Test backward_compatibility
This commit is contained in:
parent
2726d1a6c9
commit
7ee03afabb
|
@ -1,79 +1,31 @@
|
|||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils.utils import init_hydra_config, set_global_seed
|
||||
from lerobot.scripts.train import make_optimizer
|
||||
from tests.utils import DEFAULT_CONFIG_PATH, DEVICE, require_env
|
||||
from tests.scripts.save_policy_to_safetensor import get_policy_stats
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"env_name,policy_name,extra_overrides",
|
||||
"env_name,policy_name",
|
||||
[
|
||||
# ("xarm", "tdmpc", ["policy.mpc=true"]),
|
||||
# ("pusht", "tdmpc", ["policy.mpc=false"]),
|
||||
("pusht", "diffusion", []),
|
||||
# ("xarm", "tdmpc"),
|
||||
("pusht", "diffusion"),
|
||||
("aloha", "act"),
|
||||
],
|
||||
)
|
||||
@require_env
|
||||
def test_backward_compatibility(env_name, policy_name):
|
||||
cfg = init_hydra_config(
|
||||
DEFAULT_CONFIG_PATH,
|
||||
overrides=[
|
||||
f"env={env_name}",
|
||||
f"policy={policy_name}",
|
||||
f"device={DEVICE}",
|
||||
],
|
||||
)
|
||||
set_global_seed(1337)
|
||||
dataset = make_dataset(cfg)
|
||||
policy = make_policy(cfg, dataset_stats=dataset.stats)
|
||||
policy.train()
|
||||
policy.to(DEVICE)
|
||||
optimizer, _ = make_optimizer(cfg, policy)
|
||||
env_policy_dir = Path("tests/data/save_policy_to_safetensors") / f"{env_name}_{policy_name}"
|
||||
saved_grad_stats = load_file(env_policy_dir / "grad_stats")
|
||||
saved_param_stats = load_file(env_policy_dir / "param_stats")
|
||||
saved_actions = load_file(env_policy_dir / "actions")
|
||||
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=0,
|
||||
batch_size=cfg.training.batch_size,
|
||||
shuffle=False,
|
||||
)
|
||||
grad_stats, param_stats, actions = get_policy_stats(env_name, policy_name)
|
||||
|
||||
batch = next(iter(dataloader))
|
||||
output_dict = policy.forward(batch)
|
||||
loss = output_dict["loss"]
|
||||
# TODO Check output dict values
|
||||
|
||||
loss.backward()
|
||||
grad_stats = {}
|
||||
for key, param in policy.named_parameters():
|
||||
if param.requires_grad:
|
||||
grad_stats[f"{key}_mean"] = param.grad.mean()
|
||||
grad_stats[f"{key}_std"] = param.grad.std()
|
||||
|
||||
optimizer.step()
|
||||
param_stats = {}
|
||||
for key, param in policy.named_parameters():
|
||||
param_stats[f"{key}_mean"] = param.mean()
|
||||
param_stats[f"{key}_std"] = param.std()
|
||||
|
||||
optimizer.zero_grad()
|
||||
policy.reset()
|
||||
|
||||
dataset.delta_timestamps = None
|
||||
batch = next(iter(dataloader))
|
||||
|
||||
# TODO(aliberts): refacor `select_action` methods so that it expects `obs` instead of `batch`
|
||||
if policy_name == "diffusion":
|
||||
batch = {k: batch[k] for k in ["observation.image", "observation.state"]}
|
||||
|
||||
actions = {i: policy.select_action(batch) for i in range(cfg.policy.n_action_steps)}
|
||||
|
||||
print(len(actions))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# test_backward_compatibility("aloha", "act")
|
||||
test_backward_compatibility("pusht", "diffusion")
|
||||
for key in saved_grad_stats:
|
||||
assert torch.isclose(grad_stats[key], saved_grad_stats[key]).all()
|
||||
for key in saved_param_stats:
|
||||
assert torch.isclose(param_stats[key], saved_param_stats[key]).all()
|
||||
for key in saved_actions:
|
||||
assert torch.isclose(actions[key], saved_actions[key]).all()
|
||||
|
|
Loading…
Reference in New Issue