Merge branch 'main' into bugfix/opencv-script-types
This commit is contained in:
commit
8af3316a87
|
@ -3,7 +3,7 @@ default_language_version:
|
|||
python: python3.10
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.6.0
|
||||
rev: v5.0.0
|
||||
hooks:
|
||||
- id: check-added-large-files
|
||||
- id: debug-statements
|
||||
|
@ -14,11 +14,11 @@ repos:
|
|||
- id: end-of-file-fixer
|
||||
- id: trailing-whitespace
|
||||
- repo: https://github.com/asottile/pyupgrade
|
||||
rev: v3.16.0
|
||||
rev: v3.19.0
|
||||
hooks:
|
||||
- id: pyupgrade
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.5.2
|
||||
rev: v0.8.2
|
||||
hooks:
|
||||
- id: ruff
|
||||
args: [--fix]
|
||||
|
@ -32,6 +32,6 @@ repos:
|
|||
- "--check"
|
||||
- "--no-update"
|
||||
- repo: https://github.com/gitleaks/gitleaks
|
||||
rev: v8.18.4
|
||||
rev: v8.21.2
|
||||
hooks:
|
||||
- id: gitleaks
|
||||
|
|
|
@ -68,7 +68,7 @@
|
|||
|
||||
### Acknowledgment
|
||||
|
||||
- Thanks to Tony Zaho, Zipeng Fu and colleagues for open sourcing ACT policy, ALOHA environments and datasets. Ours are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha) and [Mobile ALOHA](https://mobile-aloha.github.io).
|
||||
- Thanks to Tony Zhao, Zipeng Fu and colleagues for open sourcing ACT policy, ALOHA environments and datasets. Ours are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha) and [Mobile ALOHA](https://mobile-aloha.github.io).
|
||||
- Thanks to Cheng Chi, Zhenjia Xu and colleagues for open sourcing Diffusion policy, Pusht environment and datasets, as well as UMI datasets. Ours are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu) and [UMI Gripper](https://umi-gripper.github.io).
|
||||
- Thanks to Nicklas Hansen, Yunhai Feng and colleagues for open sourcing TDMPC policy, Simxarm environments and datasets. Ours are adapted from [TDMPC](https://github.com/nicklashansen/tdmpc) and [FOWM](https://www.yunhaifeng.com/FOWM).
|
||||
- Thanks to Antonio Loquercio and Ashish Kumar for their early support.
|
||||
|
|
|
@ -10,10 +10,10 @@ from torchvision.transforms import ToPILImage, v2
|
|||
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
|
||||
dataset_repo_id = "lerobot/aloha_static_tape"
|
||||
dataset_repo_id = "lerobot/aloha_static_screw_driver"
|
||||
|
||||
# Create a LeRobotDataset with no transformations
|
||||
dataset = LeRobotDataset(dataset_repo_id)
|
||||
dataset = LeRobotDataset(dataset_repo_id, episodes=[0])
|
||||
# This is equivalent to `dataset = LeRobotDataset(dataset_repo_id, image_transforms=None)`
|
||||
|
||||
# Get the index of the first observation in the first episode
|
||||
|
@ -28,12 +28,13 @@ transforms = v2.Compose(
|
|||
[
|
||||
v2.ColorJitter(brightness=(0.5, 1.5)),
|
||||
v2.ColorJitter(contrast=(0.5, 1.5)),
|
||||
v2.ColorJitter(hue=(-0.1, 0.1)),
|
||||
v2.RandomAdjustSharpness(sharpness_factor=2, p=1),
|
||||
]
|
||||
)
|
||||
|
||||
# Create another LeRobotDataset with the defined transformations
|
||||
transformed_dataset = LeRobotDataset(dataset_repo_id, image_transforms=transforms)
|
||||
transformed_dataset = LeRobotDataset(dataset_repo_id, episodes=[0], image_transforms=transforms)
|
||||
|
||||
# Get a frame from the transformed dataset
|
||||
transformed_frame = transformed_dataset[first_idx][transformed_dataset.meta.camera_keys[0]]
|
||||
|
|
|
@ -56,7 +56,7 @@ python lerobot/scripts/control_robot.py teleoperate \
|
|||
--robot-overrides max_relative_target=5
|
||||
```
|
||||
|
||||
By adding `--robot-overrides max_relative_target=5`, we override the default value for `max_relative_target` defined in `lerobot/configs/robot/aloha.yaml`. It is expected to be `5` to limit the magnitude of the movement for more safety, but the teloperation won't be smooth. When you feel confident, you can disable this limit by adding `--robot-overrides max_relative_target=null` to the command line:
|
||||
By adding `--robot-overrides max_relative_target=5`, we override the default value for `max_relative_target` defined in `lerobot/configs/robot/aloha.yaml`. It is expected to be `5` to limit the magnitude of the movement for more safety, but the teleoperation won't be smooth. When you feel confident, you can disable this limit by adding `--robot-overrides max_relative_target=null` to the command line:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py teleoperate \
|
||||
--robot-path lerobot/configs/robot/aloha.yaml \
|
||||
|
|
|
@ -28,7 +28,7 @@ def safe_stop_image_writer(func):
|
|||
try:
|
||||
return func(*args, **kwargs)
|
||||
except Exception as e:
|
||||
dataset = kwargs.get("dataset", None)
|
||||
dataset = kwargs.get("dataset")
|
||||
image_writer = getattr(dataset, "image_writer", None) if dataset else None
|
||||
if image_writer is not None:
|
||||
print("Waiting for image writer to terminate...")
