Merge 1ee9cb60ce
into 1c873df5c0
This commit is contained in:
commit
9aedee6aa3
|
@ -112,15 +112,15 @@ Now, let's assume that we want to reproduce the run just above. That run has pro
|
|||
We can then simply load the config values from this file using:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=outputs/train/act_aloha_transfer/checkpoints/last/pretrained_model/ \
|
||||
--config_path=outputs/train/act_aloha_transfer/checkpoints/last/pretrained_model/train_config.json \
|
||||
--output_dir=outputs/train/act_aloha_transfer_2
|
||||
```
|
||||
`--config_path` is also a special argument which allows to initialize the config from a local config file. It can point to a directory that contains `train_config.json` or to the config file itself directly.
|
||||
`--config_path` is also a special argument which allows to initialize the config from a local config file.
|
||||
|
||||
Similarly to Hydra, we can still override some parameters in the CLI if we want to, e.g.:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=outputs/train/act_aloha_transfer/checkpoints/last/pretrained_model/ \
|
||||
--config_path=outputs/train/act_aloha_transfer/checkpoints/last/pretrained_model/train_config.json \
|
||||
--output_dir=outputs/train/act_aloha_transfer_2
|
||||
--policy.n_action_steps=80
|
||||
```
|
||||
|
@ -156,7 +156,7 @@ INFO 2025-01-24 16:10:56 ts/train.py:263 Checkpoint policy after step 100
|
|||
Now let's simulate a crash by killing the process (hit `ctrl`+`c`). We can then simply resume this run from the last checkpoint available with:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=outputs/train/run_resumption/checkpoints/last/pretrained_model/ \
|
||||
--config_path=outputs/train/run_resumption/checkpoints/last/pretrained_model/train_config.json \
|
||||
--resume=true
|
||||
```
|
||||
You should see from the logging that your training picks up from where it left off.
|
||||
|
@ -165,7 +165,7 @@ Another reason for which you might want to resume a run is simply to extend trai
|
|||
You could double the number of steps of the previous run with:
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=outputs/train/run_resumption/checkpoints/last/pretrained_model/ \
|
||||
--config_path=outputs/train/run_resumption/checkpoints/last/pretrained_model/train_config.json \
|
||||
--resume=true \
|
||||
--steps=200000
|
||||
```
|
||||
|
@ -245,14 +245,14 @@ python lerobot/scripts/train.py \
|
|||
#### Train a policy from scratch - config file + CLI
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=path/to/pretrained_model \ # <- can also be a repo_id
|
||||
--config_path=path/to/pretrained_model/train_config.json \ # <- can also be a repo_id
|
||||
--policy.n_action_steps=80 # <- you may still override values
|
||||
```
|
||||
|
||||
#### Resume/continue a training run
|
||||
```bash
|
||||
python lerobot/scripts/train.py \
|
||||
--config_path=checkpoint/pretrained_model/ \
|
||||
--config_path=checkpoint/pretrained_model/train_config.json \
|
||||
--resume=true \
|
||||
--steps=200000 # <- you can change some training parameters
|
||||
```
|
||||
|
|
Loading…
Reference in New Issue