added new implementation of tdmpc2

This commit is contained in:
Michel Aractingi 2024-11-20 17:30:19 +00:00
parent 963738d983
commit a146544765
3 changed files with 1224 additions and 0 deletions

View File

@ -0,0 +1,208 @@
#!/usr/bin/env python
# Copyright 2024 Nicklas Hansen, Xiaolong Wang, Hao Su,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
@dataclass
class TDMPC2Config:
"""Configuration class for TDMPCPolicy.
Defaults are configured for training with xarm_lift_medium_replay providing proprioceptive and single
camera observations.
The parameters you will most likely need to change are the ones which depend on the environment / sensors.
Those are: `input_shapes`, `output_shapes`, and perhaps `max_random_shift_ratio`.
Args:
n_action_repeats: The number of times to repeat the action returned by the planning. (hint: Google
action repeats in Q-learning or ask your favorite chatbot)
horizon: Horizon for model predictive control.
n_action_steps: Number of action steps to take from the plan given by model predictive control. This
is an alternative to using action repeats. If this is set to more than 1, then we require
`n_action_repeats == 1`, `use_mpc == True` and `n_action_steps <= horizon`. Note that this
approach of using multiple steps from the plan is not in the original implementation.
input_shapes: A dictionary defining the shapes of the input data for the policy. The key represents
the input data name, and the value is a list indicating the dimensions of the corresponding data.
For example, "observation.image" refers to an input from a camera with dimensions [3, 96, 96],
indicating it has three color channels and 96x96 resolution. Importantly, `input_shapes` doesn't
include batch dimension or temporal dimension.
output_shapes: A dictionary defining the shapes of the output data for the policy. The key represents
the output data name, and the value is a list indicating the dimensions of the corresponding data.
For example, "action" refers to an output shape of [14], indicating 14-dimensional actions.
Importantly, `output_shapes` doesn't include batch dimension or temporal dimension.
input_normalization_modes: A dictionary with key representing the modality (e.g. "observation.state"),
and the value specifies the normalization mode to apply. The two available modes are "mean_std"
which subtracts the mean and divides by the standard deviation and "min_max" which rescale in a
[-1, 1] range. Note that here this defaults to None meaning inputs are not normalized. This is to
match the original implementation.
output_normalization_modes: Similar dictionary as `normalize_input_modes`, but to unnormalize to the
original scale. Note that this is also used for normalizing the training targets. NOTE: Clipping
to [-1, +1] is used during MPPI/CEM. Therefore, it is recommended that you stick with "min_max"
normalization mode here.
image_encoder_hidden_dim: Number of channels for the convolutional layers used for image encoding.
state_encoder_hidden_dim: Hidden dimension for MLP used for state vector encoding.
latent_dim: Observation's latent embedding dimension.
q_ensemble_size: Number of Q function estimators to use in an ensemble for uncertainty estimation.
mlp_dim: Hidden dimension of MLPs used for modelling the dynamics encoder, reward function, policy
(π), Q ensemble, and V.
discount: Discount factor (γ) to use for the reinforcement learning formalism.
use_mpc: Whether to use model predictive control. The alternative is to just sample the policy model
(π) for each step.
cem_iterations: Number of iterations for the MPPI/CEM loop in MPC.
max_std: Maximum standard deviation for actions sampled from the gaussian PDF in CEM.
min_std: Minimum standard deviation for noise applied to actions sampled from the policy model (π).
Doubles up as the minimum standard deviation for actions sampled from the gaussian PDF in CEM.
n_gaussian_samples: Number of samples to draw from the gaussian distribution every CEM iteration. Must
be non-zero.
n_pi_samples: Number of samples to draw from the policy / world model rollout every CEM iteration. Can
be zero.
uncertainty_regularizer_coeff: Coefficient for the uncertainty regularization used when estimating
trajectory values (this is the λ coeffiecient in eqn 4 of FOWM).
n_elites: The number of elite samples to use for updating the gaussian parameters every CEM iteration.
elite_weighting_temperature: The temperature to use for softmax weighting (by trajectory value) of the
elites, when updating the gaussian parameters for CEM.
gaussian_mean_momentum: Momentum (α) used for EMA updates of the mean parameter μ of the gaussian
parameters optimized in CEM. Updates are calculated as μ αμ + (1-α)μ.
max_random_shift_ratio: Maximum random shift (as a proportion of the image size) to apply to the
image(s) (in units of pixels) for training-time augmentation. If set to 0, no such augmentation
is applied. Note that the input images are assumed to be square for this augmentation.
reward_coeff: Loss weighting coefficient for the reward regression loss.
expectile_weight: Weighting (τ) used in expectile regression for the state value function (V).
v_pred < v_target is weighted by τ and v_pred >= v_target is weighted by (1-τ). τ is expected to
be in [0, 1]. Setting τ closer to 1 results in a more "optimistic" V. This is sensible to do
because v_target is obtained by evaluating the learned state-action value functions (Q) with
in-sample actions that may not be always optimal.
value_coeff: Loss weighting coefficient for both the state-action value (Q) TD loss, and the state
value (V) expectile regression loss.
consistency_coeff: Loss weighting coefficient for the consistency loss.
advantage_scaling: A factor by which the advantages are scaled prior to exponentiation for advantage
weighted regression of the policy (π) estimator parameters. Note that the exponentiated advantages
are clamped at 100.0.
pi_coeff: Loss weighting coefficient for the action regression loss.
temporal_decay_coeff: Exponential decay coefficient for decaying the loss coefficient for future time-
steps. Hint: each loss computation involves `horizon` steps worth of actions starting from the
current time step.
target_model_momentum: Momentum (α) used for EMA updates of the target models. Updates are calculated
as ϕ αϕ + (1-α)θ where ϕ are the parameters of the target model and θ are the parameters of the
model being trained.