|
||||
|
|
|
@ -17,9 +17,11 @@ import importlib.resources
|
|||
import json
|
||||
import logging
|
||||
import textwrap
|
||||
from collections.abc import Iterator
|
||||
from itertools import accumulate
|
||||
from pathlib import Path
|
||||
from pprint import pformat
|
||||
from types import SimpleNamespace
|
||||
from typing import Any
|
||||
|
||||
import datasets
|
||||
|
@ -477,7 +479,6 @@ def create_lerobot_dataset_card(
|
|||
Note: If specified, license must be one of https://huggingface.co/docs/hub/repositories-licenses.
|
||||
"""
|
||||
card_tags = ["LeRobot"]
|
||||
card_template_path = importlib.resources.path("lerobot.common.datasets", "card_template.md")
|
||||
|
||||
if tags:
|
||||
card_tags += tags
|
||||
|
@ -497,8 +498,65 @@ def create_lerobot_dataset_card(
|
|||
],
|
||||
)
|
||||
|
||||
card_template = (importlib.resources.files("lerobot.common.datasets") / "card_template.md").read_text()
|
||||
|
||||
return DatasetCard.from_template(
|
||||
card_data=card_data,
|
||||
template_path=str(card_template_path),
|
||||
template_str=card_template,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class IterableNamespace(SimpleNamespace):
|
||||
"""
|
||||
A namespace object that supports both dictionary-like iteration and dot notation access.
|
||||
Automatically converts nested dictionaries into IterableNamespaces.
|
||||
|
||||
This class extends SimpleNamespace to provide:
|
||||
- Dictionary-style iteration over keys
|
||||
- Access to items via both dot notation (obj.key) and brackets (obj["key"])
|
||||
- Dictionary-like methods: items(), keys(), values()
|
||||
- Recursive conversion of nested dictionaries
|
||||
|
||||
Args:
|
||||
dictionary: Optional dictionary to initialize the namespace
|
||||
**kwargs: Additional keyword arguments passed to SimpleNamespace
|
||||
|
||||
Examples:
|
||||
>>> data = {"name": "Alice", "details": {"age": 25}}
|
||||
>>> ns = IterableNamespace(data)
|
||||
>>> ns.name
|
||||
'Alice'
|
||||
>>> ns.details.age
|
||||
25
|
||||
>>> list(ns.keys())
|
||||
['name', 'details']
|
||||
>>> for key, value in ns.items():
|
||||
... print(f"{key}: {value}")
|
||||
name: Alice
|
||||
details: IterableNamespace(age=25)
|
||||
"""
|
||||
|
||||
def __init__(self, dictionary: dict[str, Any] = None, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
if dictionary is not None:
|
||||
for key, value in dictionary.items():
|
||||
if isinstance(value, dict):
|
||||
setattr(self, key, IterableNamespace(value))
|
||||
else:
|
||||
setattr(self, key, value)
|
||||
|
||||
def __iter__(self) -> Iterator[str]:
|
||||
return iter(vars(self))
|
||||
|
||||
def __getitem__(self, key: str) -> Any:
|
||||
return vars(self)[key]
|
||||
|
||||
def items(self):
|
||||
return vars(self).items()
|
||||
|
||||
def values(self):
|
||||
return vars(self).values()
|
||||
|
||||
def keys(self):
|
||||
return vars(self).keys()
|
||||
|
|
|
@ -184,7 +184,7 @@ def init_policy(pretrained_policy_name_or_path, policy_overrides):
|
|||
def warmup_record(
|
||||
robot,
|
||||
events,
|
||||
enable_teloperation,
|
||||
enable_teleoperation,
|
||||
warmup_time_s,
|
||||
display_cameras,
|
||||
fps,
|
||||
|
@ -195,7 +195,7 @@ def warmup_record(
|
|||
display_cameras=display_cameras,
|
||||
events=events,
|
||||
fps=fps,
|
||||
teleoperate=enable_teloperation,
|
||||
teleoperate=enable_teleoperation,
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -35,7 +35,7 @@ python lerobot/scripts/visualize_dataset.py \
|
|||
--episode-index 0
|
||||
```
|
||||
|
||||
- Replay a sequence of test episodes:
|
||||
- Replay a sequence of test episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_sim_robot.py replay \
|
||||
--robot-path lerobot/configs/robot/your_robot_config.yaml \
|
||||
|
|
|
@ -53,20 +53,29 @@ python lerobot/scripts/visualize_dataset_html.py \
|
|||
"""
|
||||
|
||||
import argparse
|
||||
import csv
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import shutil
|
||||
import tempfile
|
||||
from io import StringIO
|
||||
from pathlib import Path
|
||||
|
||||
import tqdm
|
||||
from flask import Flask, redirect, render_template, url_for
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import requests
|
||||
from flask import Flask, redirect, render_template, request, url_for
|
||||
|
||||
from lerobot import available_datasets
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.datasets.utils import IterableNamespace
|
||||
from lerobot.common.utils.utils import init_logging
|
||||
|
||||
|
||||
def run_server(
|
||||
dataset: LeRobotDataset,
|
||||
episodes: list[int],
|
||||
dataset: LeRobotDataset | IterableNamespace | None,
|
||||
episodes: list[int] | None,
|
||||
host: str,
|
||||
port: str,
|
||||
static_folder: Path,
|
||||
|
@ -76,10 +85,50 @@ def run_server(
|
|||
app.config["SEND_FILE_MAX_AGE_DEFAULT"] = 0 # specifying not to cache
|
||||
|
||||
@app.route("/")
|
||||
def index():
|
||||
# home page redirects to the first episode page
|
||||
[dataset_namespace, dataset_name] = dataset.repo_id.split("/")
|
||||
first_episode_id = episodes[0]
|
||||
def hommepage(dataset=dataset):
|
||||
if dataset:
|
||||
dataset_namespace, dataset_name = dataset.repo_id.split("/")
|
||||
return redirect(
|
||||
url_for(
|
||||
"show_episode",
|
||||
dataset_namespace=dataset_namespace,
|
||||
dataset_name=dataset_name,
|
||||
episode_id=0,
