add lang tokenizer

Signed-off-by: youliangtan <tan_you_liang@hotmail.com>
This commit is contained in:
youliangtan 2024-06-26 19:52:46 -07:00
parent 61e51c9fe4
commit a644084f98
3 changed files with 70 additions and 38 deletions

View File

@ -43,6 +43,10 @@ def get_stats_einops_patterns(dataset, num_workers=0):
# sanity check that tensors are not float64
assert batch[key].dtype != torch.float64
# NOTE: skip language_instruction embedding in stats computation
if key == "language_instruction":
continue
if isinstance(feats_type, (VideoFrame, Image)):
# sanity check that images are channel first
_, c, h, w = batch[key].shape

View File

@ -8,21 +8,22 @@ Example:
--raw-dir /hdd/tensorflow_datasets/bridge_dataset/1.0.0/ \
--repo-id youliangtan/sampled_bridge_data_v2 \
--raw-format oxe_rlds \
--episodes 3 4 5 8 9
--episodes 3 4 5 8 9 \
--fps 5
Exact dataset fps is specified in:
https://docs.google.com/spreadsheets/d/1rPBD77tk60AEIGZrGSODwyyzs5FgCU9Uz3h-3_t2A9g/edit?gid=0#gid=0&range=R:R
"""
import gc
import shutil
from pathlib import Path
import h5py
import numpy as np
import tensorflow_datasets as tfds
import torch
import tqdm
from datasets import Dataset, Features, Image, Sequence, Value
from PIL import Image as PILImage
import tensorflow_datasets as tfds
import cv2
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, save_images_concurrently
from lerobot.common.datasets.utils import (
@ -42,13 +43,7 @@ def tf_to_torch(data):
return torch.from_numpy(data.numpy())
def load_from_raw(
raw_dir: Path,
videos_dir: Path,
fps: int,
video: bool,
episodes: list[int] | None = None
):
def load_from_raw(raw_dir: Path, videos_dir: Path, fps: int, video: bool, episodes: list[int] | None = None):
"""
Args:
raw_dir (Path): _description_
@ -58,13 +53,19 @@ def load_from_raw(
episodes (list[int] | None, optional): _description_. Defaults to None.
"""
ds_builder = tfds.builder_from_directory(str(raw_dir))
dataset = ds_builder.as_dataset(split='all')
dataset = ds_builder.as_dataset(split="all")
dataset_info = ds_builder.info
print("dataset_info: ", dataset_info)
image_keys = get_cameras_keys(
dataset_info.features["steps"]["observation"].keys())
print("image_keys: ", image_keys)
image_keys = get_cameras_keys(dataset_info.features["steps"]["observation"].keys())
# check if there's a 'tfds.features.Text' in step, only take 1 lang instruction
lang_key = [
key for key, value in dataset_info.features["steps"].items() if isinstance(value, tfds.features.Text)
]
lang_key = None if len(lang_key) == 0 else lang_key[0]
print(" - image_keys: ", image_keys)
print(" - lang_key: ", lang_key)
ds_length = len(dataset)
dataset = dataset.take(ds_length)
@ -88,40 +89,41 @@ def load_from_raw(
break
if ep_idx == episodes[0]:
# process this episode
print(" selecting episode: ", ep_idx)
print(" selecting episode idx: ", ep_idx)
episodes.pop(0)
else:
continue # skip
steps = episode['steps']
eps_len = len(steps)
num_frames = eps_len # TODO: check if this is correct
steps = episode["steps"]
num_frames = len(steps)
# last step of demonstration is considered done
done = torch.zeros(num_frames, dtype=torch.bool)
done[-1] = True
states = []
actions = []
actions = [] # TODO(YL): some actions can be a featuredict
rewards = torch.zeros(num_frames, dtype=torch.float32)
ep_dict = {}
langs = []
image_array_dict = {key: [] for key in image_keys}
###########################################################
# loop through all steps in the episode
for j, step in enumerate(steps):
states.append(tf_to_torch(step['observation']['state']))
actions.append(tf_to_torch(step['action']))
rewards[j] = torch.tensor(step['reward'].numpy(), dtype=torch.float32)
states.append(tf_to_torch(step["observation"]["state"]))
actions.append(tf_to_torch(step["action"]))
rewards[j] = torch.tensor(step["reward"].numpy(), dtype=torch.float32)
# TODO: language_text, is_terminal, is_last etc.
if lang_key is not None:
langs.append(str(step[lang_key]))
for im_key in image_keys:
if im_key not in step['observation']:
if im_key not in step["observation"]:
continue
img = step['observation'][im_key]
img = step["observation"][im_key]
img = np.array(img)
image_array_dict[im_key].append(img)
@ -152,6 +154,9 @@ def load_from_raw(
else:
ep_dict[img_key] = [PILImage.fromarray(x) for x in imgs_array]
if lang_key is not None:
ep_dict["language_instruction"] = langs
ep_dict["observation.state"] = torch.stack(states) # TODO better way
ep_dict["action"] = torch.stack(actions)
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
@ -180,22 +185,21 @@ def to_hf_dataset(data_dict, video) -> Dataset:
features[key] = Image()
features["observation.state"] = Sequence(
length=data_dict["observation.state"].shape[1], feature=Value(
dtype="float32", id=None)
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.velocity" in data_dict:
features["observation.velocity"] = Sequence(
length=data_dict["observation.velocity"].shape[1], feature=Value(
dtype="float32", id=None)
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
)
if "observation.effort" in data_dict:
features["observation.effort"] = Sequence(
length=data_dict["observation.effort"].shape[1], feature=Value(
dtype="float32", id=None)
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
)
if "language_instruction" in data_dict:
features["language_instruction"] = Value(dtype="string", id=None)
features["action"] = Sequence(
length=data_dict["action"].shape[1], feature=Value(
dtype="float32", id=None)
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
)
features["episode_index"] = Value(dtype="int64", id=None)
features["frame_index"] = Value(dtype="int64", id=None)
@ -231,11 +235,17 @@ def from_raw_to_lerobot_format(
if __name__ == "__main__":
# TODO (YL) remove this
# NOTE (YL): This mainly serves as a unit test
# austin_buds_dataset_converted_externally_to_rlds is a smaller dataset in
# open x embodiment datasets.
raw_dir = Path("/hdd/tensorflow_datasets/austin_buds_dataset_converted_externally_to_rlds/0.1.0/")
videos_dir = Path("/hdd/tmp/")
hf_dataset, episode_data_index, info = from_raw_to_lerobot_format(
raw_dir, videos_dir, fps=5, video=True, episodes=None,
raw_dir,
videos_dir,
fps=50,
video=True,
episodes=[2, 3],
)
print(hf_dataset)
print(episode_data_index)