"""
# Input / output structure.
n_action_repeats: int = 2
horizon: int = 5
n_action_steps: int = 1
input_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"observation.image": [3, 84, 84],
"observation.state": [4],
}
)
output_shapes: dict[str, list[int]] = field(
default_factory=lambda: {
"action": [4],
}
)
# Normalization / Unnormalization
input_normalization_modes: dict[str, str] | None = None
output_normalization_modes: dict[str, str] = field(
default_factory=lambda: {"action": "min_max"},
)
# Architecture / modeling.
# Neural networks.
image_encoder_hidden_dim: int = 32
state_encoder_hidden_dim: int = 256
latent_dim: int = 50
q_ensemble_size: int = 5
mlp_dim: int = 512
# Reinforcement learning.
discount: float = 0.9
# actor
log_std_min: float = -10
log_std_max: float = 2
entropy_coef: float = 1e-4
# critic
num_bins: int = 101
vmin: int = -10
vmax: int = +10
rho: float = 0.5
tau: float = 0.01
# Inference.
use_mpc: bool = True
cem_iterations: int = 6
max_std: float = 2.0
min_std: float = 0.05
n_gaussian_samples: int = 512
n_pi_samples: int = 51
uncertainty_regularizer_coeff: float = 1.0
n_elites: int = 50
elite_weighting_temperature: float = 0.5
gaussian_mean_momentum: float = 0.1
# Training and loss computation.
max_random_shift_ratio: float = 0.0476
# Loss coefficients.
reward_coeff: float = 0.1
expectile_weight: float = 0.9
value_coeff: float = 0.1
consistency_coeff: float = 20.0
advantage_scaling: float = 3.0
pi_coeff: float = 0.5
temporal_decay_coeff: float = 0.5
# Target model.
target_model_momentum: float = 0.995
def __post_init__(self):
"""Input validation (not exhaustive)."""
# There should only be one image key.
image_keys = {k for k in self.input_shapes if k.startswith("observation.image")}
if len(image_keys) > 1:
raise ValueError(
f"{self.__class__.__name__} handles at most one image for now. Got image keys {image_keys}."
)
if len(image_keys) > 0:
image_key = next(iter(image_keys))
if self.input_shapes[image_key][-2] != self.input_shapes[image_key][-1]:
# TODO(alexander-soare): This limitation is solely because of code in the random shift
# augmentation. It should be able to be removed.
raise ValueError(
f"Only square images are handled now. Got image shape {self.input_shapes[image_key]}."
)
if self.n_gaussian_samples <= 0:
raise ValueError(
f"The number of guassian samples for CEM should be non-zero. Got `{self.n_gaussian_samples=}`"
)
if self.output_normalization_modes != {"action": "min_max"}:
raise ValueError(
"TD-MPC assumes the action space dimensions to all be in [-1, 1]. Therefore it is strongly "
f"advised that you stick with the default. See {self.__class__.__name__} docstring for more "
"information."
)
if self.n_action_steps > 1:
if self.n_action_repeats != 1:
raise ValueError(
"If `n_action_steps > 1`, `n_action_repeats` must be left to its default value of 1."
)
if not self.use_mpc:
raise ValueError("If `n_action_steps > 1`, `use_mpc` must be set to `True`.")
if self.n_action_steps > self.horizon:
raise ValueError("`n_action_steps` must be less than or equal to `horizon`.")

View File

@ -0,0 +1,860 @@
#!/usr/bin/env python
# Copyright 2024 Nicklas Hansen, Xiaolong Wang, Hao Su,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of Finetuning Offline World Models in the Real World.
The comments in this code may sometimes refer to these references:
TD-MPC paper: Temporal Difference Learning for Model Predictive Control (https://arxiv.org/abs/2203.04955)
FOWM paper: Finetuning Offline World Models in the Real World (https://arxiv.org/abs/2310.16029)
"""
# ruff: noqa: N806
from collections import deque
from copy import deepcopy
from functools import partial
from typing import Callable
import einops
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F # noqa: N812
from huggingface_hub import PyTorchModelHubMixin
from torch import Tensor
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.tdmpc2.configuration_tdmpc2 import TDMPC2Config
from lerobot.common.policies.utils import get_device_from_parameters, populate_queues
from lerobot.common.policies.tdmpc2.tdmpc2_utils import NormedLinear, SimNorm, two_hot_inv
class TDMPC2Policy(
nn.Module,
PyTorchModelHubMixin,
library_name="lerobot",
repo_url="https://github.com/huggingface/lerobot",
tags=["robotics", "tdmpc2"],
):
"""Implementation of TD-MPC2 learning + inference.
Please note several warnings for this policy.
- Evaluation of pretrained weights created with the original FOWM code
(https://github.com/fyhMer/fowm) works as expected. To be precise: we trained and evaluated a
model with the FOWM code for the xarm_lift_medium_replay dataset. We ported the weights across
to LeRobot, and were able to evaluate with the same success metric. BUT, we had to use inter-
process communication to use the xarm environment from FOWM. This is because our xarm
environment uses newer dependencies and does not match the environment in FOWM. See
https://github.com/huggingface/lerobot/pull/103 for implementation details.
- We have NOT checked that training on LeRobot reproduces the results from FOWM.
- Nevertheless, we have verified that we can train TD-MPC for PushT. See
`lerobot/configs/policy/tdmpc2_pusht_keypoints.yaml`.
- Our current xarm datasets were generated using the environment from FOWM. Therefore they do not
match our xarm environment.