|
||||
)
|
||||
)
|
||||
|
||||
dataset_param, episode_param = None, None
|
||||
all_params = request.args
|
||||
if "dataset" in all_params:
|
||||
dataset_param = all_params["dataset"]
|
||||
if "episode" in all_params:
|
||||
episode_param = int(all_params["episode"])
|
||||
|
||||
if dataset_param:
|
||||
dataset_namespace, dataset_name = dataset_param.split("/")
|
||||
return redirect(
|
||||
url_for(
|
||||
"show_episode",
|
||||
dataset_namespace=dataset_namespace,
|
||||
dataset_name=dataset_name,
|
||||
episode_id=episode_param if episode_param is not None else 0,
|
||||
)
|
||||
)
|
||||
|
||||
featured_datasets = [
|
||||
"lerobot/aloha_static_cups_open",
|
||||
"lerobot/columbia_cairlab_pusht_real",
|
||||
"lerobot/taco_play",
|
||||
]
|
||||
return render_template(
|
||||
"visualize_dataset_homepage.html",
|
||||
featured_datasets=featured_datasets,
|
||||
lerobot_datasets=available_datasets,
|
||||
)
|
||||
|
||||
@app.route("/<string:dataset_namespace>/<string:dataset_name>")
|
||||
def show_first_episode(dataset_namespace, dataset_name):
|
||||
first_episode_id = 0
|
||||
return redirect(
|
||||
url_for(
|
||||
"show_episode",
|
||||
|
@ -90,30 +139,85 @@ def run_server(
|
|||
)
|
||||
|
||||
@app.route("/<string:dataset_namespace>/<string:dataset_name>/episode_<int:episode_id>")
|
||||
def show_episode(dataset_namespace, dataset_name, episode_id):
|
||||
def show_episode(dataset_namespace, dataset_name, episode_id, dataset=dataset, episodes=episodes):
|
||||
repo_id = f"{dataset_namespace}/{dataset_name}"
|
||||
try:
|
||||
if dataset is None:
|
||||
dataset = get_dataset_info(repo_id)
|
||||
except FileNotFoundError:
|
||||
return (
|
||||
"Make sure to convert your LeRobotDataset to v2 & above. See how to convert your dataset at https://github.com/huggingface/lerobot/pull/461",
|
||||
400,
|
||||
)
|
||||
dataset_version = (
|
||||
dataset.meta._version if isinstance(dataset, LeRobotDataset) else dataset.codebase_version
|
||||
)
|
||||
match = re.search(r"v(\d+)\.", dataset_version)
|
||||
if match:
|
||||
major_version = int(match.group(1))
|
||||
if major_version < 2:
|
||||
return "Make sure to convert your LeRobotDataset to v2 & above."
|
||||
|
||||
episode_data_csv_str, columns = get_episode_data(dataset, episode_id)
|
||||
dataset_info = {
|
||||
"repo_id": dataset.repo_id,
|
||||
"num_samples": dataset.num_frames,
|
||||
"num_episodes": dataset.num_episodes,
|
||||
"repo_id": f"{dataset_namespace}/{dataset_name}",
|
||||
"num_samples": dataset.num_frames
|
||||
if isinstance(dataset, LeRobotDataset)
|
||||
else dataset.total_frames,
|
||||
"num_episodes": dataset.num_episodes
|
||||
if isinstance(dataset, LeRobotDataset)
|
||||
else dataset.total_episodes,
|
||||
"fps": dataset.fps,
|
||||
}
|
||||
video_paths = [dataset.meta.get_video_file_path(episode_id, key) for key in dataset.meta.video_keys]
|
||||
tasks = dataset.meta.episodes[episode_id]["tasks"]
|
||||
videos_info = [
|
||||
{"url": url_for("static", filename=video_path), "filename": video_path.name}
|
||||
for video_path in video_paths
|
||||
]
|
||||
if isinstance(dataset, LeRobotDataset):
|
||||
video_paths = [
|
||||
dataset.meta.get_video_file_path(episode_id, key) for key in dataset.meta.video_keys
|
||||
]
|
||||
videos_info = [
|
||||
{"url": url_for("static", filename=video_path), "filename": video_path.parent.name}
|
||||
for video_path in video_paths
|
||||
]
|
||||
tasks = dataset.meta.episodes[0]["tasks"]
|
||||
else:
|
||||
video_keys = [key for key, ft in dataset.features.items() if ft["dtype"] == "video"]
|
||||
videos_info = [
|
||||
{
|
||||
"url": f"https://huggingface.co/datasets/{repo_id}/resolve/main/"
|
||||
+ dataset.video_path.format(
|
||||
episode_chunk=int(episode_id) // dataset.chunks_size,
|
||||
video_key=video_key,
|
||||
episode_index=episode_id,
|
||||
),
|
||||
"filename": video_key,
|
||||
}
|
||||
for video_key in video_keys
|
||||
]
|
||||
|
||||
response = requests.get(
|
||||
f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/episodes.jsonl"
|
||||
)
|
||||
response.raise_for_status()
|
||||
# Split into lines and parse each line as JSON
|
||||
tasks_jsonl = [json.loads(line) for line in response.text.splitlines() if line.strip()]
|
||||
|
||||
filtered_tasks_jsonl = [row for row in tasks_jsonl if row["episode_index"] == episode_id]
|
||||
tasks = filtered_tasks_jsonl[0]["tasks"]
|
||||
|
||||
videos_info[0]["language_instruction"] = tasks
|
||||
|
||||
ep_csv_url = url_for("static", filename=get_ep_csv_fname(episode_id))
|
||||
if episodes is None:
|
||||
episodes = list(
|
||||
range(dataset.num_episodes if isinstance(dataset, LeRobotDataset) else dataset.total_episodes)
|
||||
)
|
||||
|
||||
return render_template(
|
||||
"visualize_dataset_template.html",
|
||||
episode_id=episode_id,
|
||||
episodes=episodes,
|
||||
dataset_info=dataset_info,
|
||||
videos_info=videos_info,
|
||||
ep_csv_url=ep_csv_url,
|
||||
has_policy=False,
|
||||
episode_data_csv_str=episode_data_csv_str,
|
||||
columns=columns,
|
||||
)
|
||||
|
||||
app.run(host=host, port=port)
|
||||
|
@ -124,46 +228,84 @@ def get_ep_csv_fname(episode_id: int):
|
|||
return ep_csv_fname
|
||||
|
||||
|
||||
def write_episode_data_csv(output_dir, file_name, episode_index, dataset):
|
||||
"""Write a csv file containg timeseries data of an episode (e.g. state and action).
