modified
This commit is contained in:
parent
496eb6298e
commit
7b78bfbd5b
|
@ -1,140 +0,0 @@
|
|||
# Using the [roarm_m3](https://github.com/waveshareteam/roarm_m3) with LeRobot
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [A. Teleoperate](#a-teleoperate)
|
||||
- [B. Record a dataset](#b-record-a-dataset)
|
||||
- [C. Visualize a dataset](#c-visualize-a-dataset)
|
||||
- [D. Replay an episode](#d-replay-an-episode)
|
||||
- [E. Train a policy](#e-train-a-policy)
|
||||
- [F. Evaluate your policy](#f-evaluate-your-policy)
|
||||
- [G. More Information](#g-more-information)
|
||||
|
||||
## A. Teleoperate
|
||||
|
||||
**Simple teleop**
|
||||
#### a. Teleop without displaying cameras
|
||||
You will be able to teleoperate your robot! (it won't connect and display the cameras):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=roarm_m3 \
|
||||
--robot.cameras='{}' \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
|
||||
#### b. Teleop with displaying cameras
|
||||
You will be able to display the cameras while you are teleoperating by running the following code. This is useful to prepare your setup before recording your first dataset.
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=roarm_m3 \
|
||||
--control.type=teleoperate
|
||||
```
|
||||
|
||||
## B. Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with roarm_m3.
|
||||
|
||||
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Store your Hugging Face repository name in a variable to run these commands:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Record 2 episodes and upload your dataset to the hub:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=roarm_m3 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/roarm_m3_test \
|
||||
--control.tags='["roarm_m3","tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=2 \
|
||||
--control.push_to_hub=true
|
||||
```
|
||||
|
||||
Note: You can resume recording by adding `--control.resume=true`.
|
||||
|
||||
## C. Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--control.push_to_hub=true`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
echo ${HF_USER}/roarm_m3_test
|
||||
```
|
||||
|
||||
If you didn't upload with `--control.push_to_hub=false`, you can also visualize it locally with (a window can be opened in the browser `http://ip:9090` with the visualization tool):
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--repo-id ${HF_USER}/roarm_m3_test \
|
||||
--host ip \
|
||||
--local-files-only 1
|
||||
```
|
||||
|
||||
## D. Replay an episode
|
||||
|
||||
Now try to replay episode nth on your bot:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=roarm_m3 \
|
||||
--control.type=replay \
|
||||
--control.fps=30 \
|
||||
--control.repo_id=${HF_USER}/roarm_m3_test \
|
||||
--control.episode=n-1
|
||||
```
|
||||
|
||||
## E. Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--dataset.repo_id=${HF_USER}/roarm_m3_test \
|
||||
--policy.type=act \
|
||||
--output_dir=outputs/train/act_roarm_m3_test \
|
||||
--job_name=act_roarm_m3_test \
|
||||
--device=cuda \
|
||||
--wandb.enable=true
|
||||
```
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `--dataset.repo_id=${HF_USER}/roarm_m3_test`.
|
||||
2. We provided the policy with `policy.type=act`. This loads configurations from [`configuration_act.py`](../lerobot/common/policies/act/configuration_act.py). Importantly, this policy will automatically adapt to the number of motor sates, motor actions and cameras of your robot (e.g. `laptop` and `phone`) which have been saved in your dataset.
|
||||
4. We provided `device=cuda` since we are training on a Nvidia GPU, but you could use `device=mps` to train on Apple silicon.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_roarm_m3_test/checkpoints`.
|
||||
|
||||
## F. Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py \
|
||||
--robot.type=roarm_m3 \
|
||||
--control.type=record \
|
||||
--control.fps=30 \
|
||||
--control.single_task="Grasp a block and put it in the bin." \
|
||||
--control.repo_id=${HF_USER}/eval_act_roarm_m3_test \
|
||||
--control.tags='["tutorial"]' \
|
||||
--control.warmup_time_s=5 \
|
||||
--control.episode_time_s=30 \
|
||||
--control.reset_time_s=30 \
|
||||
--control.num_episodes=10 \
|
||||
--control.push_to_hub=true \
|
||||
--control.policy.path=outputs/train/act_roarm_m3_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `--control.policy.path` argument which indicates the path to your policy checkpoint with (e.g. `outputs/train/eval_act_roarm_m3_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `${HF_USER}/act_roarm_m3_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `${HF_USER}/eval_act_roarm_m3_test`).
|
||||
|
||||
## G. More Information
|
||||
|
||||
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth tutorial on controlling real robots with LeRobot.
|
|
@ -13,6 +13,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import contextlib
|
||||
import logging
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
@ -27,6 +28,7 @@ import torch.utils
|
|||
from datasets import concatenate_datasets, load_dataset
|
||||
from huggingface_hub import HfApi, snapshot_download
|
||||
from huggingface_hub.constants import REPOCARD_NAME
|
||||
from huggingface_hub.errors import RevisionNotFoundError
|
||||
|
||||
from lerobot.common.constants import HF_LEROBOT_HOME
|
||||
from lerobot.common.datasets.compute_stats import aggregate_stats, compute_episode_stats
|
||||
|
@ -312,7 +314,7 @@ class LeRobotDatasetMetadata:
|
|||
obj.repo_id = repo_id
|
||||
obj.root = Path(root) if root is not None else HF_LEROBOT_HOME / repo_id
|
||||
|
||||
obj.root.mkdir(parents=True, exist_ok=True)
|
||||
obj.root.mkdir(parents=True, exist_ok=False)
|
||||
|
||||
if robot is not None:
|
||||
features = get_features_from_robot(robot, use_videos)
|
||||
|
@ -478,7 +480,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||
self.image_writer = None
|
||||
self.episode_buffer = None
|
||||
|
||||
self.root.mkdir(exist_ok=False, parents=True)
|
||||
self.root.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
# Load metadata
|
||||
self.meta = LeRobotDatasetMetadata(
|
||||
|
@ -517,6 +519,7 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||
branch: str | None = None,
|
||||
tags: list | None = None,
|
||||
license: str | None = "apache-2.0",
|
||||
tag_version: bool = True,
|
||||
push_videos: bool = True,
|
||||
private: bool = False,
|
||||
allow_patterns: list[str] | str | None = None,
|
||||
|
@ -562,6 +565,11 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||
)
|
||||
card.push_to_hub(repo_id=self.repo_id, repo_type="dataset", revision=branch)
|
||||
|
||||
if tag_version:
|
||||
with contextlib.suppress(RevisionNotFoundError):
|
||||
hub_api.delete_tag(self.repo_id, tag=CODEBASE_VERSION, repo_type="dataset")
|
||||
hub_api.create_tag(self.repo_id, tag=CODEBASE_VERSION, revision=branch, repo_type="dataset")
|
||||
|
||||
def pull_from_repo(
|
||||
self,
|
||||
allow_patterns: list[str] | str | None = None,
|
||||
|
|
|
@ -31,6 +31,7 @@ import packaging.version
|
|||
import torch
|
||||
from datasets.table import embed_table_storage
|
||||
from huggingface_hub import DatasetCard, DatasetCardData, HfApi
|
||||
from huggingface_hub.errors import RevisionNotFoundError
|
||||
from PIL import Image as PILImage
|
||||
from torchvision import transforms
|
||||
|
||||
|
@ -325,6 +326,19 @@ def get_safe_version(repo_id: str, version: str | packaging.version.Version) ->
|
|||
)
|
||||
hub_versions = get_repo_versions(repo_id)
|
||||
|
||||
if not hub_versions:
|
||||
raise RevisionNotFoundError(
|
||||
f"""Your dataset must be tagged with a codebase version.
|
||||
Assuming _version_ is the codebase_version value in the info.json, you can run this:
|
||||
```python
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
hub_api = HfApi()
|
||||
hub_api.create_tag("{repo_id}", tag="_version_", repo_type="dataset")
|
||||
```
|
||||
"""
|
||||
)
|
||||
|
||||
if target_version in hub_versions:
|
||||
return f"v{target_version}"
|
||||
|
||||
|
|
|
@ -166,9 +166,6 @@ def parse_robot_config(robot_cfg: RobotConfig) -> tuple[str, dict]:
|
|||
for arm in robot_cfg.leader_arms
|
||||
for motor in robot_cfg.leader_arms[arm].motors
|
||||
]
|
||||
elif robot_cfg.type == "roarm_m3":
|
||||
state_names = ["roam_m3","roam_m3","roam_m3","roam_m3","roam_m3","roam_m3"]
|
||||
action_names = ["roam_m3","roam_m3","roam_m3","roam_m3","roam_m3","roam_m3"]
|
||||
# elif robot_cfg["robot_type"] == "stretch3": TODO
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
|
|
|
@ -57,7 +57,7 @@ def convert_dataset(
|
|||
dataset.meta.info["codebase_version"] = CODEBASE_VERSION
|
||||
write_info(dataset.meta.info, dataset.root)
|
||||
|
||||
dataset.push_to_hub(branch=branch, allow_patterns="meta/")
|
||||
dataset.push_to_hub(branch=branch, tag_version=False, allow_patterns="meta/")
|
||||
|
||||
# delete old stats.json file
|
||||
if (dataset.root / STATS_PATH).is_file:
|
||||
|
|
|
@ -313,7 +313,7 @@ class PI0Policy(PreTrainedPolicy):
|
|||
state = self.prepare_state(batch)
|
||||
lang_tokens, lang_masks = self.prepare_language(batch)
|
||||
actions = self.prepare_action(batch)
|
||||
actions_is_pad = batch.get("actions_id_pad")
|
||||
actions_is_pad = batch.get("actions_is_pad")
|
||||
|
||||
loss_dict = {}
|
||||
losses = self.model.forward(images, img_masks, lang_tokens, lang_masks, state, actions, noise, time)
|
||||
|
|
|
@ -30,20 +30,6 @@ from lerobot.common.utils.utils import capture_timestamp_utc
|
|||
# treat the same cameras as new devices. Thus we select a higher bound to search indices.
|
||||
MAX_OPENCV_INDEX = 60
|
||||
|
||||
undistort = True
|
||||
def undistort_image(image):
|
||||
import cv2
|
||||
camera_matrix = np.array([
|
||||
[289.11451, 0., 347.23664],
|
||||
[0., 289.75319, 235.67429],
|
||||
[0., 0., 1.]
|
||||
])
|
||||
|
||||
dist_coeffs = np.array([-0.208848, 0.028006, -0.000705, -0.000820, 0.000000])
|
||||
|
||||
undistorted_image = cv2.undistort(image, camera_matrix, dist_coeffs)
|
||||
|
||||
return undistorted_image
|
||||
|
||||
def find_cameras(raise_when_empty=False, max_index_search_range=MAX_OPENCV_INDEX, mock=False) -> list[dict]:
|
||||
cameras = []
|
||||
|
@ -382,9 +368,6 @@ class OpenCVCamera:
|
|||
|
||||
color_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
if undistort:
|
||||
color_image = undistort_image(color_image)
|
||||
|
||||
h, w, _ = color_image.shape
|
||||
if h != self.height or w != self.width:
|
||||
raise OSError(
|
||||
|
|
|
@ -31,7 +31,7 @@ def make_cameras_from_configs(camera_configs: dict[str, CameraConfig]) -> list[C
|
|||
|
||||
cameras[key] = IntelRealSenseCamera(cfg)
|
||||
else:
|
||||
raise ValueError(f"The motor type '{cfg.type}' is not valid.")
|
||||
raise ValueError(f"The camera type '{cfg.type}' is not valid.")
|
||||
|
||||
return cameras
|
||||
|
||||
|
|
|
@ -113,73 +113,46 @@ def predict_action(observation, policy, device, use_amp):