"""
name = "tdmpc2"
def __init__(
self, config: TDMPC2Config | None = None, dataset_stats: dict[str, dict[str, Tensor]] | None = None
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__()
if config is None:
config = TDMPC2Config()
self.config = config
self.model = TDMPC2WorldModel(config)
self.model_target = deepcopy(self.model)
for param in self.model_target.parameters():
param.requires_grad = False
if config.input_normalization_modes is not None:
self.normalize_inputs = Normalize(
config.input_shapes, config.input_normalization_modes, dataset_stats
)
else:
self.normalize_inputs = nn.Identity()
self.normalize_targets = Normalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_shapes, config.output_normalization_modes, dataset_stats
)
image_keys = [k for k in config.input_shapes if k.startswith("observation.image")]
# Note: This check is covered in the post-init of the config but have a sanity check just in case.
self._use_image = False
self._use_env_state = False
if len(image_keys) > 0:
assert len(image_keys) == 1
self._use_image = True
self.input_image_key = image_keys[0]
if "observation.environment_state" in config.input_shapes:
self._use_env_state = True
self.scale = RunningScale(self.config.tau)
self.reset()
def reset(self):
"""
Clear observation and action queues. Clear previous means for warm starting of MPPI/CEM. Should be
called on `env.reset()`
"""
self._queues = {
"observation.state": deque(maxlen=1),
"action": deque(maxlen=max(self.config.n_action_steps, self.config.n_action_repeats)),
}
if self._use_image:
self._queues["observation.image"] = deque(maxlen=1)
if self._use_env_state:
self._queues["observation.environment_state"] = deque(maxlen=1)
# Previous mean obtained from the cross-entropy method (CEM) used during MPC. It is used to warm start
# CEM for the next step.
self._prev_mean: torch.Tensor | None = None
@torch.no_grad()
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select a single action given environment observations."""
batch = self.normalize_inputs(batch)
if self._use_image:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.image"] = batch[self.input_image_key]
self._queues = populate_queues(self._queues, batch)
# When the action queue is depleted, populate it again by querying the policy.
if len(self._queues["action"]) == 0:
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
# Remove the time dimensions as it is not handled yet.
for key in batch:
assert batch[key].shape[1] == 1
batch[key] = batch[key][:, 0]
# NOTE: Order of observations matters here.
encode_keys = []
if self._use_image:
encode_keys.append("observation.image")
if self._use_env_state:
encode_keys.append("observation.environment_state")
encode_keys.append("observation.state")
z = self.model.encode({k: batch[k] for k in encode_keys})
if self.config.use_mpc: # noqa: SIM108
actions = self.plan(z) # (horizon, batch, action_dim)
else:
# Plan with the policy (π) alone. This always returns one action so unsqueeze to get a
# sequence dimension like in the MPC branch.
actions = self.model.pi(z)[0].unsqueeze(0)
actions = torch.clamp(actions, -1, +1)
actions = self.unnormalize_outputs({"action": actions})["action"]
if self.config.n_action_repeats > 1:
for _ in range(self.config.n_action_repeats):
self._queues["action"].append(actions[0])
else:
# Action queue is (n_action_steps, batch_size, action_dim), so we transpose the action.
self._queues["action"].extend(actions[: self.config.n_action_steps])
action = self._queues["action"].popleft()
return action
@torch.no_grad()
def plan(self, z: Tensor) -> Tensor:
"""Plan sequence of actions using TD-MPC inference.
Args:
z: (batch, latent_dim,) tensor for the initial state.
Returns:
(horizon, batch, action_dim,) tensor for the planned trajectory of actions.
"""
device = get_device_from_parameters(self)
batch_size = z.shape[0]
# Sample Nπ trajectories from the policy.
pi_actions = torch.empty(
self.config.horizon,
self.config.n_pi_samples,
batch_size,
self.config.output_shapes["action"][0],
device=device,
)
if self.config.n_pi_samples > 0:
_z = einops.repeat(z, "b d -> n b d", n=self.config.n_pi_samples)
for t in range(self.config.horizon):
# Note: Adding a small amount of noise here doesn't hurt during inference and may even be
# helpful for CEM.
pi_actions[t] = self.model.pi(_z, self.config.min_std)[0]
_z = self.model.latent_dynamics(_z, pi_actions[t])
# In the CEM loop we will need this for a call to estimate_value with the gaussian sampled
# trajectories.
z = einops.repeat(z, "b d -> n b d", n=self.config.n_gaussian_samples + self.config.n_pi_samples)
# Model Predictive Path Integral (MPPI) with the cross-entropy method (CEM) as the optimization
# algorithm.
# The initial mean and standard deviation for the cross-entropy method (CEM).
mean = torch.zeros(
self.config.horizon, batch_size, self.config.output_shapes["action"][0], device=device
)
# Maybe warm start CEM with the mean from the previous step.
if self._prev_mean is not None:
mean[:-1] = self._prev_mean[1:]
std = self.config.max_std * torch.ones_like(mean)
for _ in range(self.config.cem_iterations):
# Randomly sample action trajectories for the gaussian distribution.
std_normal_noise = torch.randn(
self.config.horizon,
self.config.n_gaussian_samples,
batch_size,
self.config.output_shapes["action"][0],
device=std.device,
)
gaussian_actions = torch.clamp(mean.unsqueeze(1) + std.unsqueeze(1) * std_normal_noise, -1, 1)
# Compute elite actions.
actions = torch.cat([gaussian_actions, pi_actions], dim=1)
value = self.estimate_value(z, actions).nan_to_num_(0).squeeze()
elite_idxs = torch.topk(value, self.config.n_elites, dim=0).indices # (n_elites, batch)
elite_value = value.take_along_dim(elite_idxs, dim=0) # (n_elites, batch)
# (horizon, n_elites, batch, action_dim)
elite_actions = actions.take_along_dim(einops.rearrange(elite_idxs, "n b -> 1 n b 1"), dim=1)
