/__init__.py`
|
||||
- Copy it in the required `available_datasets` class attribute
|
||||
|
||||
When implementing a new environment (e.g. `gym_aloha`), follow these steps:
|
||||
- Update `available_envs`, `available_tasks_per_env` and `available_datasets` in `lerobot/__init__.py`
|
||||
|
||||
When implementing a new policy class (e.g. `DiffusionPolicy`) follow these steps:
|
||||
- Update `available_policies` in `lerobot/__init__.py`
|
||||
- Set the required `name` class attribute.
|
||||
- Update variables in `tests/test_available.py` by importing your new Policy class
|
||||
|
||||
## Submitting a pull request (PR)
|
||||
|
||||
Before writing code, we strongly advise you to search through the existing PRs or
|
||||
|
|
|
@ -7,7 +7,7 @@ from pathlib import Path
|
|||
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
from lerobot.scripts.eval import eval
|
||||
|
||||
# Get a pretrained policy from the hub.
|
||||
|
|
|
@ -13,7 +13,7 @@ from omegaconf import OmegaConf
|
|||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
|
||||
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
|
||||
output_directory = Path("outputs/train/example_pusht_diffusion")
|
||||
os.makedirs(output_directory, exist_ok=True)
|
||||
|
|
|
@ -7,16 +7,22 @@ Example:
|
|||
import lerobot
|
||||
print(lerobot.available_envs)
|
||||
print(lerobot.available_tasks_per_env)
|
||||
print(lerobot.available_datasets_per_env)
|
||||
print(lerobot.available_datasets)
|
||||
print(lerobot.available_policies)
|
||||
print(lerobot.available_policies_per_env)
|
||||
```
|
||||
|
||||
When implementing a new dataset (e.g. `AlohaDataset`), policy (e.g. `DiffusionPolicy`), or environment, follow these steps:
|
||||
- Set the required class attributes: `available_datasets`.
|
||||
- Set the required class attributes: `name`.
|
||||
- Update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
|
||||
- Update variables in `tests/test_available.py` by importing your new class
|
||||
When implementing a new dataset class (e.g. `AlohaDataset`) follow these steps:
|
||||
- Update `available_datasets` in `lerobot/__init__.py`
|
||||
- Set the required `available_datasets` class attribute using the previously updated `lerobot.available_datasets`
|
||||
|
||||
When implementing a new environment (e.g. `gym_aloha`), follow these steps:
|
||||
- Update `available_envs`, `available_tasks_per_env` and `available_datasets` in `lerobot/__init__.py`
|
||||
|
||||
When implementing a new policy class (e.g. `DiffusionPolicy`) follow these steps:
|
||||
- Update `available_policies` in `lerobot/__init__.py`
|
||||
- Set the required `name` class attribute.
|
||||
- Update variables in `tests/test_available.py` by importing your new Policy class
|
||||
"""
|
||||
|
||||
from lerobot.__version__ import __version__ # noqa: F401
|
||||
|
@ -36,7 +42,7 @@ available_tasks_per_env = {
|
|||
"xarm": ["XarmLift-v0"],
|
||||
}
|
||||
|
||||
available_datasets_per_env = {
|
||||
available_datasets = {
|
||||
"aloha": [
|
||||
"aloha_sim_insertion_human",
|
||||
"aloha_sim_insertion_scripted",
|
||||
|
@ -47,10 +53,23 @@ available_datasets_per_env = {
|
|||
"xarm": ["xarm_lift_medium"],
|
||||
}
|
||||
|
||||
available_datasets = [dataset for env in available_envs for dataset in available_datasets_per_env[env]]
|
||||
|
||||
available_policies = [
|
||||
"act",
|
||||
"diffusion",
|
||||
"tdmpc",
|
||||
]
|
||||
|
||||
available_policies_per_env = {
|
||||
"aloha": ["act"],
|
||||
"pusht": ["diffusion"],
|
||||
"xarm": ["tdmpc"],
|
||||
}
|
||||
|
||||
env_task_pairs = [(env, task) for env, tasks in available_tasks_per_env.items() for task in tasks]
|
||||
env_dataset_pairs = [(env, dataset) for env, datasets in available_datasets.items() for dataset in datasets]
|
||||
env_dataset_policy_triplets = [
|
||||
(env, dataset, policy)
|
||||
for env, datasets in available_datasets.items()
|
||||
for dataset in datasets
|
||||
for policy in available_policies_per_env[env]
|
||||
]
|
||||
|
|
|
@ -14,6 +14,7 @@ class AlohaDataset(torch.utils.data.Dataset):
|
|||
https://huggingface.co/datasets/lerobot/aloha_sim_transfer_cube_scripted
|
||||
"""
|
||||
|
||||
# Copied from lerobot/__init__.py
|
||||
available_datasets = [
|
||||
"aloha_sim_insertion_human",
|
||||
"aloha_sim_insertion_scripted",
|
||||
|
|
|
@ -17,6 +17,7 @@ class PushtDataset(torch.utils.data.Dataset):
|
|||
If `None`, no shift is applied to current timestamp and the data from the current frame is loaded.