|
||||
def get_episode_data(dataset: LeRobotDataset | IterableNamespace, episode_index):
|
||||
"""Get a csv str containing timeseries data of an episode (e.g. state and action).
|
||||
This file will be loaded by Dygraph javascript to plot data in real time."""
|
||||
from_idx = dataset.episode_data_index["from"][episode_index]
|
||||
to_idx = dataset.episode_data_index["to"][episode_index]
|
||||
|
||||
columns = []
|
||||
has_state = "observation.state" in dataset.features
|
||||
has_action = "action" in dataset.features
|
||||
|
||||
# init header of csv with state and action names
|
||||
header = ["timestamp"]
|
||||
if has_state:
|
||||
dim_state = dataset.meta.shapes["observation.state"][0]
|
||||
dim_state = (
|
||||
dataset.meta.shapes["observation.state"][0]
|
||||
if isinstance(dataset, LeRobotDataset)
|
||||
else dataset.features["observation.state"].shape[0]
|
||||
)
|
||||
header += [f"state_{i}" for i in range(dim_state)]
|
||||
column_names = dataset.features["observation.state"]["names"]
|
||||
while not isinstance(column_names, list):
|
||||
column_names = list(column_names.values())[0]
|
||||
columns.append({"key": "state", "value": column_names})
|
||||
if has_action:
|
||||
dim_action = dataset.meta.shapes["action"][0]
|
||||
dim_action = (
|
||||
dataset.meta.shapes["action"][0]
|
||||
if isinstance(dataset, LeRobotDataset)
|
||||
else dataset.features.action.shape[0]
|
||||
)
|
||||
header += [f"action_{i}" for i in range(dim_action)]
|
||||
column_names = dataset.features["action"]["names"]
|
||||
while not isinstance(column_names, list):
|
||||
column_names = list(column_names.values())[0]
|
||||
columns.append({"key": "action", "value": column_names})
|
||||
|
||||
columns = ["timestamp"]
|
||||
if has_state:
|
||||
columns += ["observation.state"]
|
||||
if has_action:
|
||||
columns += ["action"]
|
||||
|
||||
rows = []
|
||||
data = dataset.hf_dataset.select_columns(columns)
|
||||
for i in range(from_idx, to_idx):
|
||||
row = [data[i]["timestamp"].item()]
|
||||
if isinstance(dataset, LeRobotDataset):
|
||||
from_idx = dataset.episode_data_index["from"][episode_index]
|
||||
to_idx = dataset.episode_data_index["to"][episode_index]
|
||||
selected_columns = ["timestamp"]
|
||||
if has_state:
|
||||
row += data[i]["observation.state"].tolist()
|
||||
selected_columns += ["observation.state"]
|
||||
if has_action:
|
||||
row += data[i]["action"].tolist()
|
||||
rows.append(row)
|
||||
selected_columns += ["action"]
|
||||
data = (
|
||||
dataset.hf_dataset.select(range(from_idx, to_idx))
|
||||
.select_columns(selected_columns)
|
||||
.with_format("numpy")
|
||||
)
|
||||
rows = np.hstack(
|
||||
(np.expand_dims(data["timestamp"], axis=1), *[data[col] for col in selected_columns[1:]])
|
||||
).tolist()
|
||||
else:
|
||||
repo_id = dataset.repo_id
|
||||
selected_columns = ["timestamp"]
|
||||
if "observation.state" in dataset.features:
|
||||
selected_columns.append("observation.state")
|
||||
if "action" in dataset.features:
|
||||
selected_columns.append("action")
|
||||
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
with open(output_dir / file_name, "w") as f:
|
||||
f.write(",".join(header) + "\n")
|
||||
for row in rows:
|
||||
row_str = [str(col) for col in row]
|
||||
f.write(",".join(row_str) + "\n")
|
||||
url = f"https://huggingface.co/datasets/{repo_id}/resolve/main/" + dataset.data_path.format(
|
||||
episode_chunk=int(episode_index) // dataset.chunks_size, episode_index=episode_index
|
||||
)
|
||||
df = pd.read_parquet(url)
|
||||
data = df[selected_columns] # Select specific columns
|
||||
rows = np.hstack(
|
||||
(
|
||||
np.expand_dims(data["timestamp"], axis=1),
|
||||
*[np.vstack(data[col]) for col in selected_columns[1:]],
|
||||
)
|
||||
).tolist()
|
||||
|
||||
# Convert data to CSV string
|
||||
csv_buffer = StringIO()
|
||||
csv_writer = csv.writer(csv_buffer)
|
||||
# Write header
|
||||
csv_writer.writerow(header)
|
||||
# Write data rows
|
||||
csv_writer.writerows(rows)
|
||||
csv_string = csv_buffer.getvalue()
