Merge branch 'huggingface:main' into 2024_05_30_add_data_augmentation
This commit is contained in:
commit
8b134725d5
|
@ -209,7 +209,7 @@ def eval_policy(
|
|||
policy: torch.nn.Module,
|
||||
n_episodes: int,
|
||||
max_episodes_rendered: int = 0,
|
||||
video_dir: Path | None = None,
|
||||
videos_dir: Path | None = None,
|
||||
return_episode_data: bool = False,
|
||||
start_seed: int | None = None,
|
||||
enable_progbar: bool = False,
|
||||
|
@ -221,7 +221,7 @@ def eval_policy(
|
|||
policy: The policy.
|
||||
n_episodes: The number of episodes to evaluate.
|
||||
max_episodes_rendered: Maximum number of episodes to render into videos.
|
||||
video_dir: Where to save rendered videos.
|
||||
videos_dir: Where to save rendered videos.
|
||||
return_episode_data: Whether to return episode data for online training. Incorporates the data into
|
||||
the "episodes" key of the returned dictionary.
|
||||
start_seed: The first seed to use for the first individual rollout. For all subsequent rollouts the
|
||||
|
@ -347,8 +347,8 @@ def eval_policy(
|
|||
):
|
||||
if n_episodes_rendered >= max_episodes_rendered:
|
||||
break
|
||||
video_dir.mkdir(parents=True, exist_ok=True)
|
||||
video_path = video_dir / f"eval_episode_{n_episodes_rendered}.mp4"
|
||||
videos_dir.mkdir(parents=True, exist_ok=True)
|
||||
video_path = videos_dir / f"eval_episode_{n_episodes_rendered}.mp4"
|
||||
video_paths.append(str(video_path))
|
||||
thread = threading.Thread(
|
||||
target=write_video,
|
||||
|
@ -503,9 +503,10 @@ def _compile_episode_data(
|
|||
}
|
||||
|
||||
|
||||
def eval(
|
||||
def main(
|
||||
pretrained_policy_path: str | None = None,
|
||||
hydra_cfg_path: str | None = None,
|
||||
out_dir: str | None = None,
|
||||
config_overrides: list[str] | None = None,
|
||||
):
|
||||
assert (pretrained_policy_path is None) ^ (hydra_cfg_path is None)
|
||||
|
@ -513,12 +514,8 @@ def eval(
|
|||
hydra_cfg = init_hydra_config(pretrained_policy_path / "config.yaml", config_overrides)
|
||||
else:
|
||||
hydra_cfg = init_hydra_config(hydra_cfg_path, config_overrides)
|
||||
out_dir = (
|
||||
f"outputs/eval/{dt.now().strftime('%Y-%m-%d/%H-%M-%S')}_{hydra_cfg.env.name}_{hydra_cfg.policy.name}"
|
||||
)
|
||||
|
||||
if out_dir is None:
|
||||
raise NotImplementedError()
|
||||
out_dir = f"outputs/eval/{dt.now().strftime('%Y-%m-%d/%H-%M-%S')}_{hydra_cfg.env.name}_{hydra_cfg.policy.name}"
|
||||
|
||||
# Check device is available
|
||||
device = get_safe_torch_device(hydra_cfg.device, log=True)
|
||||
|
@ -546,7 +543,7 @@ def eval(
|
|||
policy,
|
||||
hydra_cfg.eval.n_episodes,
|
||||
max_episodes_rendered=10,
|
||||
video_dir=Path(out_dir) / "eval",
|
||||
videos_dir=Path(out_dir) / "videos",
|
||||
start_seed=hydra_cfg.seed,
|
||||
enable_progbar=True,
|
||||
enable_inner_progbar=True,
|
||||
|
@ -586,6 +583,13 @@ if __name__ == "__main__":
|
|||
),
|
||||
)
|
||||
parser.add_argument("--revision", help="Optionally provide the Hugging Face Hub revision ID.")