|
||||
"""
|
||||
|
||||
# Copied from lerobot/__init__.py
|
||||
available_datasets = ["pusht"]
|
||||
fps = 10
|
||||
image_keys = ["observation.image"]
|
||||
|
|
|
@ -11,9 +11,8 @@ class XarmDataset(torch.utils.data.Dataset):
|
|||
https://huggingface.co/datasets/lerobot/xarm_lift_medium
|
||||
"""
|
||||
|
||||
available_datasets = [
|
||||
"xarm_lift_medium",
|
||||
]
|
||||
# Copied from lerobot/__init__.py
|
||||
available_datasets = ["xarm_lift_medium"]
|
||||
fps = 15
|
||||
image_keys = ["observation.image"]
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@ import inspect
|
|||
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
|
||||
from lerobot.common.utils import get_safe_torch_device
|
||||
from lerobot.common.utils.utils import get_safe_torch_device
|
||||
|
||||
|
||||
def _policy_cfg_from_hydra_cfg(policy_cfg_class, hydra_cfg):
|
||||
|
|
|
@ -11,7 +11,7 @@ import torch.nn as nn
|
|||
|
||||
import lerobot.common.policies.tdmpc.helper as h
|
||||
from lerobot.common.policies.utils import populate_queues
|
||||
from lerobot.common.utils import get_safe_torch_device
|
||||
from lerobot.common.utils.utils import get_safe_torch_device
|
||||
|
||||
FIRST_FRAME = 0
|
||||
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
import importlib
|
||||
import logging
|
||||
|
||||
|
||||
def is_package_available(pkg_name: str, return_version: bool = False) -> tuple[bool, str] | bool:
|
||||
"""Copied from https://github.com/huggingface/transformers/blob/main/src/transformers/utils/import_utils.py
|
||||
Check if the package spec exists and grab its version to avoid importing a local directory.
|
||||
**Note:** this doesn't work for all packages.
|
||||
"""
|
||||
package_exists = importlib.util.find_spec(pkg_name) is not None
|
||||
package_version = "N/A"
|
||||
if package_exists:
|
||||
try:
|
||||
# Primary method to get the package version
|
||||
package_version = importlib.metadata.version(pkg_name)
|
||||
except importlib.metadata.PackageNotFoundError:
|
||||
# Fallback method: Only for "torch" and versions containing "dev"
|
||||
if pkg_name == "torch":
|
||||
try:
|
||||
package = importlib.import_module(pkg_name)
|
||||
temp_version = getattr(package, "__version__", "N/A")
|
||||
# Check if the version contains "dev"
|
||||
if "dev" in temp_version:
|
||||
package_version = temp_version
|
||||
package_exists = True
|
||||
else:
|
||||
package_exists = False
|
||||
except ImportError:
|
||||
# If the package can't be imported, it's not available
|
||||
package_exists = False
|
||||
else:
|
||||
# For packages other than "torch", don't attempt the fallback and set as not available
|
||||
package_exists = False
|
||||
logging.debug(f"Detected {pkg_name} version: {package_version}")
|
||||
if return_version:
|
||||
return package_exists, package_version
|
||||
else:
|
||||
return package_exists
|
||||
|
||||
|
||||
_torch_available, _torch_version = is_package_available("torch", return_version=True)
|
||||
_gym_xarm_available = is_package_available("gym_xarm")
|
||||
_gym_aloha_available = is_package_available("gym_aloha")
|
||||
_gym_pusht_available = is_package_available("gym_pusht")
|
|
@ -15,7 +15,7 @@ cuda_version = torch._C._cuda_getCompiledVersion() if torch.version.cuda is not
|
|||
|
||||
|
||||
# TODO(aliberts): refactor into an actual command `lerobot env`
|
||||
def get_env_info() -> dict:
|
||||
def display_sys_info() -> dict:
|
||||
"""Run this to get basic system info to help for tracking issues & bugs."""