|
||||
|
||||
return csv_string, columns
|
||||
|
||||
|
||||
def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str]:
|
||||
|
@ -175,9 +317,31 @@ def get_episode_video_paths(dataset: LeRobotDataset, ep_index: int) -> list[str]
|
|||
]
|
||||
|
||||
|
||||
def get_episode_language_instruction(dataset: LeRobotDataset, ep_index: int) -> list[str]:
|
||||
# check if the dataset has language instructions
|
||||
if "language_instruction" not in dataset.features:
|
||||
return None
|
||||
|
||||
# get first frame index
|
||||
first_frame_idx = dataset.episode_data_index["from"][ep_index].item()
|
||||
|
||||
language_instruction = dataset.hf_dataset[first_frame_idx]["language_instruction"]
|
||||
# TODO (michel-aractingi) hack to get the sentence, some strings in openx are badly stored
|
||||
# with the tf.tensor appearing in the string
|
||||
return language_instruction.removeprefix("tf.Tensor(b'").removesuffix("', shape=(), dtype=string)")
|
||||
|
||||
|
||||
def get_dataset_info(repo_id: str) -> IterableNamespace:
|
||||
response = requests.get(f"https://huggingface.co/datasets/{repo_id}/resolve/main/meta/info.json")
|
||||
response.raise_for_status() # Raises an HTTPError for bad responses
|
||||
dataset_info = response.json()
|
||||
dataset_info["repo_id"] = repo_id
|
||||
return IterableNamespace(dataset_info)
|
||||
|
||||
|
||||
def visualize_dataset_html(
|
||||
dataset: LeRobotDataset,
|
||||
episodes: list[int] = None,
|
||||
dataset: LeRobotDataset | None,
|
||||
episodes: list[int] | None = None,
|
||||
output_dir: Path | None = None,
|
||||
serve: bool = True,
|
||||
host: str = "127.0.0.1",
|
||||
|
@ -186,11 +350,11 @@ def visualize_dataset_html(
|
|||
) -> Path | None:
|
||||
init_logging()
|
||||
|
||||
if len(dataset.meta.image_keys) > 0:
|
||||
raise NotImplementedError(f"Image keys ({dataset.meta.image_keys=}) are currently not supported.")
|
||||
template_dir = Path(__file__).resolve().parent.parent / "templates"
|
||||
|
||||
if output_dir is None:
|
||||
output_dir = f"outputs/visualize_dataset_html/{dataset.repo_id}"
|
||||
# Create a temporary directory that will be automatically cleaned up
|
||||
output_dir = tempfile.mkdtemp(prefix="lerobot_visualize_dataset_")
|
||||
|
||||
output_dir = Path(output_dir)
|
||||
if output_dir.exists():
|
||||
|
@ -201,28 +365,33 @@ def visualize_dataset_html(
|
|||
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# Create a simlink from the dataset video folder containg mp4 files to the output directory
|
||||
# so that the http server can get access to the mp4 files.
|
||||
static_dir = output_dir / "static"
|
||||
static_dir.mkdir(parents=True, exist_ok=True)
|
||||
ln_videos_dir = static_dir / "videos"
|
||||
if not ln_videos_dir.exists():
|
||||
ln_videos_dir.symlink_to((dataset.root / "videos").resolve())
|
||||
|
||||
template_dir = Path(__file__).resolve().parent.parent / "templates"
|
||||
if dataset is None:
|
||||
if serve:
|
||||
run_server(
|
||||
dataset=None,
|
||||
episodes=None,
|
||||
host=host,
|
||||
port=port,
|
||||
static_folder=static_dir,
|
||||
template_folder=template_dir,
|
||||
)
|
||||
else:
|
||||
image_keys = dataset.meta.image_keys if isinstance(dataset, LeRobotDataset) else []
|
||||
if len(image_keys) > 0:
|
||||
raise NotImplementedError(f"Image keys ({image_keys=}) are currently not supported.")
|
||||
|
||||
if episodes is None:
|
||||
episodes = list(range(dataset.num_episodes))
|
||||
# Create a simlink from the dataset video folder containg mp4 files to the output directory
|
||||
# so that the http server can get access to the mp4 files.
|
||||
if isinstance(dataset, LeRobotDataset):
|
||||
ln_videos_dir = static_dir / "videos"
|
||||
if not ln_videos_dir.exists():
|
||||
ln_videos_dir.symlink_to((dataset.root / "videos").resolve())
|
||||
|
||||
logging.info("Writing CSV files")
|
||||
for episode_index in tqdm.tqdm(episodes):
|
||||
# write states and actions in a csv (it can be slow for big datasets)
|
||||
ep_csv_fname = get_ep_csv_fname(episode_index)