# Update gaussian PDF parameters to be the (weighted) mean and standard deviation of the elites.
max_value = elite_value.max(0, keepdim=True)[0] # (1, batch)
# The weighting is a softmax over trajectory values. Note that this is not the same as the usage
# of Ω in eqn 4 of the TD-MPC paper. Instead it is the normalized version of it: s = Ω/ΣΩ. This
# makes the equations: μ = Σ(s⋅Γ), σ = Σ(s⋅(Γ-μ)²).
score = torch.exp(self.config.elite_weighting_temperature * (elite_value - max_value))
score /= score.sum(axis=0, keepdim=True)
# (horizon, batch, action_dim)
_mean = torch.sum(einops.rearrange(score, "n b -> n b 1") * elite_actions, dim=1)
_std = torch.sqrt(
torch.sum(
einops.rearrange(score, "n b -> n b 1")
* (elite_actions - einops.rearrange(_mean, "h b d -> h 1 b d")) ** 2,
dim=1,
)
)
# Update mean with an exponential moving average, and std with a direct replacement.
mean = (
self.config.gaussian_mean_momentum * mean + (1 - self.config.gaussian_mean_momentum) * _mean
)
std = _std.clamp_(self.config.min_std, self.config.max_std)
# Keep track of the mean for warm-starting subsequent steps.
self._prev_mean = mean
# Randomly select one of the elite actions from the last iteration of MPPI/CEM using the softmax
# scores from the last iteration.
actions = elite_actions[:, torch.multinomial(score.T, 1).squeeze(), torch.arange(batch_size)]
return actions
@torch.no_grad()
def estimate_value(self, z: Tensor, actions: Tensor):
"""Estimates the value of a trajectory as per eqn 4 of the FOWM paper.
Args:
z: (batch, latent_dim) tensor of initial latent states.
actions: (horizon, batch, action_dim) tensor of action trajectories.
Returns:
(batch,) tensor of values.
"""
# Initialize return and running discount factor.
G, running_discount = 0, 1
# Iterate over the actions in the trajectory to simulate the trajectory using the latent dynamics
# model. Keep track of return.
for t in range(actions.shape[0]):
# We will compute the reward in a moment. First compute the uncertainty regularizer from eqn 4
# of the FOWM paper.
if self.config.uncertainty_regularizer_coeff > 0:
regularization = -(
self.config.uncertainty_regularizer_coeff * self.model.Qs(z, actions[t]).std(0)
)
else:
regularization = 0
# Estimate the next state (latent) and reward.
z, reward = self.model.latent_dynamics_and_reward(z, actions[t], discretize_reward=True)
# Update the return and running discount.
G += running_discount * (reward + regularization)
running_discount *= self.config.discount
# Add the estimated value of the final state (using the minimum for a conservative estimate).
# Do so by predicting the next action, then taking a minimum over the ensemble of state-action value
# estimators.
# Note: This small amount of added noise seems to help a bit at inference time as observed by success
# metrics over 50 episodes of xarm_lift_medium_replay.
next_action = self.model.pi(z, self.config.min_std)[0] # (batch, action_dim)
terminal_values = self.model.Qs(z, next_action, return_type="avg") # (ensemble, batch)
# Randomly choose 2 of the Qs for terminal value estimation (as in App C. of the FOWM paper).
if self.config.q_ensemble_size > 2:
G += (
running_discount
* torch.min(terminal_values[torch.randint(0, self.config.q_ensemble_size, size=(2,))], dim=0)[
0
]
)
else:
G += running_discount * torch.min(terminal_values, dim=0)[0]
# Finally, also regularize the terminal value.
if self.config.uncertainty_regularizer_coeff > 0:
G -= running_discount * self.config.uncertainty_regularizer_coeff * terminal_values.std(0)
return G
def forward(self, batch: dict[str, Tensor]) -> dict[str, Tensor | float]:
"""Run the batch through the model and compute the loss.
Returns a dictionary with loss as a tensor, and other information as native floats.
"""
device = get_device_from_parameters(self)
batch = self.normalize_inputs(batch)
if self._use_image:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.image"] = batch[self.input_image_key]
batch = self.normalize_targets(batch)
info = {}
# (b, t) -> (t, b)
for key in batch:
if batch[key].ndim > 1:
batch[key] = batch[key].transpose(1, 0)
action = batch["action"] # (t, b, action_dim)
reward = batch["next.reward"] # (t, b)
observations = {k: v for k, v in batch.items() if k.startswith("observation.")}
# Apply random image augmentations.
if self._use_image and self.config.max_random_shift_ratio > 0:
observations["observation.image"] = flatten_forward_unflatten(
partial(random_shifts_aug, max_random_shift_ratio=self.config.max_random_shift_ratio),
observations["observation.image"],
)
# Get the current observation for predicting trajectories, and all future observations for use in
# the latent consistency loss and TD loss.
current_observation, next_observations = {}, {}
for k in observations:
current_observation[k] = observations[k][0]
next_observations[k] = observations[k][1:]
horizon, batch_size = next_observations[
"observation.image" if self._use_image else "observation.environment_state"
].shape[:2]
# Run latent rollout using the latent dynamics model and policy model.
# Note this has shape `horizon+1` because there are `horizon` actions and a current `z`. Each action
# gives us a next `z`.
batch_size = batch["index"].shape[0]
z_preds = torch.empty(horizon + 1, batch_size, self.config.latent_dim, device=device)
z_preds[0] = self.model.encode(current_observation)
reward_preds = torch.empty(horizon, batch_size, self.config.num_bins, device=device)
for t in range(horizon):
z_preds[t + 1], reward_preds[t] = self.model.latent_dynamics_and_reward(z_preds[t], action[t])
# Compute Q value predictions based on the latent rollout.
q_preds_ensemble = self.model.Qs(
z_preds[:-1], action, return_type="all"
) # (ensemble, horizon, batch)
info.update({"Q": q_preds_ensemble.mean().item()})
# Compute various targets with stopgrad.
with torch.no_grad():
# Latent state consistency targets.
z_targets = self.model_target.encode(next_observations)
# Compute the TD-target from a reward and the next observation
pi = self.model.pi(z_targets)[0]
td_targets = (
reward
+ self.config.discount * self.model_target.Qs(z_targets, pi, return_type="min").squeeze()
)
