Small fix, Refactor diffusion, Diffusion runs (TODO: remove normalization in diffusion)

This commit is contained in:
Remi Cadene 2024-03-02 17:04:39 +00:00
parent 45b4ecb727
commit 80785f8d0e
6 changed files with 449 additions and 10 deletions

View File

@ -0,0 +1,246 @@
from typing import Dict
import torch
import torch.nn.functional as F # noqa: N812
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from einops import reduce
from diffusion_policy.common.pytorch_util import dict_apply
from diffusion_policy.model.diffusion.conditional_unet1d import ConditionalUnet1D
from diffusion_policy.model.diffusion.mask_generator import LowdimMaskGenerator
from diffusion_policy.model.vision.multi_image_obs_encoder import MultiImageObsEncoder
from diffusion_policy.policy.base_image_policy import BaseImagePolicy
class DiffusionUnetImagePolicy(BaseImagePolicy):
def __init__(
self,
shape_meta: dict,
noise_scheduler: DDPMScheduler,
obs_encoder: MultiImageObsEncoder,
horizon,
n_action_steps,
n_obs_steps,
num_inference_steps=None,
obs_as_global_cond=True,
diffusion_step_embed_dim=256,
down_dims=(256, 512, 1024),
kernel_size=5,
n_groups=8,
cond_predict_scale=True,
# parameters passed to step
**kwargs,
):
super().__init__()
# parse shapes
action_shape = shape_meta["action"]["shape"]
assert len(action_shape) == 1
action_dim = action_shape[0]
# get feature dim
obs_feature_dim = obs_encoder.output_shape()[0]
# create diffusion model
input_dim = action_dim + obs_feature_dim
global_cond_dim = None
if obs_as_global_cond:
input_dim = action_dim
global_cond_dim = obs_feature_dim * n_obs_steps
model = ConditionalUnet1D(
input_dim=input_dim,
local_cond_dim=None,
global_cond_dim=global_cond_dim,
diffusion_step_embed_dim=diffusion_step_embed_dim,
down_dims=down_dims,
kernel_size=kernel_size,
n_groups=n_groups,
cond_predict_scale=cond_predict_scale,
)
self.obs_encoder = obs_encoder
self.model = model
self.noise_scheduler = noise_scheduler
self.mask_generator = LowdimMaskGenerator(
action_dim=action_dim,
obs_dim=0 if obs_as_global_cond else obs_feature_dim,
max_n_obs_steps=n_obs_steps,
fix_obs_steps=True,
action_visible=False,
)
self.horizon = horizon
self.obs_feature_dim = obs_feature_dim
self.action_dim = action_dim
self.n_action_steps = n_action_steps
self.n_obs_steps = n_obs_steps
self.obs_as_global_cond = obs_as_global_cond
self.kwargs = kwargs
if num_inference_steps is None:
num_inference_steps = noise_scheduler.config.num_train_timesteps
self.num_inference_steps = num_inference_steps
# ========= inference ============
def conditional_sample(
self,
condition_data,
condition_mask,
local_cond=None,
global_cond=None,
generator=None,
# keyword arguments to scheduler.step
**kwargs,
):
model = self.model
scheduler = self.noise_scheduler
trajectory = torch.randn(
size=condition_data.shape,
dtype=condition_data.dtype,
device=condition_data.device,
generator=generator,
)
# set step values
scheduler.set_timesteps(self.num_inference_steps)
for t in scheduler.timesteps:
# 1. apply conditioning
trajectory[condition_mask] = condition_data[condition_mask]
# 2. predict model output
model_output = model(trajectory, t, local_cond=local_cond, global_cond=global_cond)
# 3. compute previous image: x_t -> x_t-1
trajectory = scheduler.step(
model_output,
t,
trajectory,
generator=generator,
# **kwargs # TODO(rcadene): in diffusion_policy, expected to be {}
).prev_sample
# finally make sure conditioning is enforced
trajectory[condition_mask] = condition_data[condition_mask]
return trajectory
def predict_action(self, obs_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
obs_dict: must include "obs" key
result: must include "action" key
"""
