This commit is contained in:
pre-commit-ci[bot] 2025-03-26 05:29:42 +00:00 committed by GitHub
commit 8021b709ae
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 8 additions and 8 deletions

View File

@ -37,7 +37,7 @@ repos:
- id: trailing-whitespace - id: trailing-whitespace
- repo: https://github.com/crate-ci/typos - repo: https://github.com/crate-ci/typos
rev: v1.30.2 rev: v1
hooks: hooks:
- id: typos - id: typos
args: [--force-exclude] args: [--force-exclude]
@ -48,7 +48,7 @@ repos:
- id: pyupgrade - id: pyupgrade
- repo: https://github.com/astral-sh/ruff-pre-commit - repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.10 rev: v0.11.2
hooks: hooks:
- id: ruff - id: ruff
args: [--fix] args: [--fix]
@ -57,12 +57,12 @@ repos:
##### Security ##### ##### Security #####
- repo: https://github.com/gitleaks/gitleaks - repo: https://github.com/gitleaks/gitleaks
rev: v8.24.0 rev: v8.24.2
hooks: hooks:
- id: gitleaks - id: gitleaks
- repo: https://github.com/woodruffw/zizmor-pre-commit - repo: https://github.com/woodruffw/zizmor-pre-commit
rev: v1.4.1 rev: v1.5.2
hooks: hooks:
- id: zizmor - id: zizmor

View File

@ -1053,7 +1053,7 @@ class MultiLeRobotDataset(torch.utils.data.Dataset):
super().__init__() super().__init__()
self.repo_ids = repo_ids self.repo_ids = repo_ids
self.root = Path(root) if root else HF_LEROBOT_HOME self.root = Path(root) if root else HF_LEROBOT_HOME
self.tolerances_s = tolerances_s if tolerances_s else {repo_id: 1e-4 for repo_id in repo_ids} self.tolerances_s = tolerances_s if tolerances_s else dict.fromkeys(repo_ids, 0.0001)
# Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which # Construct the underlying datasets passing everything but `transform` and `delta_timestamps` which
# are handled by this class. # are handled by this class.
self._datasets = [ self._datasets = [

View File

@ -240,7 +240,7 @@ def load_episodes_stats(local_dir: Path) -> dict:
def backward_compatible_episodes_stats( def backward_compatible_episodes_stats(
stats: dict[str, dict[str, np.ndarray]], episodes: list[int] stats: dict[str, dict[str, np.ndarray]], episodes: list[int]
) -> dict[str, dict[str, np.ndarray]]: ) -> dict[str, dict[str, np.ndarray]]:
return {ep_idx: stats for ep_idx in episodes} return dict.fromkeys(episodes, stats)
def load_image_as_numpy( def load_image_as_numpy(

View File

@ -481,7 +481,7 @@ def convert_dataset(
# Tasks # Tasks
if single_task: if single_task:
tasks_by_episodes = {ep_idx: single_task for ep_idx in episode_indices} tasks_by_episodes = dict.fromkeys(episode_indices, single_task)
dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes) dataset, tasks = add_task_index_by_episodes(dataset, tasks_by_episodes)
tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()} tasks_by_episodes = {ep_idx: [task] for ep_idx, task in tasks_by_episodes.items()}
elif tasks_path: elif tasks_path:

View File

@ -94,7 +94,7 @@ class MetricsTracker:
metrics: dict[str, AverageMeter], metrics: dict[str, AverageMeter],
initial_step: int = 0, initial_step: int = 0,
): ):
self.__dict__.update({k: None for k in self.__keys__}) self.__dict__.update(dict.fromkeys(self.__keys__))
self._batch_size = batch_size self._batch_size = batch_size
self._num_frames = num_frames self._num_frames = num_frames
self._avg_samples_per_ep = num_frames / num_episodes self._avg_samples_per_ep = num_frames / num_episodes