Refactor actor_server.py for improved structure and logging

- Consolidated logging initialization and enhanced logging for actor processes.
- Streamlined the handling of gRPC connections and process management.
- Improved readability by organizing core algorithm functions and communication functions.
- Added detailed comments and documentation for clarity.
- Ensured proper queue management and shutdown handling for actor processes.
This commit is contained in:
AdilZouitine 2025-03-28 14:17:16 +00:00
parent dcce446a66
commit 8b02e81bb5
1 changed files with 392 additions and 363 deletions

View File

@ -14,11 +14,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
import time
from functools import lru_cache
from queue import Empty
from statistics import mean, quantiles
import os
# from lerobot.scripts.eval import eval_policy
import grpc
@ -57,245 +57,132 @@ from lerobot.scripts.server.utils import get_last_item_from_queue, setup_process
ACTOR_SHUTDOWN_TIMEOUT = 30
def receive_policy(
cfg: TrainPipelineConfig,
parameters_queue: Queue,
shutdown_event: any, # Event,
learner_client: hilserl_pb2_grpc.LearnerServiceStub | None = None,
grpc_channel: grpc.Channel | None = None,
):
logging.info("[ACTOR] Start receiving parameters from the Learner")
#################################################
# Main entry point #
#################################################
@parser.wrap()
def actor_cli(cfg: TrainPipelineConfig):
cfg.validate()
if not use_threads(cfg):
# Create a process-specific log file
log_dir = os.path.join(cfg.output_dir, "logs")
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"actor_receive_policy_{os.getpid()}.log")
# Initialize logging with explicit log file
init_logging(log_file=log_file)
logging.info(f"Actor receive policy process logging initialized")
# Setup process handlers to handle shutdown signal
# But use shutdown event from the main process
setup_process_handlers(use_threads=False)
import torch.multiprocessing as mp
if grpc_channel is None or learner_client is None:
learner_client, grpc_channel = learner_service_client(
host=cfg.policy.actor_learner_config.learner_host,
port=cfg.policy.actor_learner_config.learner_port,
)
mp.set_start_method("spawn")
try:
iterator = learner_client.StreamParameters(hilserl_pb2.Empty())
receive_bytes_in_chunks(
iterator,
parameters_queue,
shutdown_event,
log_prefix="[ACTOR] parameters",
)
# Create logs directory to ensure it exists
log_dir = os.path.join(cfg.output_dir, "logs")
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"actor_{cfg.job_name}.log")
except grpc.RpcError as e:
logging.error(f"[ACTOR] gRPC error: {e}")
# Initialize logging with explicit log file
init_logging(log_file=log_file)
logging.info(f"Actor logging initialized, writing to {log_file}")
if not use_threads(cfg):
grpc_channel.close()
logging.info("[ACTOR] Received policy loop stopped")
shutdown_event = setup_process_handlers(use_threads(cfg))
def transitions_stream(shutdown_event: Event, transitions_queue: Queue) -> hilserl_pb2.Empty:
while not shutdown_event.is_set():
try:
message = transitions_queue.get(block=True, timeout=5)
except Empty:
logging.debug("[ACTOR] Transition queue is empty")
continue
yield from send_bytes_in_chunks(
message, hilserl_pb2.Transition, log_prefix="[ACTOR] Send transitions"
)
return hilserl_pb2.Empty()
def interactions_stream(
shutdown_event: any, # Event,
interactions_queue: Queue,
) -> hilserl_pb2.Empty:
while not shutdown_event.is_set():
try:
message = interactions_queue.get(block=True, timeout=5)
except Empty:
logging.debug("[ACTOR] Interaction queue is empty")
continue
yield from send_bytes_in_chunks(
message,
hilserl_pb2.InteractionMessage,
log_prefix="[ACTOR] Send interactions",
)
return hilserl_pb2.Empty()
def send_transitions(
cfg: TrainPipelineConfig,
transitions_queue: Queue,
shutdown_event: any, # Event,
learner_client: hilserl_pb2_grpc.LearnerServiceStub | None = None,
grpc_channel: grpc.Channel | None = None,
) -> hilserl_pb2.Empty:
"""
Sends transitions to the learner.
