Added normalization schemes and style checks

This commit is contained in:
Michel Aractingi 2024-12-29 12:51:21 +00:00 committed by AdilZouitine
parent 9dafad15e6
commit 80b86e9bc3
10 changed files with 206 additions and 150 deletions

View File

@ -25,13 +25,13 @@ from glob import glob
from pathlib import Path
import torch
import wandb
from huggingface_hub.constants import SAFETENSORS_SINGLE_FILE
from omegaconf import DictConfig, OmegaConf
from termcolor import colored
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler
import wandb
from lerobot.common.policies.policy_protocol import Policy
from lerobot.common.utils.utils import get_global_random_state, set_global_random_state

View File

@ -2,8 +2,6 @@ import json
import os
from dataclasses import asdict, dataclass
import torch
@dataclass
class ClassifierConfig:

View File

@ -23,9 +23,11 @@ class ClassifierOutput:
self.hidden_states = hidden_states
def __repr__(self):
return (f"ClassifierOutput(logits={self.logits}, "
f"probabilities={self.probabilities}, "
f"hidden_states={self.hidden_states})")
return (
f"ClassifierOutput(logits={self.logits}, "
f"probabilities={self.probabilities}, "
f"hidden_states={self.hidden_states})"
)
class Classifier(
@ -74,7 +76,7 @@ class Classifier(
self.feature_dim = self.encoder.config.hidden_sizes[-1] # Last channel dimension
else:
raise ValueError("Unsupported CNN architecture")
self.encoder = self.encoder.to(self.config.device)
def _freeze_encoder(self) -> None:

View File

@ -1,6 +1,6 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");

View File

@ -1,6 +1,6 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -26,4 +26,4 @@ class HILSerlPolicy(
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "hilserl"],
):
pass
pass

View File

@ -1,6 +1,6 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -15,7 +15,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from dataclasses import dataclass, field
@dataclass
@ -30,14 +30,36 @@ class SACConfig:
critic_target_update_weight = 0.005
utd_ratio = 2
critic_network_kwargs = {
"hidden_dims": [256, 256],
"activate_final": True,
}
"hidden_dims": [256, 256],
"activate_final": True,
}
actor_network_kwargs = {
"hidden_dims": [256, 256],
"activate_final": True,
}
"hidden_dims": [256, 256],
"activate_final": True,
}
policy_kwargs = {
"tanh_squash_distribution": True,
"std_parameterization": "uniform",
"tanh_squash_distribution": True,
"std_parameterization": "uniform",
}
input_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"observation.image": [3, 84, 84],
"observation.state": [4],
}
)
output_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"action": [4],
}
)
state_encoder_hidden_dim: int = 256
latent_dim: int = 256
network_hidden_dims: int = 256
# Normalization / Unnormalization
input_normalization_modes: dict[str, str] | None = None
output_normalization_modes: dict[str, str] = field(
default_factory=lambda: {"action": "min_max"},
)