|
||||
# TODO(rcadene): speedup script by loading directly from dataset, pyarrow, parquet, safetensors?
|
||||
write_episode_data_csv(static_dir, ep_csv_fname, episode_index, dataset)
|
||||
|
||||
if serve:
|
||||
run_server(dataset, episodes, host, port, static_dir, template_dir)
|
||||
if serve:
|
||||
run_server(dataset, episodes, host, port, static_dir, template_dir)
|
||||
|
||||
|
||||
def main():
|
||||
|
@ -231,7 +400,7 @@ def main():
|
|||
parser.add_argument(
|
||||
"--repo-id",
|
||||
type=str,
|
||||
required=True,
|
||||
default=None,
|
||||
help="Name of hugging face repositery containing a LeRobotDataset dataset (e.g. `lerobot/pusht` for https://huggingface.co/datasets/lerobot/pusht).",
|
||||
)
|
||||
parser.add_argument(
|
||||
|
@ -246,6 +415,12 @@ def main():
|
|||
default=None,
|
||||
help="Root directory for a dataset stored locally (e.g. `--root data`). By default, the dataset will be loaded from hugging face cache folder, or downloaded from the hub if available.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--load-from-hf-hub",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Load videos and parquet files from HF Hub rather than local system.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--episodes",
|
||||
type=int,
|
||||
|
@ -287,11 +462,19 @@ def main():
|
|||
args = parser.parse_args()
|
||||
kwargs = vars(args)
|
||||
repo_id = kwargs.pop("repo_id")
|
||||
load_from_hf_hub = kwargs.pop("load_from_hf_hub")
|
||||
root = kwargs.pop("root")
|
||||
local_files_only = kwargs.pop("local_files_only")
|
||||
|
||||
dataset = LeRobotDataset(repo_id, root=root, local_files_only=local_files_only)
|
||||
visualize_dataset_html(dataset, **kwargs)
|
||||
dataset = None
|
||||
if repo_id:
|
||||
dataset = (
|
||||
LeRobotDataset(repo_id, root=root, local_files_only=local_files_only)
|
||||
if not load_from_hf_hub
|
||||
else get_dataset_info(repo_id)
|
||||
)
|
||||
|
||||
visualize_dataset_html(dataset, **vars(args))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>Interactive Video Background Page</title>
|
||||
<script src="https://cdn.tailwindcss.com"></script>
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/alpinejs@3.x.x/dist/cdn.min.js"></script>
|
||||
</head>
|
||||
<body class="h-screen overflow-hidden font-mono text-white" x-data="{
|
||||
inputValue: '',
|
||||
navigateToDataset() {
|
||||
const trimmedValue = this.inputValue.trim();
|
||||
if (trimmedValue) {
|
||||
window.location.href = `/${trimmedValue}`;
|
||||
}
|
||||
}
|
||||
}">
|
||||
<div class="fixed inset-0 w-full h-full overflow-hidden">
|
||||
<video class="absolute min-w-full min-h-full w-auto h-auto top-1/2 left-1/2 transform -translate-x-1/2 -translate-y-1/2" autoplay muted loop>
|
||||
<source src="https://huggingface.co/datasets/cadene/koch_bimanual_folding/resolve/v1.6/videos/observation.images.phone_episode_000037.mp4" type="video/mp4">
|
||||
Your browser does not support HTML5 video.
|
||||
</video>
|
||||
</div>
|
||||
<div class="fixed inset-0 bg-black bg-opacity-80"></div>
|
||||
<div class="relative z-10 flex flex-col items-center justify-center h-screen">
|
||||
<div class="text-center mb-8">
|
||||
<h1 class="text-4xl font-bold mb-4">LeRobot Dataset Visualizer</h1>
|
||||
|
||||
<a href="https://x.com/RemiCadene/status/1825455895561859185" target="_blank" rel="noopener noreferrer" class="underline">create & train your own robots</a>
|
||||
|
||||
<p class="text-xl mb-4"></p>
|
||||
<div class="text-left inline-block">
|
||||
<h3 class="font-semibold mb-2 mt-4">Example Datasets:</h3>
|
||||
<ul class="list-disc list-inside">
|
||||
{% for dataset in featured_datasets %}
|
||||
<li><a href="/{{ dataset }}" class="text-blue-300 hover:text-blue-100 hover:underline">{{ dataset }}</a></li>
|
||||
{% endfor %}
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
<div class="flex w-full max-w-lg px-4 mb-4">
|
||||
<input
|
||||
type="text"
|
||||
x-model="inputValue"
|
||||
@keyup.enter="navigateToDataset"
|
||||
placeholder="enter dataset id (ex: lerobot/droid_100)"
|
||||
class="flex-grow px-4 py-2 rounded-l bg-white bg-opacity-20 text-white placeholder-gray-300 focus:outline-none focus:ring-2 focus:ring-blue-300"
|
||||
>
|
||||
<button
|
||||
@click="navigateToDataset"
|
||||
class="px-4 py-2 bg-blue-500 text-white rounded-r hover:bg-blue-600 focus:outline-none focus:ring-2 focus:ring-blue-300"
|
||||
>
|
||||
Go
|
||||
</button>
|
||||
</div>
|
||||
|
||||
<details class="mt-4 max-w-full px-4">
|
||||
<summary>More example datasets</summary>