|
||||
info = {
|
||||
"`lerobot` version": version,
|
||||
|
@ -40,4 +40,4 @@ def format_dict(d: dict) -> str:
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
get_env_info()
|
||||
display_sys_info()
|
|
@ -50,7 +50,7 @@ from lerobot.common.envs.factory import make_env
|
|||
from lerobot.common.envs.utils import postprocess_action, preprocess_observation
|
||||
from lerobot.common.logger import log_output_dir
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils import get_safe_torch_device, init_hydra_config, init_logging, set_global_seed
|
||||
from lerobot.common.utils.utils import get_safe_torch_device, init_hydra_config, init_logging, set_global_seed
|
||||
|
||||
|
||||
def write_video(video_path, stacked_frames, fps):
|
||||
|
|
|
@ -13,7 +13,7 @@ from lerobot.common.datasets.utils import cycle
|
|||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.logger import Logger, log_output_dir
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils import (
|
||||
from lerobot.common.utils.utils import (
|
||||
format_big_number,
|
||||
get_safe_torch_device,
|
||||
init_logging,
|
||||
|
|
|
@ -9,7 +9,7 @@ import torch
|
|||
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.logger import log_output_dir
|
||||
from lerobot.common.utils import init_logging
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
NUM_EPISODES_TO_RENDER = 50
|
||||
MAX_NUM_STEPS = 1000
|
||||
|
|
|
@ -1,53 +1,60 @@
|
|||
"""
|
||||
This test verifies that all environments, datasets, policies listed in `lerobot/__init__.py` can be sucessfully
|
||||
imported and that their class attributes (eg. `available_datasets`, `name`, `available_tasks`) are valid.
|
||||
|
||||
When implementing a new dataset (e.g. `AlohaDataset`), policy (e.g. `DiffusionPolicy`), or environment, follow these steps:
|
||||
- Set the required class attributes: `available_datasets`.
|
||||
- Set the required class attributes: `name`.
|
||||
- Update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
|
||||
- Update variables in `tests/test_available.py` by importing your new class
|
||||
"""
|
||||
|
||||
import importlib
|
||||
import pytest
|
||||
import lerobot
|
||||
import gymnasium as gym
|
||||
|
||||
from lerobot.common.datasets.xarm import XarmDataset
|
||||
import gymnasium as gym
|
||||
import pytest
|
||||
|
||||
import lerobot
|
||||
from lerobot.common.datasets.aloha import AlohaDataset
|
||||
from lerobot.common.datasets.pusht import PushtDataset
|
||||
|
||||
from lerobot.common.datasets.xarm import XarmDataset
|
||||
from lerobot.common.policies.act.modeling_act import ActionChunkingTransformerPolicy
|
||||
from lerobot.common.policies.diffusion.modeling_diffusion import DiffusionPolicy
|
||||
from lerobot.common.policies.tdmpc.policy import TDMPCPolicy
|
||||
from tests.utils import require_env
|
||||
|
||||
|
||||
def test_available():
|
||||
@pytest.mark.parametrize("env_name, task_name", lerobot.env_task_pairs)
|
||||
@require_env
|
||||
def test_available_env_task(env_name: str, task_name: list):
|
||||
"""
|
||||
This test verifies that all environments listed in `lerobot/__init__.py` can
|
||||
be sucessfully imported — if they're installed — and that their
|
||||
`available_tasks_per_env` are valid.
|
||||
"""
|
||||
package_name = f"gym_{env_name}"
|
||||
importlib.import_module(package_name)
|
||||
gym_handle = f"{package_name}/{task_name}"
|
||||
assert gym_handle in gym.envs.registry, gym_handle
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"env_name, dataset_class",
|
||||
[
|
||||
("aloha", AlohaDataset),
|
||||
("pusht", PushtDataset),
|
||||
("xarm", XarmDataset),
|
||||
],
|
||||
)
|
||||
def test_available_datasets(env_name, dataset_class):
|
||||
"""
|
||||
This test verifies that the class attribute `available_datasets` for all
|
||||
dataset classes is consistent with those listed in `lerobot/__init__.py`.