This function continuously retrieves messages from the queue and processes:
- **Transition Data:**
- A batch of transitions (observation, action, reward, next observation) is collected.
- Transitions are moved to the CPU and serialized using PyTorch.
- The serialized data is wrapped in a `hilserl_pb2.Transition` message and sent to the learner.
"""
if not use_threads(cfg):
# Create a process-specific log file
log_dir = os.path.join(cfg.output_dir, "logs")
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"actor_transitions_{os.getpid()}.log")
# Initialize logging with explicit log file
init_logging(log_file=log_file)
logging.info(f"Actor transitions process logging initialized")
# Setup process handlers to handle shutdown signal
# But use shutdown event from the main process
setup_process_handlers(False)
if grpc_channel is None or learner_client is None:
learner_client, grpc_channel = learner_service_client(
host=cfg.policy.actor_learner_config.learner_host,
port=cfg.policy.actor_learner_config.learner_port,
)
try:
learner_client.SendTransitions(transitions_stream(shutdown_event, transitions_queue))
except grpc.RpcError as e:
logging.error(f"[ACTOR] gRPC error: {e}")
logging.info("[ACTOR] Finished streaming transitions")
if not use_threads(cfg):
grpc_channel.close()
logging.info("[ACTOR] Transitions process stopped")
def send_interactions(
cfg: TrainPipelineConfig,
interactions_queue: Queue,
shutdown_event: any, # Event,
learner_client: hilserl_pb2_grpc.LearnerServiceStub | None = None,
grpc_channel: grpc.Channel | None = None,
) -> hilserl_pb2.Empty:
"""
Sends interactions to the learner.
This function continuously retrieves messages from the queue and processes:
- **Interaction Messages:**
- Contains useful statistics about episodic rewards and policy timings.
- The message is serialized using `pickle` and sent to the learner.
"""
if not use_threads(cfg):
# Create a process-specific log file
log_dir = os.path.join(cfg.output_dir, "logs")
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"actor_interactions_{os.getpid()}.log")
# Initialize logging with explicit log file
init_logging(log_file=log_file)
logging.info(f"Actor interactions process logging initialized")
# Setup process handlers to handle shutdown signal
# But use shutdown event from the main process
setup_process_handlers(False)
if grpc_channel is None or learner_client is None:
learner_client, grpc_channel = learner_service_client(
host=cfg.policy.actor_learner_config.learner_host,
port=cfg.policy.actor_learner_config.learner_port,
)
try:
learner_client.SendInteractions(interactions_stream(shutdown_event, interactions_queue))
except grpc.RpcError as e:
logging.error(f"[ACTOR] gRPC error: {e}")
logging.info("[ACTOR] Finished streaming interactions")
if not use_threads(cfg):
grpc_channel.close()
logging.info("[ACTOR] Interactions process stopped")
@lru_cache(maxsize=1)
def learner_service_client(
host="127.0.0.1", port=50051
) -> tuple[hilserl_pb2_grpc.LearnerServiceStub, grpc.Channel]:
import json
"""
Returns a client for the learner service.
GRPC uses HTTP/2, which is a binary protocol and multiplexes requests over a single connection.
So we need to create only one client and reuse it.