assert "past_action" not in obs_dict # not implemented yet
nobs = obs_dict
value = next(iter(nobs.values()))
bsize, n_obs_steps = value.shape[:2]
horizon = self.horizon
action_dim = self.action_dim
obs_dim = self.obs_feature_dim
assert self.n_obs_steps == n_obs_steps
# build input
device = self.device
dtype = self.dtype
# handle different ways of passing observation
local_cond = None
global_cond = None
if self.obs_as_global_cond:
# condition through global feature
this_nobs = dict_apply(nobs, lambda x: x[:, :n_obs_steps, ...].reshape(-1, *x.shape[2:]))
nobs_features = self.obs_encoder(this_nobs)
# reshape back to B, Do
global_cond = nobs_features.reshape(bsize, -1)
# empty data for action
cond_data = torch.zeros(size=(bsize, horizon, action_dim), device=device, dtype=dtype)
cond_mask = torch.zeros_like(cond_data, dtype=torch.bool)
else:
# condition through impainting
this_nobs = dict_apply(nobs, lambda x: x[:, :n_obs_steps, ...].reshape(-1, *x.shape[2:]))
nobs_features = self.obs_encoder(this_nobs)
# reshape back to B, T, Do
nobs_features = nobs_features.reshape(bsize, n_obs_steps, -1)
cond_data = torch.zeros(size=(bsize, horizon, action_dim + obs_dim), device=device, dtype=dtype)
cond_mask = torch.zeros_like(cond_data, dtype=torch.bool)
cond_data[:, :n_obs_steps, action_dim:] = nobs_features
cond_mask[:, :n_obs_steps, action_dim:] = True
# run sampling
nsample = self.conditional_sample(
cond_data, cond_mask, local_cond=local_cond, global_cond=global_cond, **self.kwargs
)
action_pred = nsample[..., :action_dim]
# get action
start = n_obs_steps - 1
end = start + self.n_action_steps
action = action_pred[:, start:end]
result = {"action": action, "action_pred": action_pred}
return result
def compute_loss(self, batch):
assert "valid_mask" not in batch
nobs = batch["obs"]
nactions = batch["action"]
batch_size = nactions.shape[0]
horizon = nactions.shape[1]
# handle different ways of passing observation
local_cond = None
global_cond = None
trajectory = nactions
cond_data = trajectory
if self.obs_as_global_cond:
# reshape B, T, ... to B*T
this_nobs = dict_apply(nobs, lambda x: x[:, : self.n_obs_steps, ...].reshape(-1, *x.shape[2:]))
nobs_features = self.obs_encoder(this_nobs)
# reshape back to B, Do
global_cond = nobs_features.reshape(batch_size, -1)
else:
# reshape B, T, ... to B*T
this_nobs = dict_apply(nobs, lambda x: x.reshape(-1, *x.shape[2:]))
nobs_features = self.obs_encoder(this_nobs)
# reshape back to B, T, Do
nobs_features = nobs_features.reshape(batch_size, horizon, -1)
cond_data = torch.cat([nactions, nobs_features], dim=-1)
trajectory = cond_data.detach()
# generate impainting mask
condition_mask = self.mask_generator(trajectory.shape)
# Sample noise that we'll add to the images
noise = torch.randn(trajectory.shape, device=trajectory.device)
bsz = trajectory.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0, self.noise_scheduler.config.num_train_timesteps, (bsz,), device=trajectory.device
).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_trajectory = self.noise_scheduler.add_noise(trajectory, noise, timesteps)
# compute loss mask
loss_mask = ~condition_mask
# apply conditioning
noisy_trajectory[condition_mask] = cond_data[condition_mask]
# Predict the noise residual
pred = self.model(noisy_trajectory, timesteps, local_cond=local_cond, global_cond=global_cond)
pred_type = self.noise_scheduler.config.prediction_type
if pred_type == "epsilon":
target = noise
elif pred_type == "sample":
target = trajectory
else:
raise ValueError(f"Unsupported prediction type {pred_type}")
loss = F.mse_loss(pred, target, reduction="none")
loss = loss * loss_mask.type(loss.dtype)
loss = reduce(loss, "b ... -> b (...)", "mean")
loss = loss.mean()
return loss