|
||||
"""
|
||||
available_env_datasets = lerobot.available_datasets[env_name]
|
||||
assert set(available_env_datasets) == set(
|
||||
dataset_class.available_datasets
|
||||
), f"{env_name=} {available_env_datasets=}"
|
||||
|
||||
|
||||
def test_available_policies():
|
||||
"""
|
||||
This test verifies that the class attribute `name` for all policies is
|
||||
consistent with those listed in `lerobot/__init__.py`.
|
||||
"""
|
||||
policy_classes = [
|
||||
ActionChunkingTransformerPolicy,
|
||||
DiffusionPolicy,
|
||||
TDMPCPolicy,
|
||||
]
|
||||
|
||||
dataset_class_per_env = {
|
||||
"aloha": AlohaDataset,
|
||||
"pusht": PushtDataset,
|
||||
"xarm": XarmDataset,
|
||||
}
|
||||
|
||||
policies = [pol_cls.name for pol_cls in policy_classes]
|
||||
assert set(policies) == set(lerobot.available_policies), policies
|
||||
|
||||
for env_name in lerobot.available_envs:
|
||||
for task_name in lerobot.available_tasks_per_env[env_name]:
|
||||
package_name = f"gym_{env_name}"
|
||||
importlib.import_module(package_name)
|
||||
gym_handle = f"{package_name}/{task_name}"
|
||||
assert gym_handle in gym.envs.registry.keys(), gym_handle
|
||||
|
||||
dataset_class = dataset_class_per_env[env_name]
|
||||
available_datasets = lerobot.available_datasets_per_env[env_name]
|
||||
assert set(available_datasets) == set(dataset_class.available_datasets), f"{env_name=} {available_datasets=}"
|
||||
|
||||
|
||||
|
|
|
@ -1,33 +1,35 @@
|
|||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import einops
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.utils import compute_stats, get_stats_einops_patterns, load_previous_and_future_frames
|
||||
from lerobot.common.transforms import Prod
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
import logging
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from datasets import Dataset
|
||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"env_name,dataset_id,policy_name",
|
||||
[
|
||||
("xarm", "xarm_lift_medium", "tdmpc"),
|
||||
("pusht", "pusht", "diffusion"),
|
||||
("aloha", "aloha_sim_insertion_human", "act"),
|
||||
("aloha", "aloha_sim_insertion_scripted", "act"),
|
||||
("aloha", "aloha_sim_transfer_cube_human", "act"),
|
||||
("aloha", "aloha_sim_transfer_cube_scripted", "act"),
|
||||
],
|
||||
import lerobot
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.datasets.utils import (
|
||||
compute_stats,
|
||||
get_stats_einops_patterns,
|
||||
load_previous_and_future_frames,
|
||||
)
|
||||
from lerobot.common.transforms import Prod
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
|
||||
from .utils import DEFAULT_CONFIG_PATH, DEVICE
|
||||
|
||||
|
||||
@pytest.mark.parametrize("env_name, dataset_id, policy_name", lerobot.env_dataset_policy_triplets)
|
||||
def test_factory(env_name, dataset_id, policy_name):
|
||||
cfg = init_hydra_config(
|
||||
DEFAULT_CONFIG_PATH,
|
||||
overrides=[f"env={env_name}", f"dataset_id={dataset_id}", f"policy={policy_name}", f"device={DEVICE}"]
|
||||
overrides=[
|
||||
f"env={env_name}",
|
||||
f"dataset_id={dataset_id}",
|
||||
f"policy={policy_name}",
|
||||
f"device={DEVICE}",
|
||||
],
|
||||
)
|
||||
dataset = make_dataset(cfg)
|
||||
delta_timestamps = dataset.delta_timestamps
|
||||
|
@ -51,7 +53,7 @@ def test_factory(env_name, dataset_id, policy_name):
|
|||
(key, 3, True),
|
||||
)
|
||||
assert dataset.hf_dataset[key].dtype == torch.uint8, f"{key}"
|
||||
|
||||
|
||||
# test number of dimensions
|
||||
for key, ndim, required in keys_ndim_required:
|
||||
if key not in item:
|
||||
|
@ -60,13 +62,13 @@ def test_factory(env_name, dataset_id, policy_name):
|
|||
else:
|
||||
logging.warning(f'Missing key in dataset: "{key}" not in {dataset}.')