"""
service_config = {
"methodConfig": [
{
"name": [{}], # Applies to ALL methods in ALL services
"retryPolicy": {
"maxAttempts": 5, # Max retries (total attempts = 5)
"initialBackoff": "0.1s", # First retry after 0.1s
"maxBackoff": "2s", # Max wait time between retries
"backoffMultiplier": 2, # Exponential backoff factor
"retryableStatusCodes": [
"UNAVAILABLE",
"DEADLINE_EXCEEDED",
], # Retries on network failures
},
}
]
}
service_config_json = json.dumps(service_config)
channel = grpc.insecure_channel(
f"{host}:{port}",
options=[
("grpc.max_receive_message_length", learner_service.MAX_MESSAGE_SIZE),
("grpc.max_send_message_length", learner_service.MAX_MESSAGE_SIZE),
("grpc.enable_retries", 1),
("grpc.service_config", service_config_json),
],
learner_client, grpc_channel = learner_service_client(
host=cfg.policy.actor_learner_config.learner_host,
port=cfg.policy.actor_learner_config.learner_port,
)
stub = hilserl_pb2_grpc.LearnerServiceStub(channel)
logging.info("[ACTOR] Learner service client created")
return stub, channel
logging.info("[ACTOR] Establishing connection with Learner")
if not establish_learner_connection(learner_client, shutdown_event):
logging.error("[ACTOR] Failed to establish connection with Learner")
return
if not use_threads(cfg):
# If we use multithreading, we can reuse the channel
grpc_channel.close()
grpc_channel = None
logging.info("[ACTOR] Connection with Learner established")
parameters_queue = Queue()
transitions_queue = Queue()
interactions_queue = Queue()
concurrency_entity = None
if use_threads(cfg):
from threading import Thread
concurrency_entity = Thread
else:
from multiprocessing import Process
concurrency_entity = Process
receive_policy_process = concurrency_entity(
target=receive_policy,
args=(cfg, parameters_queue, shutdown_event, grpc_channel),
daemon=True,
)
transitions_process = concurrency_entity(
target=send_transitions,
args=(cfg, transitions_queue, shutdown_event, grpc_channel),
daemon=True,
)
interactions_process = concurrency_entity(
target=send_interactions,
args=(cfg, interactions_queue, shutdown_event, grpc_channel),
daemon=True,
)
transitions_process.start()
interactions_process.start()
receive_policy_process.start()
# HACK: FOR MANISKILL we do not have a reward classifier
# TODO: Remove this once we merge into main
reward_classifier = None
# if (
# cfg.env.reward_classifier["pretrained_path"] is not None
# and cfg.env.reward_classifier["config_path"] is not None
# ):
# reward_classifier = get_classifier(
# pretrained_path=cfg.env.reward_classifier["pretrained_path"],
# config_path=cfg.env.reward_classifier["config_path"],
# )
act_with_policy(
cfg=cfg,
reward_classifier=reward_classifier,
shutdown_event=shutdown_event,
parameters_queue=parameters_queue,
transitions_queue=transitions_queue,
interactions_queue=interactions_queue,
)
logging.info("[ACTOR] Policy process joined")
logging.info("[ACTOR] Closing queues")
transitions_queue.close()
interactions_queue.close()
parameters_queue.close()
transitions_process.join()
logging.info("[ACTOR] Transitions process joined")
interactions_process.join()
logging.info("[ACTOR] Interactions process joined")
receive_policy_process.join()
logging.info("[ACTOR] Receive policy process joined")
logging.info("[ACTOR] join queues")
transitions_queue.cancel_join_thread()
interactions_queue.cancel_join_thread()
parameters_queue.cancel_join_thread()
logging.info("[ACTOR] queues closed")
def update_policy_parameters(policy: SACPolicy, parameters_queue: Queue, device):
if not parameters_queue.empty():
logging.info("[ACTOR] Load new parameters from Learner.")
bytes_state_dict = get_last_item_from_queue(parameters_queue)
state_dict = bytes_to_state_dict(bytes_state_dict)
state_dict = move_state_dict_to_device(state_dict, device=device)
policy.load_state_dict(state_dict)
#################################################
# Core algorithm functions #
#################################################
def act_with_policy(
cfg: TrainPipelineConfig,
# robot: Robot,
reward_classifier: nn.Module,
shutdown_event: any, # Event,
parameters_queue: Queue,
@ -309,7 +196,12 @@ def act_with_policy(
Once an episode is completed, updated network parameters received from the learner are retrieved from a queue and loaded into the network.
Args:
cfg (DictConfig): Configuration settings for the interaction process.
cfg: Configuration settings for the interaction process.
reward_classifier: Reward classifier to use for the interaction process.
shutdown_event: Event to check if the process should shutdown.
parameters_queue: Queue to receive updated network parameters from the learner.
transitions_queue: Queue to send transitions to the learner.
interactions_queue: Queue to send interactions to the learner.
