WIP
This commit is contained in:
parent
72f402d44b
commit
850e6d540d
|
@ -0,0 +1,86 @@
|
||||||
|
import math
|
||||||
|
import threading
|
||||||
|
import time
|
||||||
|
from threading import Thread
|
||||||
|
|
||||||
|
|
||||||
|
class TemporalQueue:
|
||||||
|
def __init__(self):
|
||||||
|
self.items = []
|
||||||
|
self.timestamps = []
|
||||||
|
|
||||||
|
def add(self, item, timestamp):
|
||||||
|
self.items.append(item)
|
||||||
|
self.timestamps.append(timestamp)
|
||||||
|
|
||||||
|
def get(self, timestamp=None):
|
||||||
|
if timestamp is None:
|
||||||
|
return self.items[-1], self.timestamps[-1]
|
||||||
|
|
||||||
|
# TODO(rcadene): implement nearest neighbor instead of hacky floor
|
||||||
|
for idx, t in list(enumerate(self.timestamps))[::-1]:
|
||||||
|
if math.floor(t) == math.floor(timestamp):
|
||||||
|
return self.items[idx], t
|
||||||
|
|
||||||
|
raise ValueError()
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.items)
|
||||||
|
|
||||||
|
|
||||||
|
class Policy:
|
||||||
|
def __init__(self):
|
||||||
|
self.obs_queue = TemporalQueue()
|
||||||
|
self.action_queue = TemporalQueue()
|
||||||
|
self.thread = None
|
||||||
|
|
||||||
|
def inference(self, observation):
|
||||||
|
# TODO
|
||||||
|
time.sleep(0.5)
|
||||||
|
return observation
|
||||||
|
|
||||||
|
def inference_loop(self):
|
||||||
|
previous_timestamp = None
|
||||||
|
while not self.stop_event.is_set():
|
||||||
|
latest_observation, latest_timestamp = self.obs_queue.get()
|
||||||
|
|
||||||
|
if previous_timestamp is not None and previous_timestamp == latest_timestamp:
|
||||||
|
time.sleep(
|
||||||
|
0.1
|
||||||
|
) # in case inference ran faster than recording/adding a new observation in the queue
|
||||||
|
else:
|
||||||
|
predicted_action_sequence = self.inference(latest_observation)
|
||||||
|
self.action_queue.add(predicted_action_sequence, latest_timestamp)
|
||||||
|
previous_timestamp = latest_timestamp
|
||||||
|
|
||||||
|
def select_action(
|
||||||
|
self,
|
||||||
|
new_observation: int,
|
||||||
|
) -> list[int]:
|
||||||
|
present_time = time.time()
|
||||||
|
self.obs_queue.add(new_observation, present_time)
|
||||||
|
|
||||||
|
if self.thread is None:
|
||||||
|
self.stop_event = threading.Event()
|
||||||
|
self.thread = Thread(target=self.inference_loop, args=())
|
||||||
|
self.thread.daemon = True
|
||||||
|
self.thread.start()
|
||||||
|
|
||||||
|
next_action = None
|
||||||
|
while next_action is None:
|
||||||
|
try:
|
||||||
|
next_action = self.action_queue.get(present_time)
|
||||||
|
except ValueError:
|
||||||
|
time.sleep(0.1) # no action available at this present time, we wait a bit
|
||||||
|
|
||||||
|
return next_action
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
time.sleep(1)
|
||||||
|
policy = Policy()
|
||||||
|
|
||||||
|
for new_observation in range(10):
|
||||||
|
next_action = policy.select_action(new_observation)
|
||||||
|
print(f"{new_observation=}, {next_action=}")
|
||||||
|
time.sleep(0.5) # frequency at which we receive a new observation (5 Hz = 0.2 s)
|
Loading…
Reference in New Issue