View File

@ -1,6 +1,6 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team.
# Copyright 2024 The HuggingFace Inc. team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -40,11 +40,9 @@ class SACPolicy(
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "RL", "SAC"],
):
def __init__(
self, config: SACConfig | None = None, dataset_stats: dict[str, dict[str, Tensor]] | None = None
):
super().__init__()
if config is None:
@ -67,12 +65,9 @@ class SACPolicy(
# Define networks
critic_nets = []
for _ in range(config.num_critics):
critic_net = Critic(
encoder=encoder,
network=MLP(**config.critic_network_kwargs)
)
critic_net = Critic(encoder=encoder, network=MLP(**config.critic_network_kwargs))
critic_nets.append(critic_net)
self.critic_ensemble = create_critic_ensemble(critic_nets, config.num_critics)
self.critic_target = deepcopy(self.critic_ensemble)
@ -80,11 +75,11 @@ class SACPolicy(
encoder=encoder,
network=MLP(**config.actor_network_kwargs),
action_dim=config.output_shapes["action"][0],
**config.policy_kwargs
**config.policy_kwargs,
)
if config.target_entropy is None:
config.target_entropy = -np.prod(config.output_shapes["action"][0]) # (-dim(A))
self.temperature = LagrangeMultiplier(init_value=config.temperature_init)
config.target_entropy = -np.prod(config.output_shapes["action"][0]) # (-dim(A))
self.temperature = LagrangeMultiplier(init_value=config.temperature_init)
def reset(self):
"""
@ -100,10 +95,10 @@ class SACPolicy(
self._queues["observation.image"] = deque(maxlen=1)
if self._use_env_state:
self._queues["observation.environment_state"] = deque(maxlen=1)
@torch.no_grad()
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
actions, _ = self.actor_network(batch['observations'])###
actions, _ = self.actor_network(batch["observations"]) ###
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor | float]:
"""Run the batch through the model and compute the loss.
@ -111,8 +106,8 @@ class SACPolicy(
Returns a dictionary with loss as a tensor, and other information as native floats.
"""
batch = self.normalize_inputs(batch)
# batch shape is (b, 2, ...) where index 1 returns the current observation and
# the next observation for caluculating the right td index.
# batch shape is (b, 2, ...) where index 1 returns the current observation and
# the next observation for caluculating the right td index.
actions = batch["action"][:, 0]
rewards = batch["next.reward"][:, 0]
observations = {}
@ -121,13 +116,12 @@ class SACPolicy(
if k.startswith("observation."):
observations[k] = batch[k][:, 0]
next_observations[k] = batch[k][:, 1]
# perform image augmentation
# reward bias
# from HIL-SERL code base
# from HIL-SERL code base
# add_or_replace={"rewards": batch["rewards"] + self.config["reward_bias"]} in reward_batch
# calculate critics loss
# 1- compute actions from policy
@ -137,7 +131,7 @@ class SACPolicy(
# subsample critics to prevent overfitting if use high UTD (update to date)
if self.config.num_subsample_critics is not None:
indices = torch.randperm(self.config.num_critics)
indices = indices[:self.config.num_subsample_critics]
indices = indices[: self.config.num_subsample_critics]
q_targets = q_targets[indices]
# critics subsample size
@ -151,8 +145,9 @@ class SACPolicy(
# 4- Calculate loss
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
critics_loss = (
F.mse_loss(
critics_loss = (
(
F.mse_loss(
q_preds,
einops.repeat(td_target, "t b -> e t b", e=q_preds.shape[0]),
reduction="none",
@ -163,15 +158,17 @@ class SACPolicy(
# q_targets depends on the reward and the next observations.
* ~batch["next.reward_is_pad"]
* ~batch["observation.state_is_pad"][1:]
).sum(0).mean()
)
.sum(0)
.mean()
)
# calculate actors loss
# 1- temperature
temperature = self.temperature()
# 2- get actions (batch_size, action_dim) and log probs (batch_size,)
actions, log_probs = self.actor_network(observations) \
actions, log_probs = self.actor_network(observations)
# 3- get q-value predictions
with torch.no_grad():