"""
# Initialize logging for multiprocessing
if not use_threads(cfg):
@ -317,7 +209,7 @@ def act_with_policy(
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"actor_policy_{os.getpid()}.log")
init_logging(log_file=log_file)
logging.info(f"Actor policy process logging initialized")
logging.info("Actor policy process logging initialized")
logging.info("make_env online")
@ -462,6 +354,278 @@ def act_with_policy(
busy_wait(1 / cfg.env.fps - dt_time)
#################################################
# Communication Functions - Group all gRPC/messaging functions #
#################################################
def establish_learner_connection(
stub,
shutdown_event: any, # Event,
attempts=30,
):
for _ in range(attempts):
if shutdown_event.is_set():
logging.info("[ACTOR] Shutting down establish_learner_connection")
return False
# Force a connection attempt and check state
try:
logging.info("[ACTOR] Send ready message to Learner")
if stub.Ready(hilserl_pb2.Empty()) == hilserl_pb2.Empty():
return True
except grpc.RpcError as e:
logging.error(f"[ACTOR] Waiting for Learner to be ready... {e}")
time.sleep(2)
return False
@lru_cache(maxsize=1)
def learner_service_client(
host="127.0.0.1", port=50051
) -> tuple[hilserl_pb2_grpc.LearnerServiceStub, grpc.Channel]:
import json
"""
Returns a client for the learner service.
GRPC uses HTTP/2, which is a binary protocol and multiplexes requests over a single connection.
So we need to create only one client and reuse it.
"""
service_config = {
"methodConfig": [
{
"name": [{}], # Applies to ALL methods in ALL services
"retryPolicy": {
"maxAttempts": 5, # Max retries (total attempts = 5)
"initialBackoff": "0.1s", # First retry after 0.1s
"maxBackoff": "2s", # Max wait time between retries
"backoffMultiplier": 2, # Exponential backoff factor
"retryableStatusCodes": [
"UNAVAILABLE",
"DEADLINE_EXCEEDED",
], # Retries on network failures
},
}
]
}
service_config_json = json.dumps(service_config)
channel = grpc.insecure_channel(
f"{host}:{port}",
options=[
("grpc.max_receive_message_length", learner_service.MAX_MESSAGE_SIZE),
("grpc.max_send_message_length", learner_service.MAX_MESSAGE_SIZE),
("grpc.enable_retries", 1),
("grpc.service_config", service_config_json),
],
)
stub = hilserl_pb2_grpc.LearnerServiceStub(channel)
logging.info("[ACTOR] Learner service client created")
return stub, channel
def receive_policy(
cfg: TrainPipelineConfig,
parameters_queue: Queue,
shutdown_event: any, # Event,
learner_client: hilserl_pb2_grpc.LearnerServiceStub | None = None,
grpc_channel: grpc.Channel | None = None,
):
logging.info("[ACTOR] Start receiving parameters from the Learner")
if not use_threads(cfg):
# Create a process-specific log file
log_dir = os.path.join(cfg.output_dir, "logs")
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"actor_receive_policy_{os.getpid()}.log")
# Initialize logging with explicit log file
init_logging(log_file=log_file)
logging.info(f"Actor receive policy process logging initialized")
# Setup process handlers to handle shutdown signal
# But use shutdown event from the main process
setup_process_handlers(use_threads=False)
if grpc_channel is None or learner_client is None:
learner_client, grpc_channel = learner_service_client(
host=cfg.policy.actor_learner_config.learner_host,
port=cfg.policy.actor_learner_config.learner_port,
)
try:
iterator = learner_client.StreamParameters(hilserl_pb2.Empty())
receive_bytes_in_chunks(
iterator,
parameters_queue,
shutdown_event,
log_prefix="[ACTOR] parameters",
)
except grpc.RpcError as e:
logging.error(f"[ACTOR] gRPC error: {e}")
if not use_threads(cfg):
grpc_channel.close()
logging.info("[ACTOR] Received policy loop stopped")
def send_transitions(
cfg: TrainPipelineConfig,
transitions_queue: Queue,
shutdown_event: any, # Event,
learner_client: hilserl_pb2_grpc.LearnerServiceStub | None = None,
grpc_channel: grpc.Channel | None = None,
) -> hilserl_pb2.Empty:
"""
Sends transitions to the learner.
This function continuously retrieves messages from the queue and processes:
- **Transition Data:**
- A batch of transitions (observation, action, reward, next observation) is collected.
- Transitions are moved to the CPU and serialized using PyTorch.