|
||||
<ul class="list-disc list-inside max-h-28 overflow-y-auto break-all">
|
||||
{% for dataset in lerobot_datasets %}
|
||||
<li><a href="/{{ dataset }}" class="text-blue-300 hover:text-blue-100 hover:underline">{{ dataset }}</a></li>
|
||||
{% endfor %}
|
||||
</ul>
|
||||
</details>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
|
@ -31,11 +31,16 @@
|
|||
}">
|
||||
<!-- Sidebar -->
|
||||
<div x-ref="sidebar" class="bg-slate-900 p-5 break-words overflow-y-auto shrink-0 md:shrink md:w-60 md:max-h-screen">
|
||||
<h1 class="mb-4 text-xl font-semibold">{{ dataset_info.repo_id }}</h1>
|
||||
<a href="https://github.com/huggingface/lerobot" target="_blank" class="hidden md:block">
|
||||
<img src="https://github.com/huggingface/lerobot/raw/main/media/lerobot-logo-thumbnail.png">
|
||||
</a>
|
||||
<a href="https://huggingface.co/datasets/{{ dataset_info.repo_id }}" target="_blank">
|
||||
<h1 class="mb-4 text-xl font-semibold">{{ dataset_info.repo_id }}</h1>
|
||||
</a>
|
||||
|
||||
<ul>
|
||||
<li>
|
||||
Number of samples/frames: {{ dataset_info.num_frames }}
|
||||
Number of samples/frames: {{ dataset_info.num_samples }}
|
||||
</li>
|
||||
<li>
|
||||
Number of episodes: {{ dataset_info.num_episodes }}
|
||||
|
@ -93,10 +98,10 @@
|
|||
</div>
|
||||
|
||||
<!-- Videos -->
|
||||
<div class="flex flex-wrap gap-1">
|
||||
<div class="flex flex-wrap gap-x-2 gap-y-6">
|
||||
{% for video_info in videos_info %}
|
||||
<div x-show="!videoCodecError" class="max-w-96">
|
||||
<p class="text-sm text-gray-300 bg-gray-800 px-2 rounded-t-xl truncate">{{ video_info.filename }}</p>
|
||||
<div x-show="!videoCodecError" class="max-w-96 relative">
|
||||
<p class="absolute inset-x-0 -top-4 text-sm text-gray-300 bg-gray-800 px-2 rounded-t-xl truncate">{{ video_info.filename }}</p>
|
||||
<video muted loop type="video/mp4" class="object-contain w-full h-full" @canplaythrough="videoCanPlay" @timeupdate="() => {
|
||||
if (video.duration) {
|
||||
const time = video.currentTime;
|
||||
|
@ -182,12 +187,12 @@
|
|||
<thead>
|
||||
<tr>
|
||||
<th></th>
|
||||
<template x-for="(_, colIndex) in Array.from({length: nColumns}, (_, index) => index)">
|
||||
<template x-for="(_, colIndex) in Array.from({length: columns.length}, (_, index) => index)">
|
||||
<th class="border border-slate-700">
|
||||
<div class="flex gap-x-2 justify-between px-2">
|
||||
<input type="checkbox" :checked="isColumnChecked(colIndex)"
|
||||
@change="toggleColumn(colIndex)">
|
||||
<p x-text="`${columnNames[colIndex]}`"></p>
|
||||
<p x-text="`${columns[colIndex].key}`"></p>
|
||||
</div>
|
||||
</th>
|
||||
</template>
|
||||
|
@ -197,10 +202,10 @@
|
|||
<template x-for="(row, rowIndex) in rows">
|
||||
<tr class="odd:bg-gray-800 even:bg-gray-900">
|
||||
<td class="border border-slate-700">
|
||||
<div class="flex gap-x-2 w-24 font-semibold px-1">
|
||||
<div class="flex gap-x-2 max-w-64 font-semibold px-1 break-all">
|
||||
<input type="checkbox" :checked="isRowChecked(rowIndex)"
|
||||
@change="toggleRow(rowIndex)">
|
||||
<p x-text="`Motor ${rowIndex}`"></p>
|
||||
<p x-text="`${rowLabels[rowIndex]}`"></p>
|
||||
</div>
|
||||
</td>
|
||||
<template x-for="(cell, colIndex) in row">
|
||||
|
@ -222,16 +227,20 @@
|
|||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
const parentOrigin = "https://huggingface.co";
|
||||
const searchParams = new URLSearchParams();
|
||||
searchParams.set("dataset", "{{ dataset_info.repo_id }}");
|
||||
searchParams.set("episode", "{{ episode_id }}");
|
||||
window.parent.postMessage({ queryString: searchParams.toString() }, parentOrigin);
|
||||
</script>
|
||||
|
||||
<script>
|
||||
function createAlpineData() {
|
||||
return {
|
||||
// state
|
||||
dygraph: null,
|
||||
currentFrameData: null,
|
||||
columnNames: ["state", "action", "pred action"],
|
||||
nColumns: 2,
|
||||
nStates: 0,
|
||||
nActions: 0,
|
||||
checked: [],
|
||||
dygraphTime: 0.0,
|
||||
dygraphIndex: 0,
|
||||
|
@ -241,6 +250,8 @@
|
|||
nVideos: {{ videos_info | length }},
|
||||
nVideoReadyToPlay: 0,
|
||||
videoCodecError: false,
|
||||
columns: {{ columns | tojson }},
|
||||
rowLabels: {{ columns | tojson }}.reduce((colA, colB) => colA.value.length > colB.value.length ? colA : colB).value,
|
||||
|
||||
// alpine initialization
|
||||
init() {
|
||||
|
@ -251,10 +262,17 @@
|
|||
this.videoCodecError = true;
|
||||
}
|
||||
|
||||
// process CSV data
|
||||
const csvDataStr = {{ episode_data_csv_str|tojson|safe }};
|
||||
// Create a Blob with the CSV data
|
||||