|
||||
continue
|
||||
|
||||
|
||||
if delta_timestamps is not None and key in delta_timestamps:
|
||||
assert item[key].ndim == ndim + 1, f"{key}"
|
||||
assert item[key].shape[0] == len(delta_timestamps[key]), f"{key}"
|
||||
else:
|
||||
assert item[key].ndim == ndim, f"{key}"
|
||||
|
||||
|
||||
if key in image_keys:
|
||||
assert item[key].dtype == torch.float32, f"{key}"
|
||||
# TODO(rcadene): we assume for now that image normalization takes place in the model
|
||||
|
@ -77,17 +79,16 @@ def test_factory(env_name, dataset_id, policy_name):
|
|||
# test t,c,h,w
|
||||
assert item[key].shape[1] == 3, f"{key}"
|
||||
else:
|
||||
# test c,h,w
|
||||
# test c,h,w
|
||||
assert item[key].shape[0] == 3, f"{key}"
|
||||
|
||||
|
||||
if delta_timestamps is not None:
|
||||
# test missing keys in delta_timestamps
|
||||
for key in delta_timestamps:
|
||||
assert key in item, f"{key}"
|
||||
|
||||
|
||||
def test_compute_stats():
|
||||
def test_compute_stats_on_xarm():
|
||||
"""Check that the statistics are computed correctly according to the stats_patterns property.
|
||||
|
||||
We compare with taking a straight min, mean, max, std of all the data in one pass (which we can do
|
||||
|
@ -95,20 +96,20 @@ def test_compute_stats():
|
|||
"""
|
||||
from lerobot.common.datasets.xarm import XarmDataset
|
||||
|
||||
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
data_dir = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
|
||||
|
||||
# get transform to convert images from uint8 [0,255] to float32 [0,1]
|
||||
transform = Prod(in_keys=XarmDataset.image_keys, prod=1 / 255.0)
|
||||
|
||||
dataset = XarmDataset(
|
||||
dataset_id="xarm_lift_medium",
|
||||
root=DATA_DIR,
|
||||
root=data_dir,
|
||||
transform=transform,
|
||||
)
|
||||
|
||||
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
||||
# computation of the statistics. While doing this, we also make sure it works when we don't divide the
|
||||
# dataset into even batches.
|
||||
# dataset into even batches.
|
||||
computed_stats = compute_stats(dataset, batch_size=int(len(dataset) * 0.25))
|
||||
|
||||
# get einops patterns to aggregate batches and compute statistics
|
||||
|
@ -128,7 +129,9 @@ def test_compute_stats():
|
|||
for k, pattern in stats_patterns.items():
|
||||
expected_stats[k] = {}
|
||||
expected_stats[k]["mean"] = einops.reduce(hf_dataset[k], pattern, "mean")
|
||||
expected_stats[k]["std"] = torch.sqrt(einops.reduce((hf_dataset[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean"))
|
||||
expected_stats[k]["std"] = torch.sqrt(
|
||||
einops.reduce((hf_dataset[k] - expected_stats[k]["mean"]) ** 2, pattern, "mean")
|
||||
)
|
||||
expected_stats[k]["min"] = einops.reduce(hf_dataset[k], pattern, "min")
|
||||
expected_stats[k]["max"] = einops.reduce(hf_dataset[k], pattern, "max")
|
||||
|
||||
|
@ -153,12 +156,14 @@ def test_compute_stats():
|
|||
|
||||
|
||||
def test_load_previous_and_future_frames_within_tolerance():
|
||||
hf_dataset = Dataset.from_dict({
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
})
|
||||
hf_dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
}
|
||||
)
|
||||
hf_dataset = hf_dataset.with_format("torch")
|
||||
item = hf_dataset[2]
|
||||
delta_timestamps = {"index": [-0.2, 0, 0.139]}
|
||||
|
@ -168,13 +173,16 @@ def test_load_previous_and_future_frames_within_tolerance():
|
|||
assert torch.equal(data, torch.tensor([0, 2, 3])), "Data does not match expected values"
|
||||
assert not is_pad.any(), "Unexpected padding detected"
|
||||
|
||||
|
||||
def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range():
|
||||
hf_dataset = Dataset.from_dict({
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
})
|
||||
hf_dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
}
|
||||
)
|
||||
hf_dataset = hf_dataset.with_format("torch")
|
||||
item = hf_dataset[2]
|
||||
delta_timestamps = {"index": [-0.2, 0, 0.141]}
|
||||
|
@ -182,13 +190,16 @@ def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range(
|
|||
with pytest.raises(AssertionError):
|
||||
load_previous_and_future_frames(item, hf_dataset, delta_timestamps, tol)
|
||||
|
||||
|
||||