- The serialized data is wrapped in a `hilserl_pb2.Transition` message and sent to the learner.
"""
if not use_threads(cfg):
# Create a process-specific log file
log_dir = os.path.join(cfg.output_dir, "logs")
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"actor_transitions_{os.getpid()}.log")
# Initialize logging with explicit log file
init_logging(log_file=log_file)
logging.info("Actor transitions process logging initialized")
# Setup process handlers to handle shutdown signal
# But use shutdown event from the main process
setup_process_handlers(False)
if grpc_channel is None or learner_client is None:
learner_client, grpc_channel = learner_service_client(
host=cfg.policy.actor_learner_config.learner_host,
port=cfg.policy.actor_learner_config.learner_port,
)
try:
learner_client.SendTransitions(transitions_stream(shutdown_event, transitions_queue))
except grpc.RpcError as e:
logging.error(f"[ACTOR] gRPC error: {e}")
logging.info("[ACTOR] Finished streaming transitions")
if not use_threads(cfg):
grpc_channel.close()
logging.info("[ACTOR] Transitions process stopped")
def send_interactions(
cfg: TrainPipelineConfig,
interactions_queue: Queue,
shutdown_event: any, # Event,
learner_client: hilserl_pb2_grpc.LearnerServiceStub | None = None,
grpc_channel: grpc.Channel | None = None,
) -> hilserl_pb2.Empty:
"""
Sends interactions to the learner.
This function continuously retrieves messages from the queue and processes:
- **Interaction Messages:**
- Contains useful statistics about episodic rewards and policy timings.
- The message is serialized using `pickle` and sent to the learner.
"""
if not use_threads(cfg):
# Create a process-specific log file
log_dir = os.path.join(cfg.output_dir, "logs")
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"actor_interactions_{os.getpid()}.log")
# Initialize logging with explicit log file
init_logging(log_file=log_file)
logging.info("Actor interactions process logging initialized")
# Setup process handlers to handle shutdown signal
# But use shutdown event from the main process
setup_process_handlers(False)
if grpc_channel is None or learner_client is None:
learner_client, grpc_channel = learner_service_client(
host=cfg.policy.actor_learner_config.learner_host,
port=cfg.policy.actor_learner_config.learner_port,
)
try:
learner_client.SendInteractions(interactions_stream(shutdown_event, interactions_queue))
except grpc.RpcError as e:
logging.error(f"[ACTOR] gRPC error: {e}")
logging.info("[ACTOR] Finished streaming interactions")
if not use_threads(cfg):
grpc_channel.close()
logging.info("[ACTOR] Interactions process stopped")
def transitions_stream(shutdown_event: Event, transitions_queue: Queue) -> hilserl_pb2.Empty:
while not shutdown_event.is_set():
try:
message = transitions_queue.get(block=True, timeout=5)
except Empty:
logging.debug("[ACTOR] Transition queue is empty")
continue
yield from send_bytes_in_chunks(
message, hilserl_pb2.Transition, log_prefix="[ACTOR] Send transitions"
)
return hilserl_pb2.Empty()
def interactions_stream(
shutdown_event: any, # Event,
interactions_queue: Queue,
) -> hilserl_pb2.Empty:
while not shutdown_event.is_set():
try:
message = interactions_queue.get(block=True, timeout=5)
except Empty:
logging.debug("[ACTOR] Interaction queue is empty")
continue
yield from send_bytes_in_chunks(
message,
hilserl_pb2.InteractionMessage,
log_prefix="[ACTOR] Send interactions",
)
return hilserl_pb2.Empty()
#################################################
# Policy functions #
#################################################
def update_policy_parameters(policy: SACPolicy, parameters_queue: Queue, device):
if not parameters_queue.empty():
logging.info("[ACTOR] Load new parameters from Learner.")
bytes_state_dict = get_last_item_from_queue(parameters_queue)
state_dict = bytes_to_state_dict(bytes_state_dict)
state_dict = move_state_dict_to_device(state_dict, device=device)
policy.load_state_dict(state_dict)
#################################################
# Utilities functions #
#################################################
def push_transitions_to_transport_queue(transitions: list, transitions_queue):
"""Send transitions to learner in smaller chunks to avoid network issues.