# Compute losses.
# Exponentially decay the loss weight with respect to the timestep. Steps that are more distant in the
# future have less impact on the loss. Note: unsqueeze will let us broadcast to (seq, batch).
temporal_loss_coeffs = torch.pow(
self.config.temporal_decay_coeff, torch.arange(horizon, device=device)
).unsqueeze(-1)
# Compute consistency loss as MSE loss between latents predicted from the rollout and latents
# predicted from the (target model's) observation encoder.
consistency_loss = (
(
temporal_loss_coeffs
* F.mse_loss(z_preds[1:], z_targets, reduction="none").mean(dim=-1)
# `z_preds` depends on the current observation and the actions.
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
# `z_targets` depends on the next observation.
* ~batch["observation.state_is_pad"][1:]
)
.sum(0)
.mean()
)
# Compute the reward loss as MSE loss between rewards predicted from the rollout and the dataset
# rewards.
reward_loss = (
(
temporal_loss_coeffs
* soft_cross_entropy(reward_preds, reward, self.config)
* ~batch["next.reward_is_pad"]
# `reward_preds` depends on the current observation and the actions.
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
)
.sum(0)
.mean()
)
# Compute state-action value loss (TD loss) for all of the Q functions in the ensemble.
ce_value_loss = 0.0
for i in range(self.config.q_ensemble_size):
ce_value_loss += soft_cross_entropy(q_preds_ensemble[i], td_targets, self.config)
q_value_loss = (
(
temporal_loss_coeffs
* ce_value_loss
# `q_preds_ensemble` depends on the first observation and the actions.
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
# q_targets depends on the reward and the next observations.
* ~batch["next.reward_is_pad"]
* ~batch["observation.state_is_pad"][1:]
)
.sum(0)
.mean()
)
# Calculate the advantage weighted regression loss for π as detailed in FOWM 3.1.
# We won't need these gradients again so detach.
z_preds = z_preds.detach()
action_preds, _, log_pis, _ = self.model.pi(z_preds[:-1])
qs = self.model_target.Qs(z_preds[:-1], action_preds, return_type="avg")
self.scale.update(qs[0])
qs = self.scale(qs)
rho = torch.pow(self.config.rho, torch.arange(len(qs), device=qs.device)).unsqueeze(-1)
# mse = F.mse_loss(action_preds, action, reduction="none").sum(-1) # (t, b)
# NOTE: The original implementation does not take the sum over the temporal dimension like with the
# other losses.
# TODO(alexander-soare): Take the sum over the temporal dimension and check that training still works
# as well as expected.
pi_loss = (
(self.config.entropy_coef * log_pis - qs).mean(dim=-1)
* rho
# * temporal_loss_coeffs
# `action_preds` depends on the first observation and the actions.
* ~batch["observation.state_is_pad"][0]
* ~batch["action_is_pad"]
).mean()
loss = (
self.config.consistency_coeff * consistency_loss
+ self.config.reward_coeff * reward_loss
+ self.config.value_coeff * q_value_loss
+ self.config.pi_coeff * pi_loss
)
info.update(
{
"consistency_loss": consistency_loss.item(),
"reward_loss": reward_loss.item(),
"Q_value_loss": q_value_loss.item(),
"pi_loss": pi_loss.item(),
"loss": loss,
"sum_loss": loss.item() * self.config.horizon,
"pi_scale": float(self.scale.value),
}
)
# Undo (b, t) -> (t, b).
for key in batch:
if batch[key].ndim > 1:
batch[key] = batch[key].transpose(1, 0)
return info
def update(self):
"""Update the target model's parameters with an EMA step."""
# Note a minor variation with respect to the original FOWM code. Here they do this based on an EMA
# update frequency parameter which is set to 2 (every 2 steps an update is done). To simplify the code
# we update every step and adjust the decay parameter `alpha` accordingly (0.99 -> 0.995)
update_ema_parameters(self.model_target, self.model, self.config.target_model_momentum)
class TDMPC2WorldModel(nn.Module):
"""Latent dynamics model used in TD-MPC2."""
def __init__(self, config: TDMPC2Config):
super().__init__()
self.config = config
self._encoder = TDMPC2ObservationEncoder(config)
# Define latent dynamics head
self._dynamics = nn.Sequential(NormedLinear(config.latent_dim + config.output_shapes["action"][0], config.mlp_dim),
NormedLinear(config.mlp_dim, config.mlp_dim),
NormedLinear(config.mlp_dim, config.latent_dim, act=SimNorm(config.simnorm_dim)))
# Define reward head
self._reward = nn.Sequential(NormedLinear(config.latent_dim + config.output_shapes["action"][0], config.mlp_dim),
NormedLinear(config.mlp_dim, config.mlp_dim),
nn.Linear(config.mlp_dim, max(config.num_bins, 1)))
# Define policy head
self._pi = nn.Sequential(NormedLinear(config.latent_dim, config.mlp_dim),
NormedLinear(config.mlp_dim, config.mlp_dim),
nn.Linear(config.mlp_dim, 2 * config.output_shapes["action"][0]))
# Define ensemble of Q functions
self._Qs = nn.ModuleList(
[
nn.Sequential(
NormedLinear(config.latent_dim + config.output_shapes["action"][0], config.mlp_dim, dropout=config.dropout),
NormedLinear(config.mlp_dim, config.mlp_dim),
nn.Linear(config.mlp_dim, max(config.num_bins, 1))
) for _ in range(config.q_ensemble_size)
]
)
self._init_weights()
self._target_Qs = deepcopy(self._Qs).requires_grad_(False)
self.log_std_min = torch.tensor(config.log_std_min)
self.log_std_dif = torch.tensor(config.log_std_max) - self.log_std_min
self.bins = torch.linspace(config.vmin, config.vmax, config.num_bins)
self.config.bin_size = (config.vmax - config.vmin) / (config.num_bins - 1)
def _init_weights(self):
"""Initialize model weights.
