Merge remote-tracking branch 'Cadene/user/rcadene/2024_03_31_remove_torchrl' into refactor_act_remove_torchrl

This commit is contained in:
Alexander Soare 2024-04-05 17:52:39 +01:00
commit ab2286025b
49 changed files with 256 additions and 2563 deletions

View File

@ -1,92 +0,0 @@
from collections import deque
from typing import Optional
from tensordict import TensorDict
from torchrl.envs import EnvBase
from lerobot.common.utils import set_global_seed
class AbstractEnv(EnvBase):
"""
Note:
When implementing a concrete class (e.g. `AlohaDataset`, `PushtEnv`, `DiffusionPolicy`), you need to:
1. set the required class attributes:
- for classes inheriting from `AbstractDataset`: `available_datasets`
- for classes inheriting from `AbstractEnv`: `name`, `available_tasks`
- for classes inheriting from `AbstractPolicy`: `name`
2. update variables in `lerobot/__init__.py` (e.g. `available_envs`, `available_datasets_per_envs`, `available_policies`)
3. update variables in `tests/test_available.py` by importing your new class
"""
name: str | None = None # same name should be used to instantiate the environment in factory.py
available_tasks: list[str] | None = None # for instance: sim_insertion, sim_transfer_cube, pusht, lift
def __init__(
self,
task,
frame_skip: int = 1,
from_pixels: bool = False,
pixels_only: bool = False,
image_size=None,
seed=1337,
device="cpu",
num_prev_obs=1,
num_prev_action=0,
):
super().__init__(device=device, batch_size=[])
assert self.name is not None, "Subclasses of `AbstractEnv` should set the `name` class attribute."
assert (
self.available_tasks is not None
), "Subclasses of `AbstractEnv` should set the `available_tasks` class attribute."
assert (
task in self.available_tasks
), f"The provided task ({task}) is not on the list of available tasks {self.available_tasks}."
self.task = task
self.frame_skip = frame_skip
self.from_pixels = from_pixels
self.pixels_only = pixels_only
self.image_size = image_size
self.num_prev_obs = num_prev_obs
self.num_prev_action = num_prev_action
if pixels_only:
assert from_pixels
if from_pixels:
assert image_size
self._make_env()
self._make_spec()
# self._next_seed will be used for the next reset. It is recommended that when self.set_seed is called
# you store the return value in self._next_seed (it will be a new randomly generated seed).
self._next_seed = seed
# Don't store the result of this in self._next_seed, as we want to make sure that the first time
# self._reset is called, we use seed.
self.set_seed(seed)
if self.num_prev_obs > 0:
self._prev_obs_image_queue = deque(maxlen=self.num_prev_obs)
self._prev_obs_state_queue = deque(maxlen=self.num_prev_obs)
if self.num_prev_action > 0:
raise NotImplementedError()
# self._prev_action_queue = deque(maxlen=self.num_prev_action)
def render(self, mode="rgb_array", width=640, height=480):
raise NotImplementedError("Abstract method")
def _reset(self, tensordict: Optional[TensorDict] = None):
raise NotImplementedError("Abstract method")
def _step(self, tensordict: TensorDict):
raise NotImplementedError("Abstract method")
def _make_env(self):
raise NotImplementedError("Abstract method")
def _make_spec(self):
raise NotImplementedError("Abstract method")
def _set_seed(self, seed: Optional[int]):
set_global_seed(seed)