View File

@ -59,17 +59,35 @@ def unflatten_dict(d, sep="/"):
return outdict
def hf_transform_to_torch(items_dict: dict[torch.Tensor | None]):
def hf_transform_to_torch(
items_dict: dict[torch.Tensor | None],
lang_tokenizer_name: str = "t5-small",
):
"""Get a transform function that convert items from Hugging Face dataset (pyarrow)
to torch tensors. Importantly, images are converted from PIL, which corresponds to
a channel last representation (h w c) of uint8 type, to a torch image representation
with channel first (c h w) of float32 type in range [0,1].
"""
# tokenize language instructions if it exists
if "language_instruction" in items_dict:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(lang_tokenizer_name)
tokenizer_kwargs = {
"max_length": 64, # NOTE: adjust this value accordingly
"padding": "max_length",
"truncation": True,
"return_tensors": "pt",
}
for key in items_dict:
first_item = items_dict[key][0]
if isinstance(first_item, PILImage.Image):
to_tensor = transforms.ToTensor()
items_dict[key] = [to_tensor(img) for img in items_dict[key]]
elif isinstance(first_item, str):
# convert str to lang embeddings via language tokenizer
items_dict[key] = [tokenizer.encode(x, **tokenizer_kwargs) for x in items_dict[key]]
elif isinstance(first_item, dict) and "path" in first_item and "timestamp" in first_item:
# video frame will be processed downstream
pass