q_preds = self.critic_ensemble(observations, actions, return_type="mean")
@ -181,36 +178,31 @@ class SACPolicy(
* ~batch["action_is_pad"]
).mean()
# calculate temperature loss
# 1- calculate entropy
entropy = -log_probs.mean()
temperature_loss = self.temp(
lhs=entropy,
rhs=self.config.target_entropy
)
temperature_loss = self.temp(lhs=entropy, rhs=self.config.target_entropy)
loss = critics_loss + actor_loss + temperature_loss
return {
"critics_loss": critics_loss.item(),
"actor_loss": actor_loss.item(),
"temperature_loss": temperature_loss.item(),
"temperature": temperature.item(),
"entropy": entropy.item(),
"loss": loss,
"critics_loss": critics_loss.item(),
"actor_loss": actor_loss.item(),
"temperature_loss": temperature_loss.item(),
"temperature": temperature.item(),
"entropy": entropy.item(),
"loss": loss,
}
}
def update(self):
self.critic_target.lerp_(self.critic_ensemble, self.config.critic_target_update_weight)
# TODO: implement UTD update
# First update only critics for utd_ratio-1 times
#for critic_step in range(self.config.utd_ratio - 1):
# only update critic and critic target
# for critic_step in range(self.config.utd_ratio - 1):
# only update critic and critic target
# Then update critic, critic target, actor and temperature
#for target_param, param in zip(self.critic_target.parameters(), self.critic_ensemble.parameters()):
# for target_param, param in zip(self.critic_target.parameters(), self.critic_ensemble.parameters()):
# target_param.data.copy_(target_param.data * (1.0 - self.config.critic_target_update_weight) + param.data * self.critic_target_update_weight)
@ -225,24 +217,28 @@ class MLP(nn.Module):
super().__init__()
self.activate_final = config.activate_final
layers = []
for i, size in enumerate(config.network_hidden_dims):
layers.append(nn.Linear(config.network_hidden_dims[i-1] if i > 0 else config.network_hidden_dims[0], size))
layers.append(
nn.Linear(config.network_hidden_dims[i - 1] if i > 0 else config.network_hidden_dims[0], size)
)
if i + 1 < len(config.network_hidden_dims) or activate_final:
if dropout_rate is not None and dropout_rate > 0:
layers.append(nn.Dropout(p=dropout_rate))
layers.append(nn.LayerNorm(size))
layers.append(activations if isinstance(activations, nn.Module) else getattr(nn, activations)())
layers.append(
activations if isinstance(activations, nn.Module) else getattr(nn, activations)()
)
self.net = nn.Sequential(*layers)
def forward(self, x: torch.Tensor, train: bool = False) -> torch.Tensor:
# in training mode or not. TODO: find better way to do this
self.train(train)
self.train(train)
return self.net(x)
class Critic(nn.Module):
def __init__(
self,
@ -250,7 +246,7 @@ class Critic(nn.Module):
network: nn.Module,
init_final: Optional[float] = None,
activate_final: bool = False,
device: str = "cuda"
device: str = "cuda",
):
super().__init__()
self.device = torch.device(device)
@ -258,7 +254,7 @@ class Critic(nn.Module):
self.network = network
self.init_final = init_final
self.activate_final = activate_final
# Output layer
if init_final is not None:
if self.activate_final:
@ -273,36 +269,28 @@ class Critic(nn.Module):
else:
self.output_layer = nn.Linear(network.net[-2].out_features, 1)
orthogonal_init()(self.output_layer.weight)
self.to(self.device)
def forward(
self,
observations: torch.Tensor,
actions: torch.Tensor,
train: bool = False
) -> torch.Tensor:
def forward(self, observations: torch.Tensor, actions: torch.Tensor, train: bool = False) -> torch.Tensor:
self.train(train)
observations = observations.to(self.device)
actions = actions.to(self.device)
obs_enc = observations if self.encoder is None else self.encoder(observations)
inputs = torch.cat([obs_enc, actions], dim=-1)
x = self.network(inputs)
value = self.output_layer(x)
return value.squeeze(-1)
def q_value_ensemble(
self,
observations: torch.Tensor,
actions: torch.Tensor,
train: bool = False
self, observations: torch.Tensor, actions: torch.Tensor, train: bool = False
) -> torch.Tensor:
observations = observations.to(self.device)