Custom weight initializations proposed in TD-MPC2.
"""
def _apply_fn(m):
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=0.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Embedding):
nn.init.uniform_(m.weight, -0.02, 0.02)
elif isinstance(m, nn.ParameterList):
for i, p in enumerate(m):
if p.dim() == 3: # Linear
nn.init.trunc_normal_(p, std=0.02) # Weight
nn.init.constant_(m[i+1], 0) # Bias
self.apply(_apply_fn)
# initialize parameters of the
for m in [self._reward, *self._Qs]:
assert isinstance(
m[-1], nn.Linear
), "Sanity check. The last linear layer needs 0 initialization on weights."
nn.init.zeros_(m[-1].weight)
def to(self, *args, **kwargs):
"""
Overriding `to` method to also move additional tensors to device.
"""
super().to(*args, **kwargs)
self.log_std_min = self.log_std_min.to(*args, **kwargs)
self.log_std_dif = self.log_std_dif.to(*args, **kwargs)
self.bins = self.bins.to(*args, **kwargs)
return self
def encode(self, obs: dict[str, Tensor]) -> Tensor:
"""Encodes an observation into its latent representation."""
return self._encoder(obs)
def latent_dynamics_and_reward(
self, z: Tensor, a: Tensor, discretize_reward: bool = False
) -> tuple[Tensor, Tensor, bool]:
"""Predict the next state's latent representation and the reward given a current latent and action.
Args:
z: (*, latent_dim) tensor for the current state's latent representation.
a: (*, action_dim) tensor for the action to be applied.
Returns:
A tuple containing:
- (*, latent_dim) tensor for the next state's latent representation.
- (*,) tensor for the estimated reward.
"""
x = torch.cat([z, a], dim=-1)
reward = self._reward(x).squeeze(-1)
if discretize_reward:
reward = two_hot_inv(reward, self.bins)
return self._dynamics(x), reward
def latent_dynamics(self, z: Tensor, a: Tensor) -> Tensor:
"""Predict the next state's latent representation given a current latent and action.
Args:
z: (*, latent_dim) tensor for the current state's latent representation.
a: (*, action_dim) tensor for the action to be applied.
Returns:
(*, latent_dim) tensor for the next state's latent representation.
"""
x = torch.cat([z, a], dim=-1)
return self._dynamics(x)
def pi(self, z: Tensor, std: float = 0.0) -> Tensor:
"""Samples an action from the learned policy.
The policy can also have added (truncated) Gaussian noise injected for encouraging exploration when
generating rollouts for online training.
Args:
z: (*, latent_dim) tensor for the current state's latent representation.
std: The standard deviation of the injected noise.
Returns:
(*, action_dim) tensor for the sampled action.
"""
mu, log_std = self._pi(z).chunk(2, dim=-1)
log_std = self.log_std_min + 0.5 * self.log_std_dif * (torch.tanh(log_std) + 1)
eps = torch.randn_like(mu)
log_pi = gaussian_logprob(eps, log_std)
pi = mu + eps * log_std.exp()
mu, pi, log_pi = squash(mu, pi, log_pi)
return pi, mu, log_pi, log_std
def Qs(self, z: Tensor, a: Tensor, return_type: str = "min", target=False) -> Tensor: # noqa: N802
"""Predict state-action value for all of the learned Q functions.
Args:
z: (*, latent_dim) tensor for the current state's latent representation.
a: (*, action_dim) tensor for the action to be applied.
return_type: either 'min' or 'all' otherwise the average is returned
Returns:
(q_ensemble, *) tensor for the value predictions of each learned Q function in the ensemble or the average or min
"""
x = torch.cat([z, a], dim=-1)
if target:
out = torch.stack([q(x).squeeze(-1) for q in self._target_Qs], dim=0)
else:
out = torch.stack([q(x).squeeze(-1) for q in self._Qs], dim=0)
if return_type == "all":
return out
Q1, Q2 = out[np.random.choice(len(self._Qs), size=2, replace=False)]
Q1, Q2 = two_hot_inv(Q1, self.bins), two_hot_inv(Q2, self.bins)
return torch.min(Q1, Q2) if return_type == "min" else (Q1 + Q2) / 2
class TDMPC2ObservationEncoder(nn.Module):
"""Encode image and/or state vector observations."""
def __init__(self, config: TDMPC2Config):
"""
Creates encoders for pixel and/or state modalities.
TODO(alexander-soare): The original work allows for multiple images by concatenating them along the
channel dimension. Re-implement this capability.