|
|||
return action
|
||||
|
||||
|
||||
# def init_keyboard_listener():
|
||||
# # Allow to exit early while recording an episode or resetting the environment,
|
||||
# # by tapping the right arrow key '->'. This might require a sudo permission
|
||||
# # to allow your terminal to monitor keyboard events.
|
||||
# events = {}
|
||||
# events["exit_early"] = False
|
||||
# events["rerecord_episode"] = False
|
||||
# events["stop_recording"] = False
|
||||
|
||||
# if is_headless():
|
||||
# logging.warning(
|
||||
# "Headless environment detected. On-screen cameras display and keyboard inputs will not be available."
|
||||
# )
|
||||
# listener = None
|
||||
# return listener, events
|
||||
|
||||
# # Only import pynput if not in a headless environment
|
||||
# from pynput import keyboard
|
||||
|
||||
# def on_press(key):
|
||||
# try:
|
||||
# if key == keyboard.Key.right:
|
||||
# print("Right arrow key pressed. Exiting loop...")
|
||||
# events["exit_early"] = True
|
||||
# elif key == keyboard.Key.left:
|
||||
# print("Left arrow key pressed. Exiting loop and rerecord the last episode...")
|
||||
# events["rerecord_episode"] = True
|
||||
# events["exit_early"] = True
|
||||
# elif key == keyboard.Key.esc:
|
||||
# print("Escape key pressed. Stopping data recording...")
|
||||
# events["stop_recording"] = True
|
||||
# events["exit_early"] = True
|
||||
# except Exception as e:
|
||||
# print(f"Error handling key press: {e}")
|
||||
|
||||
# listener = keyboard.Listener(on_press=on_press)
|
||||
# listener.start()
|
||||
|
||||
# return listener, events
|
||||
|
||||
def init_keyboard_listener():
|
||||
# Allow to exit early while recording an episode or resetting the environment,
|
||||
# by tapping the right arrow key '->'. This might require a sudo permission
|
||||
# to allow your terminal to monitor keyboard events.
|
||||
events = {}
|
||||
events["exit_early"] = False
|
||||
events["rerecord_episode"] = False
|
||||
events["stop_recording"] = False
|
||||
from sshkeyboard import listen_keyboard
|
||||
import threading
|
||||
|
||||
if is_headless():
|
||||
logging.warning(
|
||||
"Headless environment detected. On-screen cameras display and keyboard inputs will not be available."
|
||||
)
|
||||
listener = None
|
||||
return listener, events
|
||||
|
||||
# Only import pynput if not in a headless environment
|
||||
from pynput import keyboard
|
||||
|
||||
def on_press(key):
|
||||
try:
|
||||
if key == "right":
|
||||
if key == keyboard.Key.right:
|
||||
print("Right arrow key pressed. Exiting loop...")
|
||||
events["exit_early"] = True
|
||||
elif key == "left":
|
||||
elif key == keyboard.Key.left:
|
||||
print("Left arrow key pressed. Exiting loop and rerecord the last episode...")
|
||||
events["rerecord_episode"] = True
|
||||
events["exit_early"] = True
|
||||
elif key == "q":
|
||||
print("Q key pressed. Stopping data recording...")
|
||||
elif key == keyboard.Key.esc:
|
||||
print("Escape key pressed. Stopping data recording...")
|
||||
events["stop_recording"] = True
|
||||
events["exit_early"] = True
|
||||
except Exception as e:
|
||||
print(f"Error handling key press: {e}")
|
||||
|
||||
listener = threading.Thread(target=listen_keyboard, kwargs={"on_press": on_press})
|
||||
listener = keyboard.Listener(on_press=on_press)
|
||||
listener.start()
|
||||
|
||||
return listener,events
|
||||
return listener, events
|
||||
|
||||
|
||||
def warmup_record(
|
||||
robot,
|
||||
|
@ -283,8 +256,7 @@ def control_loop(
|
|||
frame = {**observation, **action, "task": single_task}
|
||||
dataset.add_frame(frame)
|
||||
|
||||
if display_cameras:
|
||||
# if display_cameras and not is_headless():
|
||||
if display_cameras and not is_headless():
|
||||
image_keys = [key for key in observation if "image" in key]
|
||||
for key in image_keys:
|
||||
cv2.imshow(key, cv2.cvtColor(observation[key].numpy(), cv2.COLOR_RGB2BGR))
|
||||
|
@ -316,25 +288,17 @@ def reset_environment(robot, events, reset_time_s, fps):
|
|||
teleoperate=True,
|
||||
)
|
||||
|
||||
# def stop_recording(robot, listener, display_cameras):
|
||||
# robot.disconnect()
|
||||
|
||||
# if not is_headless():
|
||||
# if listener is not None:
|
||||
# listener.stop()
|
||||
|
||||
# if display_cameras:
|
||||
# cv2.destroyAllWindows()
|
||||
|
||||
def stop_recording(robot, listener, display_cameras):
|
||||
robot.disconnect()
|
||||
|
||||
from sshkeyboard import stop_listening
|
||||
if listener is not None:
|
||||
stop_listening()
|
||||
if not is_headless():
|
||||
if listener is not None:
|
||||
listener.stop()
|
||||
|
||||
if display_cameras:
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
if display_cameras:
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
def sanity_check_dataset_name(repo_id, policy_cfg):
|
||||
_, dataset_name = repo_id.split("/")
|
||||
|
|
|
@ -479,45 +479,6 @@ class So100RobotConfig(ManipulatorRobotConfig):
|
|||
|
||||
mock: bool = False
|
||||
|
||||
@RobotConfig.register_subclass("roarm_m3")
|
||||
@dataclass
|
||||
class RoarmRobotConfig(RobotConfig):