View File

@ -0,0 +1,189 @@
import copy
from typing import Dict, Tuple, Union
import torch
import torch.nn as nn
import torchvision
from diffusion_policy.common.pytorch_util import replace_submodules
from diffusion_policy.model.common.module_attr_mixin import ModuleAttrMixin
from diffusion_policy.model.vision.crop_randomizer import CropRandomizer
class MultiImageObsEncoder(ModuleAttrMixin):
def __init__(
self,
shape_meta: dict,
rgb_model: Union[nn.Module, Dict[str, nn.Module]],
resize_shape: Union[Tuple[int, int], Dict[str, tuple], None] = None,
crop_shape: Union[Tuple[int, int], Dict[str, tuple], None] = None,
random_crop: bool = True,
# replace BatchNorm with GroupNorm
use_group_norm: bool = False,
# use single rgb model for all rgb inputs
share_rgb_model: bool = False,
# renormalize rgb input with imagenet normalization
# assuming input in [0,1]
imagenet_norm: bool = False,
):
"""
Assumes rgb input: B,C,H,W
Assumes low_dim input: B,D
"""
super().__init__()
rgb_keys = []
low_dim_keys = []
key_model_map = nn.ModuleDict()
key_transform_map = nn.ModuleDict()
key_shape_map = {}
# handle sharing vision backbone
if share_rgb_model:
assert isinstance(rgb_model, nn.Module)
key_model_map["rgb"] = rgb_model
obs_shape_meta = shape_meta["obs"]
for key, attr in obs_shape_meta.items():
shape = tuple(attr["shape"])
type = attr.get("type", "low_dim")
key_shape_map[key] = shape
if type == "rgb":
rgb_keys.append(key)
# configure model for this key
this_model = None
if not share_rgb_model:
if isinstance(rgb_model, dict):
# have provided model for each key
this_model = rgb_model[key]
else:
assert isinstance(rgb_model, nn.Module)
# have a copy of the rgb model
this_model = copy.deepcopy(rgb_model)
if this_model is not None:
if use_group_norm:
this_model = replace_submodules(
root_module=this_model,
predicate=lambda x: isinstance(x, nn.BatchNorm2d),
func=lambda x: nn.GroupNorm(
num_groups=x.num_features // 16, num_channels=x.num_features
),
)
key_model_map[key] = this_model
# configure resize
input_shape = shape
this_resizer = nn.Identity()
if resize_shape is not None:
if isinstance(resize_shape, dict):
h, w = resize_shape[key]
else:
h, w = resize_shape
this_resizer = torchvision.transforms.Resize(size=(h, w))
input_shape = (shape[0], h, w)
# configure randomizer
this_randomizer = nn.Identity()
if crop_shape is not None:
if isinstance(crop_shape, dict):
h, w = crop_shape[key]
else:
h, w = crop_shape
if random_crop:
this_randomizer = CropRandomizer(
input_shape=input_shape, crop_height=h, crop_width=w, num_crops=1, pos_enc=False
)
else:
this_normalizer = torchvision.transforms.CenterCrop(size=(h, w))
# configure normalizer
this_normalizer = nn.Identity()
if imagenet_norm:
# TODO(rcadene): move normalizer to dataset and env
this_normalizer = torchvision.transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
this_transform = nn.Sequential(this_resizer, this_randomizer, this_normalizer)
key_transform_map[key] = this_transform
elif type == "low_dim":
low_dim_keys.append(key)
else:
raise RuntimeError(f"Unsupported obs type: {type}")
rgb_keys = sorted(rgb_keys)
low_dim_keys = sorted(low_dim_keys)
self.shape_meta = shape_meta
self.key_model_map = key_model_map
self.key_transform_map = key_transform_map
self.share_rgb_model = share_rgb_model
self.rgb_keys = rgb_keys
self.low_dim_keys = low_dim_keys
self.key_shape_map = key_shape_map
def forward(self, obs_dict):
batch_size = None
features = []
# process rgb input
if self.share_rgb_model:
# pass all rgb obs to rgb model
imgs = []
for key in self.rgb_keys:
img = obs_dict[key]
if batch_size is None:
batch_size = img.shape[0]
else:
assert batch_size == img.shape[0]
assert img.shape[1:] == self.key_shape_map[key]
img = self.key_transform_map[key](img)
imgs.append(img)
# (N*B,C,H,W)
imgs = torch.cat(imgs, dim=0)
# (N*B,D)
feature = self.key_model_map["rgb"](imgs)
# (N,B,D)
feature = feature.reshape(-1, batch_size, *feature.shape[1:])
# (B,N,D)
feature = torch.moveaxis(feature, 0, 1)
# (B,N*D)
feature = feature.reshape(batch_size, -1)
features.append(feature)
else:
# run each rgb obs to independent models
for key in self.rgb_keys:
img = obs_dict[key]
if batch_size is None:
batch_size = img.shape[0]
else:
assert batch_size == img.shape[0]
assert img.shape[1:] == self.key_shape_map[key]
img = self.key_transform_map[key](img)
feature = self.key_model_map[key](img)
features.append(feature)
# process lowdim input
for key in self.low_dim_keys:
data = obs_dict[key]
if batch_size is None:
batch_size = data.shape[0]
else:
assert batch_size == data.shape[0]
assert data.shape[1:] == self.key_shape_map[key]
features.append(data)
# concatenate all features
result = torch.cat(features, dim=-1)
return result
@torch.no_grad()
def output_shape(self):
example_obs_dict = {}
obs_shape_meta = self.shape_meta["obs"]
batch_size = 1
for key, attr in obs_shape_meta.items():
shape = tuple(attr["shape"])
this_obs = torch.zeros((batch_size,) + shape, dtype=self.dtype, device=self.device)
example_obs_dict[key] = this_obs
example_output = self.forward(example_obs_dict)
output_shape = example_output.shape[1:]
return output_shape