def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range():
|
||||
hf_dataset = Dataset.from_dict({
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
})
|
||||
hf_dataset = Dataset.from_dict(
|
||||
{
|
||||
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
|
||||
"index": [0, 1, 2, 3, 4],
|
||||
"episode_data_index_from": [0, 0, 0, 0, 0],
|
||||
"episode_data_index_to": [5, 5, 5, 5, 5],
|
||||
}
|
||||
)
|
||||
hf_dataset = hf_dataset.with_format("torch")
|
||||
item = hf_dataset[2]
|
||||
delta_timestamps = {"index": [-0.3, -0.24, 0, 0.26, 0.3]}
|
||||
|
@ -196,6 +207,6 @@ def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range
|
|||
item = load_previous_and_future_frames(item, hf_dataset, delta_timestamps, tol)
|
||||
data, is_pad = item["index"], item["index_is_pad"]
|
||||
assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values"
|
||||
assert torch.equal(is_pad, torch.tensor([True, False, False, True, True])), "Padding does not match expected values"
|
||||
|
||||
|
||||
assert torch.equal(
|
||||
is_pad, torch.tensor([True, False, False, True, True])
|
||||
), "Padding does not match expected values"
|
||||
|
|
|
@ -1,49 +1,37 @@
|
|||
import importlib
|
||||
|
||||
import gymnasium as gym
|
||||
import pytest
|
||||
import torch
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
import gymnasium as gym
|
||||
from gymnasium.utils.env_checker import check_env
|
||||
|
||||
import lerobot
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
|
||||
from lerobot.common.envs.utils import preprocess_observation
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
|
||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
||||
from .utils import DEFAULT_CONFIG_PATH, DEVICE, require_env
|
||||
|
||||
OBS_TYPES = ["state", "pixels", "pixels_agent_pos"]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"env_name, task, obs_type",
|
||||
[
|
||||
# ("AlohaInsertion-v0", "state"),
|
||||
("aloha", "AlohaInsertion-v0", "pixels"),
|
||||
("aloha", "AlohaInsertion-v0", "pixels_agent_pos"),
|
||||
("aloha", "AlohaTransferCube-v0", "pixels"),
|
||||
("aloha", "AlohaTransferCube-v0", "pixels_agent_pos"),
|
||||
("xarm", "XarmLift-v0", "state"),
|
||||
("xarm", "XarmLift-v0", "pixels"),
|
||||
("xarm", "XarmLift-v0", "pixels_agent_pos"),
|
||||
("pusht", "PushT-v0", "state"),
|
||||
("pusht", "PushT-v0", "pixels"),
|
||||
("pusht", "PushT-v0", "pixels_agent_pos"),
|
||||
],
|
||||
)
|
||||
def test_env(env_name, task, obs_type):
|
||||
@pytest.mark.parametrize("obs_type", OBS_TYPES)
|
||||
@pytest.mark.parametrize("env_name, env_task", lerobot.env_task_pairs)
|
||||
@require_env
|
||||
def test_env(env_name, env_task, obs_type):
|
||||
if env_name == "aloha" and obs_type == "state":
|
||||
pytest.skip("`state` observations not available for aloha")
|
||||
|
||||
package_name = f"gym_{env_name}"
|
||||
importlib.import_module(package_name)
|
||||
env = gym.make(f"{package_name}/{task}", obs_type=obs_type)
|
||||
env = gym.make(f"{package_name}/{env_task}", obs_type=obs_type)
|
||||
check_env(env.unwrapped, skip_render_check=True)
|
||||
env.close()
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"env_name",
|
||||
[
|
||||
"pusht",
|
||||
"xarm",
|
||||
"aloha",
|
||||
],
|
||||
)
|
||||
|
||||
@pytest.mark.parametrize("env_name", lerobot.available_envs)
|
||||
@require_env
|
||||
def test_factory(env_name):
|
||||
cfg = init_hydra_config(
|
||||
DEFAULT_CONFIG_PATH,
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from pathlib import Path
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def _find_and_replace(text: str, finds_and_replaces: list[tuple[str, str]]) -> str:
|
||||
|
@ -10,7 +10,7 @@ def _find_and_replace(text: str, finds_and_replaces: list[tuple[str, str]]) -> s
|
|||
|
||||
|
||||
def _run_script(path):
|
||||
subprocess.run(['python', path], check=True)
|
||||
subprocess.run(["python", path], check=True)
|
||||
|
||||
|
||||
def test_example_1():
|
||||
|
@ -33,7 +33,7 @@ def test_examples_4_and_3():
|
|||
|
||||
path = "examples/4_train_policy.py"
|
||||
|
||||
with open(path, "r") as file:
|
||||
with open(path) as file:
|
||||
file_contents = file.read()