|
||||
# `max_relative_target` limits the magnitude of the relative positional target vector for safety purposes.
|
||||
# Set this to a positive scalar to have the same value for all motors, or a list that is the same length as
|
||||
# the number of motors in your follower arms.
|
||||
max_relative_target: int | None = None
|
||||
|
||||
leader_arms: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"main": "/dev/ttyUSB0",
|
||||
}
|
||||
)
|
||||
|
||||
# Follower arms configuration: left and right ports
|
||||
follower_arms: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"main": "/dev/ttyUSB1",
|
||||
}
|
||||
)
|
||||
|
||||
cameras: dict[str, CameraConfig] = field(
|
||||
default_factory=lambda: {
|
||||
"laptop": OpenCVCameraConfig(
|
||||
camera_index=0,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
"phone": OpenCVCameraConfig(
|
||||
camera_index=1,
|
||||
fps=30,
|
||||
width=640,
|
||||
height=480,
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
mock: bool = False
|
||||
|
||||
@RobotConfig.register_subclass("stretch")
|
||||
@dataclass
|
||||
|
@ -554,6 +515,7 @@ class StretchRobotConfig(RobotConfig):
|
|||
|
||||
mock: bool = False
|
||||
|
||||
|
||||
@RobotConfig.register_subclass("lekiwi")
|
||||
@dataclass
|
||||
class LeKiwiRobotConfig(RobotConfig):
|
||||
|
|
|
@ -392,21 +392,19 @@ class MobileManipulator:
|
|||
for name in self.leader_arms:
|
||||
pos = self.leader_arms[name].read("Present_Position")
|
||||
pos_tensor = torch.from_numpy(pos).float()
|
||||
# Instead of pos_tensor.item(), use tolist() to convert the entire tensor to a list
|
||||
arm_positions.extend(pos_tensor.tolist())
|
||||
|
||||
# (The rest of your code for generating wheel commands remains unchanged)
|
||||
x_cmd = 0.0 # m/s forward/backward
|
||||
y_cmd = 0.0 # m/s lateral
|
||||
y_cmd = 0.0 # m/s forward/backward
|
||||
x_cmd = 0.0 # m/s lateral
|
||||
theta_cmd = 0.0 # deg/s rotation
|
||||
if self.pressed_keys["forward"]:
|
||||
x_cmd += xy_speed
|
||||
if self.pressed_keys["backward"]:
|
||||
x_cmd -= xy_speed
|
||||
if self.pressed_keys["left"]:
|
||||
y_cmd += xy_speed
|
||||
if self.pressed_keys["right"]:
|
||||
if self.pressed_keys["backward"]:
|
||||
y_cmd -= xy_speed
|
||||
if self.pressed_keys["left"]:
|
||||
x_cmd += xy_speed
|
||||
if self.pressed_keys["right"]:
|
||||
x_cmd -= xy_speed
|
||||
if self.pressed_keys["rotate_left"]:
|
||||
theta_cmd += theta_speed
|
||||
if self.pressed_keys["rotate_right"]:
|
||||
|
@ -584,8 +582,8 @@ class MobileManipulator:
|
|||
# Create the body velocity vector [x, y, theta_rad].
|
||||
velocity_vector = np.array([x_cmd, y_cmd, theta_rad])
|
||||
|
||||
# Define the wheel mounting angles with a -90° offset.
|
||||
angles = np.radians(np.array([240, 120, 0]) - 90)
|
||||
# Define the wheel mounting angles (defined from y axis cw)
|
||||
angles = np.radians(np.array([300, 180, 60]))
|
||||
# Build the kinematic matrix: each row maps body velocities to a wheel’s linear speed.
|
||||
# The third column (base_radius) accounts for the effect of rotation.
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
@ -641,8 +639,8 @@ class MobileManipulator:
|
|||
# Compute each wheel’s linear speed (m/s) from its angular speed.
|
||||
wheel_linear_speeds = wheel_radps * wheel_radius
|
||||
|
||||
# Define the wheel mounting angles with a -90° offset.
|
||||
angles = np.radians(np.array([240, 120, 0]) - 90)
|
||||
# Define the wheel mounting angles (defined from y axis cw)
|
||||
angles = np.radians(np.array([300, 180, 60]))
|
||||
m = np.array([[np.cos(a), np.sin(a), base_radius] for a in angles])
|
||||
|
||||
# Solve the inverse kinematics: body_velocity = M⁻¹ · wheel_linear_speeds.
|
||||
|
|
|
@ -1,306 +0,0 @@
|
|||
"""Contains logic to instantiate a robot, read information from its motors and cameras,
|
||||
and send orders to its motors.
|
||||
"""
|
||||
# TODO(rcadene, aliberts): reorganize the codebase into one file per robot, with the associated
|
||||
# calibration procedure, to make it easy for people to add their own robot.
|
||||
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
import warnings
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from lerobot.common.robot_devices.cameras.utils import make_cameras_from_configs
|
||||
from lerobot.common.robot_devices.robots.configs import RoarmRobotConfig
|
||||
from lerobot.common.robot_devices.utils import RobotDeviceAlreadyConnectedError, RobotDeviceNotConnectedError
|
||||
from roarm_sdk.roarm import roarm
|
||||
|
||||
def ensure_safe_goal_position(
|
||||
goal_pos: torch.Tensor, present_pos: torch.Tensor, max_relative_target: float | list[float]
|
||||
):
|
||||
# Cap relative action target magnitude for safety.
|
||||
diff = goal_pos - present_pos
|
||||
max_relative_target = torch.tensor(max_relative_target)
|
||||
safe_diff = torch.minimum(diff, max_relative_target)
|
||||
safe_diff = torch.maximum(safe_diff, -max_relative_target)
|
||||
safe_goal_pos = present_pos + safe_diff
|
||||
|
||||
if not torch.allclose(goal_pos, safe_goal_pos):
|
||||
logging.warning(
|
||||
"Relative goal position magnitude had to be clamped to be safe.\n"
|
||||
f" requested relative goal position target: {diff}\n"
|
||||
f" clamped relative goal position target: {safe_diff}"
|
||||
)
|
||||
|
||||
return safe_goal_pos
|
||||
|
||||
def make_roarm_from_configs(configs: dict[str, str]) -> (dict[str, roarm]):
|
||||
roarms = {}
|
||||
|
||||
for key, port in configs.items():
|
||||
roarms[key] = roarm(roarm_type="roarm_m3", port=port, baudrate=115200)
|
||||
|
||||
return roarms
|
||||
|
||||
class RoarmRobot:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: RoarmRobotConfig,
|
||||
):
|
||||
self.config = config
|
||||
self.robot_type = self.config.type
|
||||
self.leader_arms = make_roarm_from_configs(self.config.leader_arms)
|
||||
self.follower_arms = make_roarm_from_configs(self.config.follower_arms)
|
||||
self.cameras = make_cameras_from_configs(self.config.cameras)
|
||||
self.is_connected = False
|
||||
self.logs = {}
|
||||
|
||||
@property
|
||||
def camera_features(self) -> dict:
|
||||
cam_ft = {}
|
||||
for cam_key, cam in self.cameras.items():
|
||||
key = f"observation.images.{cam_key}"
|
||||
cam_ft[key] = {
|
||||
"shape": (cam.height, cam.width, cam.channels),
|
||||
"names": ["height", "width", "channels"],
|
||||
"info": None,
|
||||
}
|
||||
return cam_ft
|
||||
|
||||
@property
|
||||
def motor_features(self) -> dict:
|
||||
return {
|
||||
"action": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": "roam_m3",
|
||||
},
|
||||
"observation.state": {
|
||||
"dtype": "float32",
|
||||
"shape": (6,),
|
||||
"names": "roam_m3",
|
||||
},
|
||||
}
|
||||
|
||||
@property
|
||||
def features(self):
|
||||
return {**self.motor_features, **self.camera_features}
|
||||
|
||||
@property
|
||||
def has_camera(self):
|
||||
return len(self.cameras) > 0
|
||||
|
||||
@property
|
||||
def num_cameras(self):
|
||||
return len(self.cameras)
|
||||
|
||||
def connect(self):
|
||||
if self.is_connected:
|
||||
raise RobotDeviceAlreadyConnectedError(
|
||||
"RoarmRobot is already connected. Do not run `robot.connect()` twice."
