Move calculate_episode_data_index

This commit is contained in:
Simon Alibert 2024-11-03 19:13:00 +01:00
parent 74270c8c91
commit 7b159a6b22
11 changed files with 71 additions and 66 deletions

View File

@ -30,12 +30,12 @@ from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames

View File

@ -24,8 +24,11 @@ from datasets import Dataset, Features, Image, Value
from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes
from lerobot.common.datasets.utils import calculate_episode_data_index, hf_transform_to_torch
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
)
from lerobot.common.datasets.utils import hf_transform_to_torch
from lerobot.common.datasets.video_utils import VideoFrame

View File

@ -26,8 +26,8 @@ import torch
from datasets import Dataset, Features, Image, Sequence, Value
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame

View File

@ -42,12 +42,12 @@ from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.openx.transforms import OPENX_STANDARDIZATION_TRANSFORMS
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames

View File

@ -27,12 +27,12 @@ from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames

View File

@ -28,12 +28,12 @@ from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub._umi_imagecodecs_numcodecs import register_codecs
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames

View File

@ -16,7 +16,9 @@
import inspect
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path
from typing import Dict
import datasets
import numpy
import PIL
import torch
@ -72,3 +74,58 @@ def check_repo_id(repo_id: str) -> None:
f"""`repo_id` is expected to contain a community or user id `/` the name of the dataset
(e.g. 'lerobot/pusht'), but contains '{repo_id}'."""
)
# TODO(aliberts): remove
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
"""
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
Parameters:
- hf_dataset (datasets.Dataset): A HuggingFace dataset containing the episode index.
Returns:
- episode_data_index: A dictionary containing the data index for each episode. The dictionary has two keys:
- "from": A tensor containing the starting index of each episode.
- "to": A tensor containing the ending index of each episode.
"""
episode_data_index = {"from": [], "to": []}
current_episode = None
"""
The episode_index is a list of integers, each representing the episode index of the corresponding example.
For instance, the following is a valid episode_index:
[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]
Below, we iterate through the episode_index and populate the episode_data_index dictionary with the starting and
ending index of each episode. For the episode_index above, the episode_data_index dictionary will look like this:
{
"from": [0, 3, 7],
"to": [3, 7, 12]
}
"""
if len(hf_dataset) == 0:
episode_data_index = {
"from": torch.tensor([]),
"to": torch.tensor([]),
}
return episode_data_index
for idx, episode_idx in enumerate(hf_dataset["episode_index"]):
if episode_idx != current_episode:
# We encountered a new episode, so we append its starting location to the "from" list
episode_data_index["from"].append(idx)
# If this is not the first episode, we append the ending location of the previous episode to the "to" list
if current_episode is not None:
episode_data_index["to"].append(idx)
# Let's keep track of the current episode index
current_episode = episode_idx
else:
# We are still in the same episode, so there is nothing for us to do here
pass
# We have reached the end of the dataset, so we append the ending location of the last episode to the "to" list
episode_data_index["to"].append(idx + 1)
for k in ["from", "to"]:
episode_data_index[k] = torch.tensor(episode_data_index[k])
return episode_data_index

View File

@ -27,12 +27,12 @@ from PIL import Image as PILImage
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
concatenate_episodes,
get_default_encoding,
save_images_concurrently,
)
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames

View File

@ -18,7 +18,7 @@ import warnings
from itertools import accumulate
from pathlib import Path
from pprint import pformat
from typing import Any, Dict
from typing import Any
import datasets
import jsonlines
@ -368,61 +368,6 @@ def get_delta_indices(delta_timestamps: dict[str, list[float]], fps: int) -> dic
return delta_indices
# TODO(aliberts): remove
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> Dict[str, torch.Tensor]:
"""
Calculate episode data index for the provided HuggingFace Dataset. Relies on episode_index column of hf_dataset.
Parameters:
- hf_dataset (datasets.Dataset): A HuggingFace dataset containing the episode index.
Returns:
- episode_data_index: A dictionary containing the data index for each episode. The dictionary has two keys:
- "from": A tensor containing the starting index of each episode.
- "to": A tensor containing the ending index of each episode.
"""
episode_data_index = {"from": [], "to": []}
current_episode = None
"""
The episode_index is a list of integers, each representing the episode index of the corresponding example.
For instance, the following is a valid episode_index:
[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2]
Below, we iterate through the episode_index and populate the episode_data_index dictionary with the starting and
ending index of each episode. For the episode_index above, the episode_data_index dictionary will look like this:
{
"from": [0, 3, 7],
"to": [3, 7, 12]
}
"""
if len(hf_dataset) == 0:
episode_data_index = {
"from": torch.tensor([]),
"to": torch.tensor([]),
}
return episode_data_index
for idx, episode_idx in enumerate(hf_dataset["episode_index"]):
if episode_idx != current_episode:
# We encountered a new episode, so we append its starting location to the "from" list
episode_data_index["from"].append(idx)
# If this is not the first episode, we append the ending location of the previous episode to the "to" list
if current_episode is not None:
episode_data_index["to"].append(idx)
# Let's keep track of the current episode index
current_episode = episode_idx
else:
# We are still in the same episode, so there is nothing for us to do here
pass
# We have reached the end of the dataset, so we append the ending location of the last episode to the "to" list
episode_data_index["to"].append(idx + 1)
for k in ["from", "to"]:
episode_data_index[k] = torch.tensor(episode_data_index[k])
return episode_data_index
def cycle(iterable):
"""The equivalent of itertools.cycle, but safe for Pytorch dataloaders.

View File

@ -15,9 +15,9 @@
# limitations under the License.
from datasets import Dataset
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
from lerobot.common.datasets.sampler import EpisodeAwareSampler
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)

View File

@ -7,8 +7,8 @@ import pytest
import torch
from datasets import Dataset
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
from lerobot.common.datasets.utils import (
calculate_episode_data_index,
hf_transform_to_torch,
)
from lerobot.common.utils.utils import (