View File

@ -1,6 +1,7 @@
import copy import copy
import time import time
import einops
import hydra import hydra
import torch import torch
import torch.nn as nn import torch.nn as nn
@ -8,8 +9,9 @@ from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from diffusion_policy.model.common.lr_scheduler import get_scheduler from diffusion_policy.model.common.lr_scheduler import get_scheduler
from diffusion_policy.model.vision.model_getter import get_resnet from diffusion_policy.model.vision.model_getter import get_resnet
from diffusion_policy.model.vision.multi_image_obs_encoder import MultiImageObsEncoder
from diffusion_policy.policy.diffusion_unet_image_policy import DiffusionUnetImagePolicy from .diffusion_unet_image_policy import DiffusionUnetImagePolicy
from .multi_image_obs_encoder import MultiImageObsEncoder
FIRST_ACTION = 0 FIRST_ACTION = 0
@ -99,10 +101,15 @@ class DiffusionPolicy(nn.Module):
# TODO(rcadene): remove unused step_count # TODO(rcadene): remove unused step_count
del step_count del step_count
# TODO(rcadene): remove unsqueeze hack...
if observation["image"].ndim == 3:
observation["image"] = observation["image"].unsqueeze(0)
observation["state"] = observation["state"].unsqueeze(0)
obs_dict = { obs_dict = {
# c h w -> b t c h w (b=1, t=1) # TODO(rcadene): hack to add temporal dim
"image": observation["image"][None, None, ...], "image": einops.rearrange(observation["image"], "b c h w -> b 1 c h w"),
"agent_pos": observation["state"][None, None, ...], "agent_pos": einops.rearrange(observation["state"], "b c -> b 1 c"),
} }
out = self.diffusion.predict_action(obs_dict) out = self.diffusion.predict_action(obs_dict)

View File

@ -4,7 +4,7 @@ def make_policy(cfg):
policy = TDMPC(cfg.policy) policy = TDMPC(cfg.policy)
elif cfg.policy.name == "diffusion": elif cfg.policy.name == "diffusion":
from lerobot.common.policies.diffusion import DiffusionPolicy from lerobot.common.policies.diffusion.policy import DiffusionPolicy
policy = DiffusionPolicy( policy = DiffusionPolicy(
cfg=cfg.policy, cfg=cfg.policy,

View File

@ -138,9 +138,6 @@ class TDMPC(nn.Module):
"state": observation["state"].contiguous(), "state": observation["state"].contiguous(),
} }
action = self.act(obs, t0=t0, step=self.step.item()) action = self.act(obs, t0=t0, step=self.step.item())
# TODO(rcadene): hack to postprocess action (e.g. unnormalize)
# action = action * self.action_std + self.action_mean
return action return action
@torch.no_grad() @torch.no_grad()

View File

@ -147,7 +147,7 @@ def train(cfg: dict, out_dir=None, job_name=None):
env = make_env(cfg, transform=offline_buffer._transform) env = make_env(cfg, transform=offline_buffer._transform)
logging.info("make_policy") logging.info("make_policy")
policy = make_policy(cfg, transform=offline_buffer._transform) policy = make_policy(cfg)
td_policy = TensorDictModule( td_policy = TensorDictModule(
policy, policy,