@ -504,144 +668,9 @@ def log_policy_frequency_issue(policy_fps: float, cfg: TrainPipelineConfig, inte
)
def establish_learner_connection(
stub,
shutdown_event: any, # Event,
attempts=30,
):
for _ in range(attempts):
if shutdown_event.is_set():
logging.info("[ACTOR] Shutting down establish_learner_connection")
return False
# Force a connection attempt and check state
try:
logging.info("[ACTOR] Send ready message to Learner")
if stub.Ready(hilserl_pb2.Empty()) == hilserl_pb2.Empty():
return True
except grpc.RpcError as e:
logging.error(f"[ACTOR] Waiting for Learner to be ready... {e}")
time.sleep(2)
return False
def use_threads(cfg: TrainPipelineConfig) -> bool:
return cfg.policy.concurrency.actor == "threads"
@parser.wrap()
def actor_cli(cfg: TrainPipelineConfig):
cfg.validate()
if not use_threads(cfg):
import torch.multiprocessing as mp
mp.set_start_method("spawn")
# Create logs directory to ensure it exists
log_dir = os.path.join(cfg.output_dir, "logs")
os.makedirs(log_dir, exist_ok=True)
log_file = os.path.join(log_dir, f"actor_{cfg.job_name}.log")
# Initialize logging with explicit log file
init_logging(log_file=log_file)
logging.info(f"Actor logging initialized, writing to {log_file}")
shutdown_event = setup_process_handlers(use_threads(cfg))
learner_client, grpc_channel = learner_service_client(
host=cfg.policy.actor_learner_config.learner_host,
port=cfg.policy.actor_learner_config.learner_port,
)
logging.info("[ACTOR] Establishing connection with Learner")
if not establish_learner_connection(learner_client, shutdown_event):
logging.error("[ACTOR] Failed to establish connection with Learner")
return
if not use_threads(cfg):
# If we use multithreading, we can reuse the channel
grpc_channel.close()
grpc_channel = None
logging.info("[ACTOR] Connection with Learner established")
parameters_queue = Queue()
transitions_queue = Queue()
interactions_queue = Queue()
concurrency_entity = None
if use_threads(cfg):
from threading import Thread
concurrency_entity = Thread
else:
from multiprocessing import Process
concurrency_entity = Process
receive_policy_process = concurrency_entity(
target=receive_policy,
args=(cfg, parameters_queue, shutdown_event, grpc_channel),
daemon=True,
)
transitions_process = concurrency_entity(
target=send_transitions,
args=(cfg, transitions_queue, shutdown_event, grpc_channel),
daemon=True,
)
interactions_process = concurrency_entity(
target=send_interactions,
args=(cfg, interactions_queue, shutdown_event, grpc_channel),
daemon=True,
)
transitions_process.start()
interactions_process.start()
receive_policy_process.start()
# HACK: FOR MANISKILL we do not have a reward classifier
# TODO: Remove this once we merge into main
reward_classifier = None
# if (
# cfg.env.reward_classifier["pretrained_path"] is not None
# and cfg.env.reward_classifier["config_path"] is not None
# ):
# reward_classifier = get_classifier(
# pretrained_path=cfg.env.reward_classifier["pretrained_path"],
# config_path=cfg.env.reward_classifier["config_path"],
# )
act_with_policy(
cfg=cfg,
reward_classifier=reward_classifier,
shutdown_event=shutdown_event,
parameters_queue=parameters_queue,
transitions_queue=transitions_queue,
interactions_queue=interactions_queue,
)
logging.info("[ACTOR] Policy process joined")
logging.info("[ACTOR] Closing queues")
transitions_queue.close()
interactions_queue.close()
parameters_queue.close()
transitions_process.join()
logging.info("[ACTOR] Transitions process joined")
interactions_process.join()
logging.info("[ACTOR] Interactions process joined")
receive_policy_process.join()
logging.info("[ACTOR] Receive policy process joined")
logging.info("[ACTOR] join queues")
transitions_queue.cancel_join_thread()
interactions_queue.cancel_join_thread()
parameters_queue.cancel_join_thread()
logging.info("[ACTOR] queues closed")
if __name__ == "__main__":
actor_cli()