Add type annotations and restructure SACConfig class fields
This commit is contained in:
parent
a8fda9c61a
commit
87da655eab
|
@ -16,6 +16,7 @@
|
|||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Any
|
||||
|
||||
|
||||
@dataclass
|
||||
|
@ -26,6 +27,7 @@ class SACConfig:
|
|||
"observation.state": [4],
|
||||
}
|
||||
)
|
||||
|
||||
output_shapes: dict[str, list[int]] = field(
|
||||
default_factory=lambda: {
|
||||
"action": [2],
|
||||
|
@ -43,36 +45,64 @@ class SACConfig:
|
|||
output_normalization_modes: dict[str, str] = field(
|
||||
default_factory=lambda: {"action": "min_max"},
|
||||
)
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
shared_encoder = False
|
||||
discount = 0.99
|
||||
temperature_init = 1.0
|
||||
num_critics = 2
|
||||
# num_critics = 8
|
||||
num_subsample_critics = None
|
||||
# num_subsample_critics = 2
|
||||
# critic_lr = 1e-3
|
||||
critic_lr = 3e-4
|
||||
actor_lr = 3e-4
|
||||
temperature_lr = 3e-4
|
||||
critic_target_update_weight = 0.005
|
||||
# utd_ratio = 8
|
||||
utd_ratio = 1 # If you want enable utd_ratio, you need to set it to >1
|
||||
state_encoder_hidden_dim = 256
|
||||
latent_dim = 256
|
||||
target_entropy = None
|
||||
# backup_entropy = False
|
||||
use_backup_entropy = True
|
||||
critic_network_kwargs = {
|
||||
"hidden_dims": [256, 256],
|
||||
"activate_final": True,
|
||||
}
|
||||
actor_network_kwargs = {
|
||||
"hidden_dims": [256, 256],
|
||||
"activate_final": True,
|
||||
}
|
||||
policy_kwargs = {
|
||||
"use_tanh_squash": True,
|
||||
"log_std_min": -5,
|
||||
"log_std_max": 2,
|
||||
}
|
||||
@dataclass
|
||||
class SACConfig:
|
||||
input_shapes: dict[str, list[int]] = field(
|
||||
default_factory=lambda: {
|
||||
"observation.image": [3, 84, 84],
|
||||
"observation.state": [4],
|
||||
}
|
||||
)
|
||||
output_shapes: dict[str, list[int]] = field(
|
||||
default_factory=lambda: {
|
||||
"action": [2],
|
||||
}
|
||||
)
|
||||
input_normalization_modes: dict[str, str] = field(
|
||||
default_factory=lambda: {
|
||||
"observation.image": "mean_std",
|
||||
"observation.state": "min_max",
|
||||
"observation.environment_state": "min_max",
|
||||
}
|
||||
)
|
||||
output_normalization_modes: dict[str, str] = field(
|
||||
default_factory=lambda: {"action": "min_max"}
|
||||
)
|
||||
|
||||
# Add type annotations for these fields:
|
||||
image_encoder_hidden_dim: int = 32
|
||||
shared_encoder: bool = False
|
||||
discount: float = 0.99
|
||||
temperature_init: float = 1.0
|
||||
num_critics: int = 2
|
||||
num_subsample_critics: int | None = None
|
||||
critic_lr: float = 3e-4
|
||||
actor_lr: float = 3e-4
|
||||
temperature_lr: float = 3e-4
|
||||
critic_target_update_weight: float = 0.005
|
||||
utd_ratio: int = 1 # If you want enable utd_ratio, you need to set it to >1
|
||||
state_encoder_hidden_dim: int = 256
|
||||
latent_dim: int = 256
|
||||
target_entropy: float | None = None
|
||||
use_backup_entropy: bool = True
|
||||
critic_network_kwargs: dict[str, Any] = field(
|
||||
default_factory=lambda: {
|
||||
"hidden_dims": [256, 256],
|
||||
"activate_final": True,
|
||||
}
|
||||
)
|
||||
actor_network_kwargs: dict[str, Any] = field(
|
||||
default_factory=lambda: {
|
||||
"hidden_dims": [256, 256],
|
||||
"activate_final": True,
|
||||
}
|
||||
)
|
||||
policy_kwargs: dict[str, Any] = field(
|
||||
default_factory=lambda: {
|
||||
"use_tanh_squash": True,
|
||||
"log_std_min": -5,
|
||||
"log_std_max": 2,
|
||||
}
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue