Remove random sampling
This commit is contained in:
parent
95293d459d
commit
a6edb85da4
|
@ -130,13 +130,13 @@ class AbstractDataset(TensorDictReplayBuffer):
|
||||||
else:
|
else:
|
||||||
self._transform = transform
|
self._transform = transform
|
||||||
|
|
||||||
def compute_or_load_stats(self, num_batch: int | None = None, batch_size: int = 32) -> TensorDict:
|
def compute_or_load_stats(self, batch_size: int = 32) -> TensorDict:
|
||||||
stats_path = self.data_dir / "stats.pth"
|
stats_path = self.data_dir / "stats.pth"
|
||||||
if stats_path.exists():
|
if stats_path.exists():
|
||||||
stats = torch.load(stats_path)
|
stats = torch.load(stats_path)
|
||||||
else:
|
else:
|
||||||
logging.info(f"compute_stats and save to {stats_path}")
|
logging.info(f"compute_stats and save to {stats_path}")
|
||||||
stats = self._compute_stats(num_batch, batch_size)
|
stats = self._compute_stats(batch_size)
|
||||||
torch.save(stats, stats_path)
|
torch.save(stats, stats_path)
|
||||||
return stats
|
return stats
|
||||||
|
|
||||||
|
@ -151,18 +151,14 @@ class AbstractDataset(TensorDictReplayBuffer):
|
||||||
self.data_dir = self.root / self.dataset_id
|
self.data_dir = self.root / self.dataset_id
|
||||||
return TensorStorage(TensorDict.load_memmap(self.data_dir / "replay_buffer"))
|
return TensorStorage(TensorDict.load_memmap(self.data_dir / "replay_buffer"))
|
||||||
|
|
||||||
def _compute_stats(self, num_batch: int | None = None, batch_size: int = 32):
|
def _compute_stats(self, batch_size: int = 32):
|
||||||
"""Compute dataset statistics including minimum, maximum, mean, and standard deviation.
|
"""Compute dataset statistics including minimum, maximum, mean, and standard deviation."""
|
||||||
|
|
||||||
If `num_batch` is specified, we draw `num_batch` batches of size `batch_size` to compute the
|
|
||||||
statistics. If `num_batch` is not specified, we just consume the whole dataset (default).
|
|
||||||
"""
|
|
||||||
rb = TensorDictReplayBuffer(
|
rb = TensorDictReplayBuffer(
|
||||||
storage=self._storage,
|
storage=self._storage,
|
||||||
batch_size=32,
|
batch_size=32,
|
||||||
prefetch=True,
|
prefetch=True,
|
||||||
# Note: Due to be refactored soon. The point is that we should go through the whole dataset.
|
# Note: Due to be refactored soon. The point is that we should go through the whole dataset.
|
||||||
sampler=SamplerWithoutReplacement(drop_last=False, shuffle=num_batch is not None),
|
sampler=SamplerWithoutReplacement(drop_last=False, shuffle=False),
|
||||||
)
|
)
|
||||||
|
|
||||||
# mean and std will be computed incrementally while max and min will track the running value.
|
# mean and std will be computed incrementally while max and min will track the running value.
|
||||||
|
@ -177,7 +173,7 @@ class AbstractDataset(TensorDictReplayBuffer):
|
||||||
# Note: Due to be refactored soon. The point of storing `first_batch` is to make sure we don't get
|
# Note: Due to be refactored soon. The point of storing `first_batch` is to make sure we don't get
|
||||||
# surprises when rerunning the sampler.
|
# surprises when rerunning the sampler.
|
||||||
first_batch = None
|
first_batch = None
|
||||||
for _ in tqdm.tqdm(num_batch or range(ceil(len(rb) / batch_size))):
|
for _ in tqdm.tqdm(range(ceil(len(rb) / batch_size))):
|
||||||
batch = rb.sample()
|
batch = rb.sample()
|
||||||
if first_batch is None:
|
if first_batch is None:
|
||||||
first_batch = deepcopy(batch)
|
first_batch = deepcopy(batch)
|
||||||
|
@ -193,7 +189,7 @@ class AbstractDataset(TensorDictReplayBuffer):
|
||||||
|
|
||||||
# Compute std
|
# Compute std
|
||||||
first_batch_ = None
|
first_batch_ = None
|
||||||
for _ in tqdm.tqdm(num_batch or range(ceil(len(rb) / batch_size))):
|
for _ in tqdm.tqdm(range(ceil(len(rb) / batch_size))):
|
||||||
batch = rb.sample()
|
batch = rb.sample()
|
||||||
# Sanity check to make sure the batches are still in the same order as before.
|
# Sanity check to make sure the batches are still in the same order as before.
|
||||||
if first_batch_ is None:
|
if first_batch_ is None:
|
||||||
|
|
|
@ -53,7 +53,9 @@ def test_compute_stats():
|
||||||
batch_size=len(buffer),
|
batch_size=len(buffer),
|
||||||
sampler=SamplerWithoutReplacement(),
|
sampler=SamplerWithoutReplacement(),
|
||||||
).sample().float()
|
).sample().float()
|
||||||
computed_stats = buffer._compute_stats()
|
# Note: we set the batch size to be smaller than the whole dataset to make sure we are testing batched
|
||||||
|
# computation of the statistics.
|
||||||
|
computed_stats = buffer._compute_stats(batch_size=int(len(all_data) * 0.75))
|
||||||
for k, pattern in buffer.stats_patterns.items():
|
for k, pattern in buffer.stats_patterns.items():
|
||||||
expected_mean = einops.reduce(all_data[k], pattern, "mean")
|
expected_mean = einops.reduce(all_data[k], pattern, "mean")
|
||||||
assert torch.allclose(computed_stats[k]["mean"], expected_mean)
|
assert torch.allclose(computed_stats[k]["mean"], expected_mean)
|
||||||
|
|
Loading…
Reference in New Issue