|
||||
)
|
||||
|
||||
if not self.leader_arms and not self.follower_arms and not self.cameras:
|
||||
raise ValueError(
|
||||
"RoarmRobot doesn't have any device to connect. See example of usage in docstring of the class."
|
||||
)
|
||||
|
||||
for name in self.follower_arms:
|
||||
self.follower_arms[name].joints_angle_get()
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].joints_angle_get()
|
||||
|
||||
# Connect the cameras
|
||||
for name in self.cameras:
|
||||
self.cameras[name].connect()
|
||||
|
||||
self.is_connected = True
|
||||
|
||||
def teleop_step(
|
||||
self, record_data=False
|
||||
) -> None | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]:
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"RoarmRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
# Prepare to assign the position of the leader to the follower
|
||||
leader_pos = {}
|
||||
for name in self.leader_arms:
|
||||
before_lread_t = time.perf_counter()
|
||||
leader_pos[name] = np.array(self.leader_arms[name].joints_angle_get(), dtype=np.float32)
|
||||
leader_pos[name] = torch.from_numpy(leader_pos[name])
|
||||
self.logs[f"read_leader_{name}_pos_dt_s"] = time.perf_counter() - before_lread_t
|
||||
|
||||
# Send goal position to the follower
|
||||
follower_goal_pos = {}
|
||||
for name in self.follower_arms:
|
||||
before_fwrite_t = time.perf_counter()
|
||||
goal_pos = leader_pos[name]
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = np.array(self.follower_arms[name].joints_angle_get(), dtype=np.float32)
|
||||
present_pos = torch.from_numpy(present_pos)
|
||||
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
|
||||
|
||||
# Used when record_data=True
|
||||
follower_goal_pos[name] = goal_pos
|
||||
|
||||
goal_pos = goal_pos.numpy().astype(np.int32)
|
||||
goal_pos = goal_pos.tolist() if isinstance(goal_pos, (np.ndarray, torch.Tensor)) else goal_pos
|
||||
self.follower_arms[name].joints_angle_ctrl(angles=goal_pos, speed=0, acc=0)
|
||||
self.logs[f"write_follower_{name}_goal_pos_dt_s"] = time.perf_counter() - before_fwrite_t
|
||||
|
||||
# Early exit when recording data is not requested
|
||||
if not record_data:
|
||||
return
|
||||
|
||||
# TODO(rcadene): Add velocity and other info
|
||||
# Read follower position
|
||||
follower_pos = {}
|
||||
for name in self.follower_arms:
|
||||
before_fread_t = time.perf_counter()
|
||||
follower_pos[name] = np.array(self.follower_arms[name].joints_angle_get(), dtype=np.float32)
|
||||
follower_pos[name] = torch.from_numpy(follower_pos[name])
|
||||
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
|
||||
|
||||
# Create state by concatenating follower current position
|
||||
state = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_pos:
|
||||
state.append(follower_pos[name])
|
||||
state = torch.cat(state)
|
||||
|
||||
# Create action by concatenating follower goal position
|
||||
action = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_goal_pos:
|
||||
action.append(follower_goal_pos[name])
|
||||
action = torch.cat(action)
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionaries
|
||||
obs_dict, action_dict = {}, {}
|
||||
obs_dict["observation.state"] = state
|
||||
action_dict["action"] = action
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
|
||||
return obs_dict, action_dict
|
||||
|
||||
def capture_observation(self):
|
||||
"""The returned observations do not have a batch dimension."""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"RoarmRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
# Read follower position
|
||||
follower_pos = {}
|
||||
for name in self.follower_arms:
|
||||
before_fread_t = time.perf_counter()
|
||||
follower_pos[name] = np.array(self.follower_arms[name].joints_angle_get(), dtype=np.float32)
|
||||
follower_pos[name] = torch.from_numpy(follower_pos[name])
|
||||
self.logs[f"read_follower_{name}_pos_dt_s"] = time.perf_counter() - before_fread_t
|
||||
|
||||
# Create state by concatenating follower current position
|
||||
state = []
|
||||
for name in self.follower_arms:
|
||||
if name in follower_pos:
|
||||
state.append(follower_pos[name])
|
||||
state = torch.cat(state)
|
||||
|
||||
# Capture images from cameras
|
||||
images = {}
|
||||
for name in self.cameras:
|
||||
before_camread_t = time.perf_counter()
|
||||
images[name] = self.cameras[name].async_read()
|
||||
images[name] = torch.from_numpy(images[name])
|
||||
self.logs[f"read_camera_{name}_dt_s"] = self.cameras[name].logs["delta_timestamp_s"]
|
||||
self.logs[f"async_read_camera_{name}_dt_s"] = time.perf_counter() - before_camread_t
|
||||
|
||||
# Populate output dictionaries and format to pytorch
|
||||
obs_dict = {}
|
||||
obs_dict["observation.state"] = state
|
||||
for name in self.cameras:
|
||||
obs_dict[f"observation.images.{name}"] = images[name]
|
||||
return obs_dict
|
||||
|
||||
def send_action(self, action: torch.Tensor) -> torch.Tensor:
|
||||
"""Command the follower arms to move to a target joint configuration.
|
||||
|
||||
The relative action magnitude may be clipped depending on the configuration parameter
|
||||
`max_relative_target`. In this case, the action sent differs from original action.
|
||||
Thus, this function always returns the action actually sent.
|
||||
|
||||
Args:
|
||||
action: tensor containing the concatenated goal positions for the follower arms.
|
||||
"""
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"RoarmRobot is not connected. You need to run `robot.connect()`."