actions = actions.to(self.device)
if len(actions.shape) == 3: # [batch_size, num_actions, action_dim]
batch_size, num_actions = actions.shape[:2]
obs_expanded = observations.unsqueeze(1).expand(-1, num_actions, -1)
@ -327,7 +315,7 @@ class Policy(nn.Module):
fixed_std: Optional[torch.Tensor] = None,
init_final: Optional[float] = None,
activate_final: bool = False,
device: str = "cuda"
device: str = "cuda",
):
super().__init__()
self.device = torch.device(device)
@ -340,7 +328,7 @@ class Policy(nn.Module):
self.tanh_squash_distribution = tanh_squash_distribution
self.fixed_std = fixed_std.to(self.device) if fixed_std is not None else None
self.activate_final = activate_final
# Mean layer
if self.activate_final:
self.mean_layer = nn.Linear(network.net[-3].out_features, action_dim)
@ -351,7 +339,7 @@ class Policy(nn.Module):
nn.init.uniform_(self.mean_layer.bias, -init_final, init_final)
else:
orthogonal_init()(self.mean_layer.weight)
# Standard deviation layer or parameter
if fixed_std is None:
if std_parameterization == "uniform":
@ -366,18 +354,18 @@ class Policy(nn.Module):
nn.init.uniform_(self.std_layer.bias, -init_final, init_final)
else:
orthogonal_init()(self.std_layer.weight)
self.to(self.device)
def forward(
self,
self,
observations: torch.Tensor,
temperature: float = 1.0,
train: bool = False,
non_squash_distribution: bool = False
non_squash_distribution: bool = False,
) -> torch.distributions.Distribution:
self.train(train)
# Encode observations if encoder exists
if self.encoder is not None:
with torch.set_grad_enabled(train):
@ -387,7 +375,7 @@ class Policy(nn.Module):
# Get network outputs
outputs = self.network(obs_enc)
means = self.mean_layer(outputs)
# Compute standard deviations
if self.fixed_std is None:
if self.std_parameterization == "exp":
@ -398,9 +386,7 @@ class Policy(nn.Module):
elif self.std_parameterization == "uniform":
stds = torch.exp(self.log_stds).expand_as(means)
else:
raise ValueError(
f"Invalid std_parameterization: {self.std_parameterization}"
)
raise ValueError(f"Invalid std_parameterization: {self.std_parameterization}")
else:
assert self.std_parameterization == "fixed"
stds = self.fixed_std.expand_as(means)
@ -422,7 +408,7 @@ class Policy(nn.Module):
)
return distribution
def get_features(self, observations: torch.Tensor) -> torch.Tensor:
"""Get encoded features from observations"""
observations = observations.to(self.device)
@ -503,56 +489,47 @@ class SACObservationEncoder(nn.Module):
if "observation.state" in self.config.input_shapes:
feat.append(self.state_enc_layers(obs_dict["observation.state"]))
return torch.stack(feat, dim=0).mean(0)
class LagrangeMultiplier(nn.Module):
def __init__(
self,
init_value: float = 1.0,
constraint_shape: Sequence[int] = (),
device: str = "cuda"
):
def __init__(self, init_value: float = 1.0, constraint_shape: Sequence[int] = (), device: str = "cuda"):
super().__init__()
self.device = torch.device(device)
init_value = torch.log(torch.exp(torch.tensor(init_value, device=self.device)) - 1)
# Initialize the Lagrange multiplier as a parameter
self.lagrange = nn.Parameter(
torch.full(constraint_shape, init_value, dtype=torch.float32, device=self.device)
)
self.to(self.device)
def forward(
self,
lhs: Optional[torch.Tensor] = None,
rhs: Optional[torch.Tensor] = None
) -> torch.Tensor:
# Get the multiplier value based on parameterization
def forward(self, lhs: Optional[torch.Tensor] = None, rhs: Optional[torch.Tensor] = None) -> torch.Tensor:
# Get the multiplier value based on parameterization
multiplier = torch.nn.functional.softplus(self.lagrange)
# Return the raw multiplier if no constraint values provided
if lhs is None:
return multiplier
# Move inputs to device
lhs = lhs.to(self.device)
if rhs is not None:
rhs = rhs.to(self.device)
# Use the multiplier to compute the Lagrange penalty
if rhs is None:
rhs = torch.zeros_like(lhs, device=self.device)
diff = lhs - rhs
assert diff.shape == multiplier.shape, f"Shape mismatch: {diff.shape} vs {multiplier.shape}"