const blob = new Blob([csvDataStr], { type: 'text/csv;charset=utf-8;' });
|
||||
// Create a URL for the Blob
|
||||
const csvUrl = URL.createObjectURL(blob);
|
||||
|
||||
// process CSV data
|
||||
this.videos = document.querySelectorAll('video');
|
||||
this.video = this.videos[0];
|
||||
this.dygraph = new Dygraph(document.getElementById("graph"), '{{ ep_csv_url }}', {
|
||||
this.dygraph = new Dygraph(document.getElementById("graph"), csvUrl, {
|
||||
pixelsPerPoint: 0.01,
|
||||
legend: 'always',
|
||||
labelsDiv: document.getElementById('labels'),
|
||||
|
@ -275,21 +293,17 @@
|
|||
this.colors = this.dygraph.getColors();
|
||||
this.checked = Array(this.colors.length).fill(true);
|
||||
|
||||
const seriesNames = this.dygraph.getLabels().slice(1);
|
||||
this.nStates = seriesNames.findIndex(item => item.startsWith('action_'));
|
||||
this.nActions = seriesNames.length - this.nStates;
|
||||
const colors = [];
|
||||
const LIGHTNESS = [30, 65, 85]; // state_lightness, action_lightness, pred_action_lightness
|
||||
// colors for "state" lines
|
||||
for (let hue = 0; hue < 360; hue += parseInt(360/this.nStates)) {
|
||||
const color = `hsl(${hue}, 100%, ${LIGHTNESS[0]}%)`;
|
||||
colors.push(color);
|
||||
}
|
||||
// colors for "action" lines
|
||||
for (let hue = 0; hue < 360; hue += parseInt(360/this.nActions)) {
|
||||
const color = `hsl(${hue}, 100%, ${LIGHTNESS[1]}%)`;
|
||||
colors.push(color);
|
||||
let lightness = 30; // const LIGHTNESS = [30, 65, 85]; // state_lightness, action_lightness, pred_action_lightness
|
||||
for(const column of this.columns){
|
||||
const nValues = column.value.length;
|
||||
for (let hue = 0; hue < 360; hue += parseInt(360/nValues)) {
|
||||
const color = `hsl(${hue}, 100%, ${lightness}%)`;
|
||||
colors.push(color);
|
||||
}
|
||||
lightness += 35;
|
||||
}
|
||||
|
||||
this.dygraph.updateOptions({ colors });
|
||||
this.colors = colors;
|
||||
|
||||
|
@ -316,17 +330,19 @@
|
|||
return [];
|
||||
}
|
||||
const rows = [];
|
||||
const nRows = Math.max(this.nStates, this.nActions);
|
||||
const nRows = Math.max(...this.columns.map(column => column.value.length));
|
||||
let rowIndex = 0;
|
||||
while(rowIndex < nRows){
|
||||
const row = [];
|
||||
// number of states may NOT match number of actions. In this case, we null-pad the 2D array to make a fully rectangular 2d array
|
||||
const nullCell = { isNull: true };
|
||||
const stateValueIdx = rowIndex;
|
||||
const actionValueIdx = stateValueIdx + this.nStates; // because this.currentFrameData = [state0, state1, ..., stateN, action0, action1, ..., actionN]
|
||||
// row consists of [state value, action value]
|
||||
row.push(rowIndex < this.nStates ? this.currentFrameData[stateValueIdx] : nullCell); // push "state value" to row
|
||||
row.push(rowIndex < this.nActions ? this.currentFrameData[actionValueIdx] : nullCell); // push "action value" to row
|
||||
let idx = rowIndex;
|
||||
for(const column of this.columns){
|
||||
const nColumn = column.value.length;
|
||||
row.push(rowIndex < nColumn ? this.currentFrameData[idx] : nullCell);
|
||||
idx += nColumn; // because this.currentFrameData = [state0, state1, ..., stateN, action0, action1, ..., actionN]
|
||||
}
|
||||
rowIndex += 1;
|
||||
rows.push(row);
|
||||
}
|
||||
|
|
|
@ -14,17 +14,25 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from lerobot.scripts.visualize_dataset_html import visualize_dataset_html
|
||||
from huggingface_hub import DatasetCard
|
||||
|
||||
from lerobot.common.datasets.utils import create_lerobot_dataset_card
|
||||
|
||||
|
||||
def test_visualize_dataset_html(tmp_path, lerobot_dataset_factory):
|
||||
root = tmp_path / "dataset"
|
||||
output_dir = tmp_path / "outputs"
|
||||
dataset = lerobot_dataset_factory(root=root)
|
||||
visualize_dataset_html(
|
||||
dataset,
|
||||
episodes=[0],
|
||||
output_dir=output_dir,
|
||||
serve=False,
|
||||
)
|
||||
assert (output_dir / "static" / "episode_0.csv").exists()
|
||||
def test_default_parameters():
|
||||
card = create_lerobot_dataset_card()
|
||||
assert isinstance(card, DatasetCard)
|
||||
assert card.data.tags == ["LeRobot"]
|
||||
assert card.data.task_categories == ["robotics"]
|
||||
assert card.data.configs == [
|
||||
{
|
||||
"config_name": "default",
|
||||
"data_files": "data/*/*.parquet",
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
def test_with_tags():
|
||||
tags = ["tag1", "tag2"]
|
||||
card = create_lerobot_dataset_card(tags=tags)
|
||||
assert card.data.tags == ["LeRobot", "tag1", "tag2"]
|
Loading…
Reference in New Issue