|
||||
)
|
||||
|
||||
from_idx = 0
|
||||
to_idx = 6
|
||||
action_sent = []
|
||||
for name in self.follower_arms:
|
||||
# Get goal position of each follower arm by splitting the action vector
|
||||
goal_pos = action[from_idx:to_idx]
|
||||
from_idx = to_idx
|
||||
|
||||
# Cap goal position when too far away from present position.
|
||||
# Slower fps expected due to reading from the follower.
|
||||
if self.config.max_relative_target is not None:
|
||||
present_pos = np.array(self.follower_arms[name].joints_angle_get(), dtype=np.float32)
|
||||
present_pos = torch.from_numpy(present_pos)
|
||||
goal_pos = ensure_safe_goal_position(goal_pos, present_pos, self.config.max_relative_target)
|
||||
|
||||
# Save tensor to concat and return
|
||||
action_sent.append(goal_pos)
|
||||
|
||||
# Send goal position to each follower
|
||||
goal_pos = goal_pos.numpy().astype(np.int32)
|
||||
goal_pos = goal_pos.tolist() if isinstance(goal_pos, (np.ndarray, torch.Tensor)) else goal_pos
|
||||
self.follower_arms[name].joints_angle_ctrl(angles=goal_pos, speed=0, acc=0)
|
||||
|
||||
return torch.cat(action_sent)
|
||||
|
||||
def print_logs(self):
|
||||
pass
|
||||
# TODO(aliberts): move robot-specific logs logic here
|
||||
|
||||
def disconnect(self):
|
||||
if not self.is_connected:
|
||||
raise RobotDeviceNotConnectedError(
|
||||
"RoarmRobot is not connected. You need to run `robot.connect()` before disconnecting."
|
||||
)
|
||||
|
||||
for name in self.follower_arms:
|
||||
self.follower_arms[name].disconnect()
|
||||
|
||||
for name in self.leader_arms:
|
||||
self.leader_arms[name].disconnect()
|
||||
|
||||
for name in self.cameras:
|
||||
self.cameras[name].disconnect()
|
||||
|
||||
self.is_connected = False
|
||||
|
||||
def __del__(self):
|
||||
if getattr(self, "is_connected", False):
|
||||
self.disconnect()
|
|
@ -9,7 +9,6 @@ from lerobot.common.robot_devices.robots.configs import (
|
|||
MossRobotConfig,
|
||||
RobotConfig,
|
||||
So100RobotConfig,
|
||||
RoarmRobotConfig,
|
||||
StretchRobotConfig,
|
||||
)
|
||||
|
||||
|
@ -45,8 +44,6 @@ def make_robot_config(robot_type: str, **kwargs) -> RobotConfig:
|
|||
return MossRobotConfig(**kwargs)
|
||||
elif robot_type == "so100":
|
||||
return So100RobotConfig(**kwargs)
|
||||
elif robot_type == "roarm_m3":
|
||||
return RoarmRobotConfig(**kwargs)
|
||||
elif robot_type == "stretch":
|
||||
return StretchRobotConfig(**kwargs)
|
||||
elif robot_type == "lekiwi":
|
||||
|
@ -64,15 +61,12 @@ def make_robot_from_config(config: RobotConfig):
|
|||
from lerobot.common.robot_devices.robots.mobile_manipulator import MobileManipulator
|
||||
|
||||
return MobileManipulator(config)
|
||||
elif isinstance(config, RoarmRobotConfig):
|
||||
from lerobot.common.robot_devices.robots.roarm_m3 import RoarmRobot
|
||||
|
||||
return RoarmRobot(config)
|
||||
else:
|
||||
from lerobot.common.robot_devices.robots.stretch import StretchRobot
|
||||
|
||||
return StretchRobot(config)
|
||||
|
||||
|
||||
def make_robot(robot_type: str, **kwargs) -> Robot:
|
||||
config = make_robot_config(robot_type, **kwargs)
|
||||
return make_robot_from_config(config)
|
||||
|
|
|
@ -17,6 +17,7 @@ import logging
|
|||
import os
|
||||
import os.path as osp
|
||||
import platform
|
||||
import subprocess
|
||||
from copy import copy
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
|
@ -165,23 +166,31 @@ def capture_timestamp_utc():
|
|||
|
||||
|
||||
def say(text, blocking=False):
|
||||
# Check if mac, linux, or windows.
|
||||
if platform.system() == "Darwin":
|
||||
cmd = f'say "{text}"'
|
||||
if not blocking:
|
||||
cmd += " &"
|
||||
elif platform.system() == "Linux":
|
||||
cmd = f'spd-say "{text}"'
|
||||
if blocking:
|
||||
cmd += " --wait"
|
||||
elif platform.system() == "Windows":
|
||||
# TODO(rcadene): Make blocking option work for Windows
|
||||
cmd = (
|
||||
'PowerShell -Command "Add-Type -AssemblyName System.Speech; '
|
||||
f"(New-Object System.Speech.Synthesis.SpeechSynthesizer).Speak('{text}')\""
|
||||
)
|
||||
system = platform.system()
|
||||
|
||||
os.system(cmd)
|
||||
if system == "Darwin":
|
||||
cmd = ["say", text]
|
||||
|
||||
elif system == "Linux":
|
||||
cmd = ["spd-say", text]
|
||||
if blocking:
|
||||
cmd.append("--wait")
|
||||
|
||||
elif system == "Windows":
|
||||
cmd = [
|
||||
"PowerShell",
|
||||
"-Command",
|
||||
"Add-Type -AssemblyName System.Speech; "
|
||||
f"(New-Object System.Speech.Synthesis.SpeechSynthesizer).Speak('{text}')",
|
||||
]
|
||||
|
||||
else:
|
||||
raise RuntimeError("Unsupported operating system for text-to-speech.")