return multiplier * diff
# The TanhMultivariateNormalDiag is a probability distribution that represents a transformed normal (Gaussian) distribution where:
# 1. The base distribution is a diagonal multivariate normal distribution
# 1. The base distribution is a diagonal multivariate normal distribution
# 2. The samples from this normal distribution are transformed through a tanh function, which squashes the values to be between -1 and 1
# 3. Optionally, the values can be further transformed to fit within arbitrary bounds [low, high] using an affine transformation
# This type of distribution is commonly used in reinforcement learning, particularly for continuous action spaces
@ -568,28 +545,22 @@ class TanhMultivariateNormalDiag(torch.distributions.TransformedDistribution):
):
# Create base normal distribution
base_distribution = torch.distributions.Normal(loc=loc, scale=scale_diag)
# Create list of transforms
transforms = []
# Add tanh transform
transforms.append(torch.distributions.transforms.TanhTransform())
# Add rescaling transform if bounds are provided
if low is not None and high is not None:
transforms.append(
torch.distributions.transforms.AffineTransform(
loc=(high + low) / 2,
scale=(high - low) / 2
)
torch.distributions.transforms.AffineTransform(loc=(high + low) / 2, scale=(high - low) / 2)
)
# Initialize parent class
super().__init__(
base_distribution=base_distribution,
transforms=transforms
)
super().__init__(base_distribution=base_distribution, transforms=transforms)
# Store parameters
self.loc = loc
self.scale_diag = scale_diag
@ -600,11 +571,11 @@ class TanhMultivariateNormalDiag(torch.distributions.TransformedDistribution):
"""Get the mode of the transformed distribution"""
# The mode of a normal distribution is its mean
mode = self.loc
# Apply transforms
for transform in self.transforms:
mode = transform(mode)
return mode
def rsample(self, sample_shape=DEFAULT_SAMPLE_SHAPE) -> torch.Tensor:
@ -613,11 +584,11 @@ class TanhMultivariateNormalDiag(torch.distributions.TransformedDistribution):
"""
# Sample from base distribution
x = self.base_dist.rsample(sample_shape)
# Apply transforms
for transform in self.transforms:
x = transform(x)
return x
def log_prob(self, value: torch.Tensor) -> torch.Tensor:
@ -627,16 +598,16 @@ class TanhMultivariateNormalDiag(torch.distributions.TransformedDistribution):
"""
# Initialize log prob
log_prob = torch.zeros_like(value[..., 0])
# Inverse transforms to get back to normal distribution
q = value
for transform in reversed(self.transforms):
q = transform.inv(q)
log_prob = log_prob - transform.log_abs_det_jacobian(q, transform(q))
# Add base distribution log prob
log_prob = log_prob + self.base_dist.log_prob(q).sum(-1)
return log_prob
def sample_and_log_prob(self, sample_shape=DEFAULT_SAMPLE_SHAPE) -> Tuple[torch.Tensor, torch.Tensor]:
@ -653,13 +624,13 @@ class TanhMultivariateNormalDiag(torch.distributions.TransformedDistribution):
"""
# Start with base distribution entropy
entropy = self.base_dist.entropy().sum(-1)
# Add log det jacobian for each transform
x = self.rsample()
for transform in self.transforms:
entropy = entropy + transform.log_abs_det_jacobian(x, transform(x))
x = transform(x)
return entropy
@ -680,7 +651,7 @@ def flatten_forward_unflatten(fn: Callable[[Tensor], Tensor], image_tensor: Tens
Args:
fn: Callable that the image tensor will be passed to. It should accept (B, C, H, W) and return
(B, *), where * is any number of dimensions.
image_tensor: An image tensor of shape (**, C, H, W), where ** is any number of dimensions and
image_tensor: An image tensor of shape (**, C, H, W), where ** is any number of dimensions and
can be more than 1 dimensions, generally different from *.
Returns:
A return value from the callable reshaped to (**, *).
@ -691,4 +662,3 @@ def flatten_forward_unflatten(fn: Callable[[Tensor], Tensor], image_tensor: Tens
inp = torch.flatten(image_tensor, end_dim=-4)
flat_out = fn(inp)
return torch.reshape(flat_out, (*start_dims, *flat_out.shape[1:]))