"""
super().__init__()
self.config = config
# Define the observation encoder whether its pixels or states
encoder_dict = {}
for obs_key in config.input_shapes:
if "observation.image" in config.input_shapes:
encoder_module = nn.Sequential(
nn.Conv2d(config.input_shapes[obs_key][0], config.image_encoder_hidden_dim, 7, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 5, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(config.image_encoder_hidden_dim, config.image_encoder_hidden_dim, 3, stride=1),
)
dummy_batch = torch.zeros(1, *config.input_shapes[obs_key])
with torch.inference_mode():
out_shape = self.image_enc_layers(dummy_batch).shape[1:]
encoder_module.extend(
nn.Sequential(
nn.Flatten(),
NormedLinear(np.prod(out_shape), config.latent_dim, act=SimNorm(config.simnorm_dim)),
)
)
elif "observation.state" in config.input_shapes:
encoder_module = nn.ModuleList()
encoder_module.append(NormedLinear(config.input_shapes[obs_key][0], config.enc_dim))
assert config.num_enc_layers > 0
for _ in range(config.num_enc_layers - 1):
encoder_module.append(NormedLinear(config.enc_dim, config.enc_dim))
encoder_module.append(NormedLinear(config.enc_dim, config.latent_dim, act=SimNorm(config.simnorm_dim)))
encoder_module = nn.Sequential(*encoder_module)
elif "observation.environment_state" in config.input_shapes:
encoder_module = nn.ModuleList()
encoder_module.append(NormedLinear(config.input_shapes[obs_key][0], config.enc_dim))
assert config.num_enc_layers > 0
for _ in range(config.num_enc_layers - 1):
encoder_module.append(NormedLinear(config.enc_dim, config.enc_dim))
encoder_module.append(NormedLinear(config.enc_dim, config.latent_dim, act=SimNorm(config.simnorm_dim)))
encoder_module = nn.Sequential(*encoder_module)
else:
raise NotImplementedError(f"No corresponding encoder module for key {obs_key}.")
encoder_dict[obs_key] = encoder_module
self.encoder = nn.ModuleDict(encoder_dict)
def forward(self, obs_dict: dict[str, Tensor]) -> Tensor:
"""Encode the image and/or state vector.
Each modality is encoded into a feature vector of size (latent_dim,) and then a uniform mean is taken
over all features.
"""
feat = []
for obs_key in self.config.input_shapes:
if "observation.image" in obs_key:
feat.append(flatten_forward_unflatten(self.encoder[obs_key], obs_dict[obs_key]))
else:
feat.append(self.encoder[obs_key](obs_dict[obs_key]))
return torch.stack(feat, dim=0).mean(0)
def random_shifts_aug(x: Tensor, max_random_shift_ratio: float) -> Tensor:
"""Randomly shifts images horizontally and vertically.
Adapted from https://github.com/facebookresearch/drqv2
"""
b, _, h, w = x.size()
assert h == w, "non-square images not handled yet"
pad = int(round(max_random_shift_ratio * h))
x = F.pad(x, tuple([pad] * 4), "replicate")
eps = 1.0 / (h + 2 * pad)
arange = torch.linspace(
-1.0 + eps,
1.0 - eps,
h + 2 * pad,
device=x.device,
dtype=torch.float32,
)[:h]
arange = einops.repeat(arange, "w -> h w 1", h=h)
base_grid = torch.cat([arange, arange.transpose(1, 0)], dim=2)
base_grid = einops.repeat(base_grid, "h w c -> b h w c", b=b)
# A random shift in units of pixels and within the boundaries of the padding.
shift = torch.randint(
0,
2 * pad + 1,
size=(b, 1, 1, 2),
device=x.device,
dtype=torch.float32,
)
shift *= 2.0 / (h + 2 * pad)
grid = base_grid + shift
return F.grid_sample(x, grid, padding_mode="zeros", align_corners=False)
def update_ema_parameters(ema_net: nn.Module, net: nn.Module, alpha: float):
"""Update EMA parameters in place with ema_param <- alpha * ema_param + (1 - alpha) * param."""
for ema_module, module in zip(ema_net.modules(), net.modules(), strict=True):
for (n_p_ema, p_ema), (n_p, p) in zip(
ema_module.named_parameters(recurse=False), module.named_parameters(recurse=False), strict=True
):
assert n_p_ema == n_p, "Parameter names don't match for EMA model update"
if isinstance(p, dict):
raise RuntimeError("Dict parameter not supported")
if isinstance(module, nn.modules.batchnorm._BatchNorm) or not p.requires_grad:
# Copy BatchNorm parameters, and non-trainable parameters directly.
p_ema.copy_(p.to(dtype=p_ema.dtype).data)
with torch.no_grad():
p_ema.mul_(alpha)
p_ema.add_(p.to(dtype=p_ema.dtype).data, alpha=1 - alpha)
def flatten_forward_unflatten(fn: Callable[[Tensor], Tensor], image_tensor: Tensor) -> Tensor:
"""Helper to temporarily flatten extra dims at the start of the image tensor.
Args:
fn: Callable that the image tensor will be passed to. It should accept (B, C, H, W) and return
(B, *), where * is any number of dimensions.
image_tensor: An image tensor of shape (**, C, H, W), where ** is any number of dimensions, generally
different from *.
Returns:
A return value from the callable reshaped to (**, *).
"""
if image_tensor.ndim == 4:
return fn(image_tensor)
start_dims = image_tensor.shape[:-3]
inp = torch.flatten(image_tensor, end_dim=-4)
flat_out = fn(inp)
return torch.reshape(flat_out, (*start_dims, *flat_out.shape[1:]))
class RunningScale:
"""Running trimmed scale estimator."""