|
||||
parser.add_argument(
|
||||
"--out-dir",
|
||||
help=(
|
||||
"Where to save the evaluation outputs. If not provided, outputs are saved in "
|
||||
"outputs/eval/{timestamp}_{env_name}_{policy_name}"
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"overrides",
|
||||
nargs="*",
|
||||
|
@ -594,7 +598,7 @@ if __name__ == "__main__":
|
|||
args = parser.parse_args()
|
||||
|
||||
if args.pretrained_policy_name_or_path is None:
|
||||
eval(hydra_cfg_path=args.config, config_overrides=args.overrides)
|
||||
main(hydra_cfg_path=args.config, out_dir=args.out_dir, config_overrides=args.overrides)
|
||||
else:
|
||||
try:
|
||||
pretrained_policy_path = Path(
|
||||
|
@ -618,4 +622,8 @@ if __name__ == "__main__":
|
|||
"repo ID, nor is it an existing local directory."
|
||||
)
|
||||
|
||||
eval(pretrained_policy_path=pretrained_policy_path, config_overrides=args.overrides)
|
||||
main(
|
||||
pretrained_policy_path=pretrained_policy_path,
|
||||
out_dir=args.out_dir,
|
||||
config_overrides=args.overrides,
|
||||
)
|
||||
|
|
|
@ -150,6 +150,7 @@ def log_train_info(logger: Logger, info, step, cfg, dataset, is_offline):
|
|||
grad_norm = info["grad_norm"]
|
||||
lr = info["lr"]
|
||||
update_s = info["update_s"]
|
||||
dataloading_s = info["dataloading_s"]
|
||||
|
||||
# A sample is an (observation,action) pair, where observation and action
|
||||
# can be on multiple timestamps. In a batch, we have `batch_size`` number of samples.
|
||||
|
@ -170,6 +171,7 @@ def log_train_info(logger: Logger, info, step, cfg, dataset, is_offline):
|
|||
f"lr:{lr:0.1e}",
|
||||
# in seconds
|
||||
f"updt_s:{update_s:.3f}",
|
||||
f"data_s:{dataloading_s:.3f}", # if not ~0, you are bottlenecked by cpu or io
|
||||
]
|
||||
logging.info(" ".join(log_items))
|
||||
|
||||
|
@ -325,6 +327,9 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
|||
|
||||
# Note: this helper will be used in offline and online training loops.
|
||||
def evaluate_and_checkpoint_if_needed(step):
|
||||
_num_digits = max(6, len(str(cfg.training.offline_steps + cfg.training.online_steps)))
|
||||
step_identifier = f"{step:0{_num_digits}d}"
|
||||
|
||||
if cfg.training.eval_freq > 0 and step % cfg.training.eval_freq == 0:
|
||||
logging.info(f"Eval policy at step {step}")
|
||||
with torch.no_grad(), torch.autocast(device_type=device.type) if cfg.use_amp else nullcontext():
|
||||
|
@ -332,7 +337,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
|||
eval_env,
|
||||
policy,
|
||||
cfg.eval.n_episodes,
|
||||
video_dir=Path(out_dir) / "eval",
|
||||
videos_dir=Path(out_dir) / "eval" / f"videos_step_{step_identifier}",
|
||||
max_episodes_rendered=4,
|
||||
start_seed=cfg.seed,
|
||||
)
|
||||
|
@ -350,9 +355,7 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
|||
policy,
|
||||
optimizer,
|
||||
lr_scheduler,
|
||||
identifier=str(step).zfill(
|
||||
max(6, len(str(cfg.training.offline_steps + cfg.training.online_steps)))
|
||||
),
|
||||
identifier=step_identifier,
|
||||
)
|
||||
logging.info("Resume training")
|
||||
|
||||
|
@ -382,7 +385,10 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
|||
for _ in range(step, cfg.training.offline_steps):
|
||||
if step == 0:
|
||||
logging.info("Start offline training on a fixed dataset")
|
||||
|
||||
start_time = time.perf_counter()
|
||||
batch = next(dl_iter)
|
||||
dataloading_s = time.perf_counter() - start_time
|
||||
|
||||
for key in batch:
|
||||
batch[key] = batch[key].to(device, non_blocking=True)
|
||||
|
@ -397,6 +403,8 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
|||
use_amp=cfg.use_amp,
|
||||
)
|
||||
|
||||
train_info["dataloading_s"] = dataloading_s
|
||||
|
||||
if step % cfg.training.log_freq == 0:
|
||||
log_train_info(logger, train_info, step, cfg, offline_dataset, is_offline=True)
|
||||
|
||||
|
|
Loading…
Reference in New Issue