|
||||
|
||||
if blocking:
|
||||
subprocess.run(cmd, check=True)
|
||||
else:
|
||||
subprocess.Popen(cmd, creationflags=subprocess.CREATE_NO_WINDOW if system == "Windows" else 0)
|
||||
|
||||
|
||||
def log_say(text, play_sounds, blocking=False):
|
||||
|
|
|
@ -259,7 +259,6 @@ def record(
|
|||
if not robot.is_connected:
|
||||
robot.connect()
|
||||
|
||||
#listener, events = init_keyboard_listener()
|
||||
listener, events = init_keyboard_listener()
|
||||
|
||||
# Execute a few seconds without recording to:
|
||||
|
@ -315,9 +314,7 @@ def record(
|
|||
if events["stop_recording"]:
|
||||
break
|
||||
|
||||
# log_say("Stop recording", cfg.play_sounds, blocking=True)
|
||||
log_say("Stop recording", cfg.play_sounds)
|
||||
|
||||
log_say("Stop recording", cfg.play_sounds, blocking=True)
|
||||
stop_recording(robot, listener, cfg.display_cameras)
|
||||
|
||||
if cfg.push_to_hub:
|
||||
|
|
|
@ -454,7 +454,7 @@ def _compile_episode_data(
|
|||
|
||||
|
||||
@parser.wrap()
|
||||
def eval(cfg: EvalPipelineConfig):
|
||||
def eval_main(cfg: EvalPipelineConfig):
|
||||
logging.info(pformat(asdict(cfg)))
|
||||
|
||||
# Check device is available
|
||||
|
@ -499,4 +499,4 @@ def eval(cfg: EvalPipelineConfig):
|
|||
|
||||
if __name__ == "__main__":
|
||||
init_logging()
|
||||
eval()
|
||||
eval_main()
|
||||
|
|
|
@ -158,7 +158,7 @@ def run_server(
|
|||
if major_version < 2:
|
||||
return "Make sure to convert your LeRobotDataset to v2 & above."
|
||||
|
||||
episode_data_csv_str, columns = get_episode_data(dataset, episode_id)
|
||||
episode_data_csv_str, columns, ignored_columns = get_episode_data(dataset, episode_id)
|
||||
dataset_info = {
|
||||
"repo_id": f"{dataset_namespace}/{dataset_name}",
|
||||
"num_samples": dataset.num_frames
|
||||
|
@ -194,7 +194,7 @@ def run_server(
|
|||
]
|
||||
|
||||
response = requests.get(
|
||||
f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/episodes.jsonl"
|
||||
f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/episodes.jsonl", timeout=5
|
||||
)
|
||||
response.raise_for_status()
|
||||
# Split into lines and parse each line as JSON
|
||||
|
@ -218,6 +218,7 @@ def run_server(
|
|||
videos_info=videos_info,
|
||||
episode_data_csv_str=episode_data_csv_str,
|
||||
columns=columns,
|
||||
ignored_columns=ignored_columns,
|
||||
)
|
||||
|
||||
app.run(host=host, port=port)
|
||||
|
@ -236,6 +237,14 @@ def get_episode_data(dataset: LeRobotDataset | IterableNamespace, episode_index)
|
|||
selected_columns = [col for col, ft in dataset.features.items() if ft["dtype"] == "float32"]
|
||||
selected_columns.remove("timestamp")
|
||||
|
||||
ignored_columns = []
|
||||
for column_name in selected_columns:
|
||||
shape = dataset.features[column_name]["shape"]
|
||||
shape_dim = len(shape)
|
||||
if shape_dim > 1:
|
||||
selected_columns.remove(column_name)
|
||||
ignored_columns.append(column_name)
|
||||
|
||||
# init header of csv with state and action names
|
||||
header = ["timestamp"]
|
||||
|
||||
|
@ -291,7 +300,7 @@ def get_episode_data(dataset: LeRobotDataset | IterableNamespace, episode_index)
|
|||
csv_writer.writerows(rows)
|
||||
csv_string = csv_buffer.getvalue()
|
||||
|
||||
return csv_string, columns
|
||||
return csv_string, columns, ignored_columns
|
||||
|
||||
|
||||
def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str]:
|
||||
|
@ -318,7 +327,9 @@ def get_episode_language_instruction(dataset: LeRobotDataset, ep_index: int) ->
|
|||
|
||||
|
||||
def get_dataset_info(repo_id: str) -> IterableNamespace:
|
||||
response = requests.get(f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/info.json")
|
||||
response = requests.get(
|
||||
f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/info.json", timeout=5
|
||||
)
|
||||
response.raise_for_status() # Raises an HTTPError for bad responses
|
||||
dataset_info = response.json()
|
||||
dataset_info["repo_id"] = repo_id
|
||||
|
|
|
@ -42,22 +42,22 @@
|
|||
<ul>
|
||||
<template x-for="episode in paginatedEpisodes" :key="episode">
|
||||
<li class="font-mono text-sm mt-0.5">
|
||||
<a :href="'episode_' + episode"
|
||||
<a :href="'episode_' + episode"
|
||||
:class="{'underline': true, 'font-bold -ml-1': episode == {{ episode_id }}}"
|
||||
x-text="'Episode ' + episode"></a>
|
||||
</li>
|
||||
</template>
|
||||
</ul>
|
||||
|
||||
|
||||
<div class="flex items-center mt-3 text-xs" x-show="totalPages > 1">
|
||||
<button @click="prevPage()"
|
||||
<button @click="prevPage()"
|
||||
class="px-2 py-1 bg-slate-800 rounded mr-2"
|
||||
:class="{'opacity-50 cursor-not-allowed': page === 1}"
|
||||
:disabled="page === 1">
|
||||
« Prev
|
||||
</button>
|
||||
<span class="font-mono mr-2" x-text="` ${page} / ${totalPages}`"></span>
|
||||
<button @click="nextPage()"
|
||||
<button @click="nextPage()"
|
||||
class="px-2 py-1 bg-slate-800 rounded"
|
||||
:class="{'opacity-50 cursor-not-allowed': page === totalPages}"
|
||||
:disabled="page === totalPages">
|
||||
|
@ -65,10 +65,10 @@
|
|||
</button>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
<!-- episodes menu for small screens -->
|
||||
<div class="flex overflow-x-auto md:hidden" x-data="episodePagination">
|
||||
<button @click="prevPage()"
|
||||
<button @click="prevPage()"
|
||||
class="px-2 bg-slate-800 rounded mr-2"
|
||||
:class="{'opacity-50 cursor-not-allowed': page === 1}"