def __init__(self, tau):
self.tau = tau
self._value = torch.ones(1, dtype=torch.float32, device=torch.device("cuda"))
self._percentiles = torch.tensor([5, 95], dtype=torch.float32, device=torch.device("cuda"))
def state_dict(self):
return dict(value=self._value, percentiles=self._percentiles)
def load_state_dict(self, state_dict):
self._value.data.copy_(state_dict["value"])
self._percentiles.data.copy_(state_dict["percentiles"])
@property
def value(self):
return self._value.cpu().item()
def _percentile(self, x):
x_dtype, x_shape = x.dtype, x.shape
x = x.view(x.shape[0], -1)
in_sorted, _ = torch.sort(x, dim=0)
positions = self._percentiles * (x.shape[0] - 1) / 100
floored = torch.floor(positions)
ceiled = floored + 1
ceiled[ceiled > x.shape[0] - 1] = x.shape[0] - 1
weight_ceiled = positions - floored
weight_floored = 1.0 - weight_ceiled
d0 = in_sorted[floored.long(), :] * weight_floored[:, None]
d1 = in_sorted[ceiled.long(), :] * weight_ceiled[:, None]
return (d0 + d1).view(-1, *x_shape[1:]).type(x_dtype)
def update(self, x):
percentiles = self._percentile(x.detach())
value = torch.clamp(percentiles[1] - percentiles[0], min=1.0)
self._value.data.lerp_(value, self.tau)
def __call__(self, x, update=False):
if update:
self.update(x)
return x * (1 / self.value)
def __repr__(self):
return f"RunningScale(S: {self.value})"

View File

@ -0,0 +1,156 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from functorch import combine_state_for_ensemble
class Ensemble(nn.Module):
"""
Vectorized ensemble of modules.
"""
def __init__(self, modules, **kwargs):
super().__init__()
modules = nn.ModuleList(modules)
fn, params, _ = combine_state_for_ensemble(modules)
self.vmap = torch.vmap(fn, in_dims=(0, 0, None), randomness='different', **kwargs)
self.params = nn.ParameterList([nn.Parameter(p) for p in params])
self._repr = str(modules)
def forward(self, *args, **kwargs):
return self.vmap([p for p in self.params], (), *args, **kwargs)
def __repr__(self):
return 'Vectorized ' + self._repr
class SimNorm(nn.Module):
"""
Simplicial normalization.
Adapted from https://arxiv.org/abs/2204.00616.
"""
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
shp = x.shape
x = x.view(*shp[:-1], -1, self.dim)
x = F.softmax(x, dim=-1)
return x.view(*shp)
def __repr__(self):
return f"SimNorm(dim={self.dim})"
class NormedLinear(nn.Linear):
"""
Linear layer with LayerNorm, activation, and optionally dropout.
"""
def __init__(self, *args, dropout=0., act=nn.Mish(inplace=True), **kwargs):
super().__init__(*args, **kwargs)
self.ln = nn.LayerNorm(self.out_features)
self.act = act
self.dropout = nn.Dropout(dropout, inplace=True) if dropout else None
def forward(self, x):
x = super().forward(x)
if self.dropout:
x = self.dropout(x)
return self.act(self.ln(x))
def __repr__(self):
repr_dropout = f", dropout={self.dropout.p}" if self.dropout else ""
return f"NormedLinear(in_features={self.in_features}, "\
f"out_features={self.out_features}, "\
f"bias={self.bias is not None}{repr_dropout}, "\
f"act={self.act.__class__.__name__})"
def soft_ce(pred, target, cfg):
"""Computes the cross entropy loss between predictions and soft targets."""
pred = F.log_softmax(pred, dim=-1)
target = two_hot(target, cfg)
return -(target * pred).sum(-1, keepdim=True)
@torch.jit.script
def log_std(x, low, dif):
return low + 0.5 * dif * (torch.tanh(x) + 1)
@torch.jit.script
def _gaussian_residual(eps, log_std):
return -0.5 * eps.pow(2) - log_std
@torch.jit.script
def _gaussian_logprob(residual):
return residual - 0.5 * torch.log(2 * torch.pi)
def gaussian_logprob(eps, log_std, size=None):
"""Compute Gaussian log probability."""
residual = _gaussian_residual(eps, log_std).sum(-1, keepdim=True)
if size is None:
size = eps.size(-1)
return _gaussian_logprob(residual) * size
@torch.jit.script
def _squash(pi):
return torch.log(F.relu(1 - pi.pow(2)) + 1e-6)
def squash(mu, pi, log_pi):
"""Apply squashing function."""
mu = torch.tanh(mu)
pi = torch.tanh(pi)
log_pi -= _squash(pi).sum(-1, keepdim=True)
return mu, pi, log_pi
@torch.jit.script
def symlog(x):
"""
Symmetric logarithmic function.
Adapted from https://github.com/danijar/dreamerv3.
"""
return torch.sign(x) * torch.log(1 + torch.abs(x))
@torch.jit.script
def symexp(x):
"""
Symmetric exponential function.
Adapted from https://github.com/danijar/dreamerv3.
"""
return torch.sign(x) * (torch.exp(torch.abs(x)) - 1)
def two_hot(x, cfg):
"""Converts a batch of scalars to soft two-hot encoded targets for discrete regression."""
if cfg.num_bins == 0:
return x
elif cfg.num_bins == 1:
return symlog(x)
x = torch.clamp(symlog(x), cfg.vmin, cfg.vmax).squeeze(1)
bin_idx = torch.floor((x - cfg.vmin) / cfg.bin_size).long()
bin_offset = ((x - cfg.vmin) / cfg.bin_size - bin_idx.float()).unsqueeze(-1)
soft_two_hot = torch.zeros(x.size(0), cfg.num_bins, device=x.device)
soft_two_hot.scatter_(1, bin_idx.unsqueeze(1), 1 - bin_offset)
soft_two_hot.scatter_(1, (bin_idx.unsqueeze(1) + 1) % cfg.num_bins, bin_offset)
return soft_two_hot
def two_hot_inv(x, bins):
"""Converts a batch of soft two-hot encoded vectors to scalars."""
num_bins = bins.shape[0]
if num_bins == 0:
return x
elif num_bins == 1:
return symexp(x)
x = F.softmax(x, dim=-1)
x = torch.sum(x * bins, dim=-1, keepdim=True)
return symexp(x)