View File

@ -24,7 +24,7 @@ python lerobot/scripts/eval_on_robot.py \
```
**NOTE** (michel-aractingi): This script is incomplete and it is being prepared
for running training on the real robot.
for running training on the real robot.
"""
import argparse
@ -47,7 +47,7 @@ from lerobot.common.utils.utils import (
def rollout(robot: Robot, policy: Policy, fps: int, control_time_s: float = 20, use_amp: bool = True) -> dict:
"""Run a batched policy rollout on the real robot.
"""Run a batched policy rollout on the real robot.
The return dictionary contains:
"robot": A a dictionary of (batch, sequence + 1, *) tensors mapped to observation
@ -64,7 +64,7 @@ def rollout(robot: Robot, policy: Policy, fps: int, control_time_s: float = 20,
extraneous elements from the sequences above.
Args:
robot: The robot class that defines the interface with the real robot.
robot: The robot class that defines the interface with the real robot.
policy: The policy. Must be a PyTorch nn module.
Returns:
@ -77,7 +77,7 @@ def rollout(robot: Robot, policy: Policy, fps: int, control_time_s: float = 20,
listener, events = init_keyboard_listener()
# Reset the policy. TODO (michel-aractingi) add real policy evaluation once the code is ready.
# policy.reset()
# policy.reset()
# Get observation from real robot
observation = robot.capture_observation()

View File

@ -53,6 +53,70 @@ from lerobot.configs.train import TrainPipelineConfig
from lerobot.scripts.eval import eval_policy
def make_optimizer_and_scheduler(cfg, policy):
if cfg.policy.name == "act":
optimizer_params_dicts = [
{
"params": [
p
for n, p in policy.named_parameters()
if not n.startswith("model.backbone") and p.requires_grad
]
},
{
"params": [
p
for n, p in policy.named_parameters()
if n.startswith("model.backbone") and p.requires_grad
],
"lr": cfg.training.lr_backbone,
},
]
optimizer = torch.optim.AdamW(
optimizer_params_dicts, lr=cfg.training.lr, weight_decay=cfg.training.weight_decay
)
lr_scheduler = None
elif cfg.policy.name == "diffusion":
optimizer = torch.optim.Adam(
policy.diffusion.parameters(),
cfg.training.lr,
cfg.training.adam_betas,
cfg.training.adam_eps,
cfg.training.adam_weight_decay,
)
from diffusers.optimization import get_scheduler
lr_scheduler = get_scheduler(
cfg.training.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.training.lr_warmup_steps,
num_training_steps=cfg.training.offline_steps,
)
elif policy.name == "tdmpc":
optimizer = torch.optim.Adam(policy.parameters(), cfg.training.lr)
lr_scheduler = None
elif policy.name == "sac":
optimizer = torch.optim.Adam(
[
{"params": policy.actor.parameters(), "lr": policy.config.actor_lr},
{"params": policy.critic_ensemble.parameters(), "lr": policy.config.critic_lr},
{"params": policy.temperature.parameters(), "lr": policy.config.temperature_lr},
]
)
lr_scheduler = None
elif cfg.policy.name == "vqbet":
from lerobot.common.policies.vqbet.modeling_vqbet import VQBeTOptimizer, VQBeTScheduler
optimizer = VQBeTOptimizer(policy, cfg)
lr_scheduler = VQBeTScheduler(optimizer, cfg)
else:
raise NotImplementedError()
return optimizer, lr_scheduler
def update_policy(
train_metrics: MetricsTracker,
policy: PreTrainedPolicy,

View File

@ -22,7 +22,6 @@ from pprint import pformat
import hydra
import torch
import torch.nn as nn
import wandb
from deepdiff import DeepDiff
from omegaconf import DictConfig, OmegaConf
from termcolor import colored
@ -31,6 +30,7 @@ from torch.cuda.amp import GradScaler
from torch.utils.data import DataLoader, WeightedRandomSampler, random_split
from tqdm import tqdm
import wandb
from lerobot.common.datasets.factory import resolve_delta_timestamps
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.logger import Logger