|
||||
:disabled="page === 1">«</button>
|
||||
|
@ -83,7 +83,7 @@
|
|||
</p>
|
||||
</template>
|
||||
</div>
|
||||
<button @click="nextPage()"
|
||||
<button @click="nextPage()"
|
||||
class="px-2 bg-slate-800 rounded ml-2"
|
||||
:class="{'opacity-50 cursor-not-allowed': page === totalPages}"
|
||||
:disabled="page === totalPages">» </button>
|
||||
|
@ -224,49 +224,58 @@
|
|||
</p>
|
||||
</div>
|
||||
|
||||
<table class="text-sm border-collapse border border-slate-700" x-show="currentFrameData">
|
||||
<thead>
|
||||
<tr>
|
||||
<th></th>
|
||||
<template x-for="(_, colIndex) in Array.from({length: columns.length}, (_, index) => index)">
|
||||
<th class="border border-slate-700">
|
||||
<div class="flex gap-x-2 justify-between px-2">
|
||||
<input type="checkbox" :checked="isColumnChecked(colIndex)"
|
||||
@change="toggleColumn(colIndex)">
|
||||
<p x-text="`${columns[colIndex].key}`"></p>
|
||||
</div>
|
||||
</th>
|
||||
</template>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<template x-for="(row, rowIndex) in rows">
|
||||
<tr class="odd:bg-gray-800 even:bg-gray-900">
|
||||
<td class="border border-slate-700">
|
||||
<div class="flex gap-x-2 max-w-64 font-semibold px-1 break-all">
|
||||
<input type="checkbox" :checked="isRowChecked(rowIndex)"
|
||||
@change="toggleRow(rowIndex)">
|
||||
</div>
|
||||
</td>
|
||||
<template x-for="(cell, colIndex) in row">
|
||||
<td x-show="cell" class="border border-slate-700">
|
||||
<div class="flex gap-x-2 justify-between px-2" :class="{ 'hidden': cell.isNull }">
|
||||
<div class="flex gap-x-2">
|
||||
<input type="checkbox" x-model="cell.checked" @change="updateTableValues()">
|
||||
<span x-text="`${!cell.isNull ? cell.label : null}`"></span>
|
||||
</div>
|
||||
<span class="w-14 text-right" x-text="`${!cell.isNull ? (typeof cell.value === 'number' ? cell.value.toFixed(2) : cell.value) : null}`"
|
||||
:style="`color: ${cell.color}`"></span>
|
||||
<div>
|
||||
<table class="text-sm border-collapse border border-slate-700" x-show="currentFrameData">
|
||||
<thead>
|
||||
<tr>
|
||||
<th></th>
|
||||
<template x-for="(_, colIndex) in Array.from({length: columns.length}, (_, index) => index)">
|
||||
<th class="border border-slate-700">
|
||||
<div class="flex gap-x-2 justify-between px-2">
|
||||
<input type="checkbox" :checked="isColumnChecked(colIndex)"
|
||||
@change="toggleColumn(colIndex)">
|
||||
<p x-text="`${columns[colIndex].key}`"></p>
|
||||
</div>
|
||||
</td>
|
||||
</th>
|
||||
</template>
|
||||
</tr>
|
||||
</template>
|
||||
</tbody>
|
||||
</table>
|
||||
</thead>
|
||||
<tbody>
|
||||
<template x-for="(row, rowIndex) in rows">
|
||||
<tr class="odd:bg-gray-800 even:bg-gray-900">
|
||||
<td class="border border-slate-700">
|
||||
<div class="flex gap-x-2 max-w-64 font-semibold px-1 break-all">
|
||||
<input type="checkbox" :checked="isRowChecked(rowIndex)"
|
||||
@change="toggleRow(rowIndex)">
|
||||
</div>
|
||||
</td>
|
||||
<template x-for="(cell, colIndex) in row">
|
||||
<td x-show="cell" class="border border-slate-700">
|
||||
<div class="flex gap-x-2 justify-between px-2" :class="{ 'hidden': cell.isNull }">
|
||||
<div class="flex gap-x-2">
|
||||
<input type="checkbox" x-model="cell.checked" @change="updateTableValues()">
|
||||
<span x-text="`${!cell.isNull ? cell.label : null}`"></span>
|
||||
</div>
|
||||
<span class="w-14 text-right" x-text="`${!cell.isNull ? (typeof cell.value === 'number' ? cell.value.toFixed(2) : cell.value) : null}`"
|
||||
:style="`color: ${cell.color}`"></span>
|
||||
</div>
|
||||
</td>
|
||||
</template>
|
||||
</tr>
|
||||
</template>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
<div id="labels" class="hidden">
|
||||
<div id="labels" class="hidden">
|
||||
</div>
|
||||
|
||||
{% if ignored_columns|length > 0 %}
|
||||
<div class="m-2 text-orange-700 max-w-96">
|
||||
Columns {{ ignored_columns }} are NOT shown since the visualizer currently does not support 2D or 3D data.
|
||||
</div>
|
||||
{% endif %}
|
||||
</div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
@ -476,7 +485,7 @@
|
|||
episodes: {{ episodes }},
|
||||
pageSize: 100,
|
||||
page: 1,
|
||||
|
||||
|
||||
init() {
|
||||
// Find which page contains the current episode_id
|
||||
const currentEpisodeId = {{ episode_id }};
|
||||
|
@ -485,23 +494,23 @@
|
|||
this.page = Math.floor(episodeIndex / this.pageSize) + 1;
|
||||
}
|
||||
},
|
||||
|
||||
|
||||
get totalPages() {
|
||||
return Math.ceil(this.episodes.length / this.pageSize);
|
||||
},
|
||||
|
||||
|
||||
get paginatedEpisodes() {
|
||||
const start = (this.page - 1) * this.pageSize;
|
||||
const end = start + this.pageSize;
|
||||
return this.episodes.slice(start, end);
|
||||
},
|
||||
|
||||
|
||||
nextPage() {
|
||||
if (this.page < this.totalPages) {
|
||||
this.page++;
|
||||
}
|
||||
},
|
||||
|
||||
|
||||
prevPage() {
|
||||
if (this.page > 1) {
|
||||
this.page--;
|
||||
|
@ -515,7 +524,7 @@
|
|||
window.addEventListener('keydown', (e) => {
|
||||
// Use the space bar to play and pause, instead of default action (e.g. scrolling)
|
||||
const { keyCode, key } = e;
|
||||
|
||||
|
||||
if (keyCode === 32 || key === ' ') {
|
||||
e.preventDefault();
|
||||
const btnPause = document.querySelector('[x-ref="btnPause"]');
|
||||
|
|
Loading…
Reference in New Issue