|
||||
|
||||
# Do less steps, use smaller batch, use CPU, and don't complicate things with dataloader workers.
|
||||
|
@ -55,7 +55,7 @@ def test_examples_4_and_3():
|
|||
|
||||
path = "examples/3_evaluate_pretrained_policy.py"
|
||||
|
||||
with open(path, "r") as file:
|
||||
with open(path) as file:
|
||||
file_contents = file.read()
|
||||
|
||||
# Do less evals, use CPU, and use the local model.
|
||||
|
@ -74,4 +74,4 @@ def test_examples_4_and_3():
|
|||
],
|
||||
)
|
||||
|
||||
assert Path(f"outputs/train/example_pusht_diffusion").exists()
|
||||
assert Path("outputs/train/example_pusht_diffusion").exists()
|
||||
|
|
|
@ -1,16 +1,18 @@
|
|||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.datasets.utils import cycle
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.envs.utils import postprocess_action, preprocess_observation
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.policies.policy_protocol import Policy
|
||||
from lerobot.common.envs.factory import make_env
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.utils import init_hydra_config
|
||||
from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
|
||||
from .utils import DEFAULT_CONFIG_PATH, DEVICE, require_env
|
||||
|
||||
|
||||
# TODO(aliberts): refactor using lerobot/__init__.py variables
|
||||
@pytest.mark.parametrize(
|
||||
"env_name,policy_name,extra_overrides",
|
||||
[
|
||||
|
@ -21,10 +23,9 @@ from .utils import DEVICE, DEFAULT_CONFIG_PATH
|
|||
("aloha", "act", ["env.task=AlohaInsertion-v0", "dataset_id=aloha_sim_insertion_scripted"]),
|
||||
("aloha", "act", ["env.task=AlohaTransferCube-v0", "dataset_id=aloha_sim_transfer_cube_human"]),
|
||||
("aloha", "act", ["env.task=AlohaTransferCube-v0", "dataset_id=aloha_sim_transfer_cube_scripted"]),
|
||||
# TODO(aliberts): xarm not working with diffusion
|
||||
# ("xarm", "diffusion", []),
|
||||
],
|
||||
)
|
||||
@require_env
|
||||
def test_policy(env_name, policy_name, extra_overrides):
|
||||
"""
|
||||
Tests:
|
||||
|
|
|
@ -1,6 +1,37 @@
|
|||
import os
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.common.utils.import_utils import is_package_available
|
||||
|
||||
# Pass this as the first argument to init_hydra_config.
|
||||
DEFAULT_CONFIG_PATH = "lerobot/configs/default.yaml"
|
||||
|
||||
DEVICE = os.environ.get('LEROBOT_TESTS_DEVICE', "cuda")
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
|
||||
def require_env(func):
|
||||
"""
|
||||
Decorator that skips the test if the required environment package is not installed.
|
||||
As it need 'env_name' in args, it also checks whether it is provided as an argument.
|
||||
"""
|
||||
from functools import wraps
|
||||
|
||||
@wraps(func)
|
||||
def wrapper(*args, **kwargs):
|
||||
# Determine if 'env_name' is provided and extract its value
|
||||
arg_names = func.__code__.co_varnames[: func.__code__.co_argcount]
|
||||
if "env_name" in arg_names:
|
||||
# Get the index of 'env_name' and retrieve the value from args
|
||||
index = arg_names.index("env_name")
|
||||
env_name = args[index] if len(args) > index else kwargs.get("env_name")
|
||||
else:
|
||||
raise ValueError("Function does not have 'env_name' as an argument.")
|
||||
|
||||
# Perform the package check
|
||||
package_name = f"gym_{env_name}"
|
||||
if not is_package_available(package_name):
|
||||
pytest.skip(f"gym-{env_name} not installed")
|
||||
|
||||
return func(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
|
Loading…
Reference in New Issue