View File

@ -6,24 +6,27 @@ def make_env(cfg, num_parallel_envs=0) -> gym.Env | gym.vector.SyncVectorEnv:
Note: When `num_parallel_envs > 0`, this function returns a `SyncVectorEnv` which takes batched action as input and
returns batched observation, reward, terminated, truncated of `num_parallel_envs` items.
"""
kwargs = {}
kwargs = {
"obs_type": "pixels_agent_pos",
"max_episode_steps": cfg.env.episode_length,
"visualization_width": 384,
"visualization_height": 384,
}
if cfg.env.name == "simxarm":
kwargs["task"] = cfg.env.task
import gym_xarm # noqa: F401
assert cfg.env.task == "lift"
env_fn = lambda: gym.make( # noqa: E731
"gym_xarm/XarmLift-v0",
**kwargs,
)
elif cfg.env.name == "pusht":
import gym_pusht # noqa
import gym_pusht # noqa: F401
# assert kwargs["seed"] > 200, "Seed 0-200 are used for the demonstration dataset, so we don't want to seed the eval env with this range."
kwargs.update(
{
"obs_type": "pixels_agent_pos",
"render_action": False,
}
)
env_fn = lambda: gym.make( # noqa: E731
"gym_pusht/PushTPixels-v0",
render_mode="rgb_array",
max_episode_steps=cfg.env.episode_length,
**kwargs,
)
elif cfg.env.name == "aloha":

View File

@ -1,245 +0,0 @@
import importlib
import logging
from collections import deque
from typing import Optional
import cv2
import numpy as np
import torch
from tensordict import TensorDict
from torchrl.data.tensor_specs import (
BoundedTensorSpec,
CompositeSpec,
DiscreteTensorSpec,
UnboundedContinuousTensorSpec,
)
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
from lerobot.common.envs.abstract import AbstractEnv
from lerobot.common.utils import set_global_seed
_has_gym = importlib.util.find_spec("gymnasium") is not None
class PushtEnv(AbstractEnv):
name = "pusht"
available_tasks = ["pusht"]
_reset_warning_issued = False
def __init__(
self,
task="pusht",
frame_skip: int = 1,
from_pixels: bool = False,
pixels_only: bool = False,
image_size=None,
seed=1337,
device="cpu",
num_prev_obs=1,
num_prev_action=0,
):
super().__init__(
task=task,
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=image_size,
seed=seed,
device=device,
num_prev_obs=num_prev_obs,
num_prev_action=num_prev_action,
)
def _make_env(self):
if not _has_gym:
raise ImportError("Cannot import gymnasium.")
# TODO(rcadene) (PushTEnv is similar to PushTImageEnv, but without the image rendering, it's faster to iterate on)
# from lerobot.common.envs.pusht.pusht_env import PushTEnv
if not self.from_pixels:
raise NotImplementedError("Use PushTEnv, instead of PushTImageEnv")
from lerobot.common.envs.pusht.pusht_image_env import PushTImageEnv
self._env = PushTImageEnv(render_size=self.image_size)
def render(self, mode="rgb_array", width=96, height=96, with_marker=True):
"""
with_marker adds a cursor showing the targeted action for the controller.
"""
if width != height:
raise NotImplementedError()
tmp = self._env.render_size
if width != self._env.render_size:
self._env.render_cache = None
self._env.render_size = width
out = self._env.render(mode).copy()
if with_marker and self._env.latest_action is not None:
action = np.array(self._env.latest_action)
coord = (action / 512 * self._env.render_size).astype(np.int32)
marker_size = int(8 / 96 * self._env.render_size)
thickness = int(1 / 96 * self._env.render_size)
cv2.drawMarker(
out,
coord,
color=(255, 0, 0),
markerType=cv2.MARKER_CROSS,
markerSize=marker_size,
thickness=thickness,
)
self._env.render_size = tmp
return out
def _format_raw_obs(self, raw_obs):
if self.from_pixels:
image = torch.from_numpy(raw_obs["image"])
obs = {"image": image}
if not self.pixels_only:
obs["state"] = torch.from_numpy(raw_obs["agent_pos"]).type(torch.float32)
else:
# TODO:
obs = {"state": torch.from_numpy(raw_obs["observation"]).type(torch.float32)}
return obs
def _reset(self, tensordict: Optional[TensorDict] = None):
if tensordict is not None and not PushtEnv._reset_warning_issued:
logging.warning(f"{self.__class__.__name__}._reset ignores the provided tensordict.")
PushtEnv._reset_warning_issued = True
# Seed the environment and update the seed to be used for the next reset.
self._next_seed = self.set_seed(self._next_seed)
raw_obs = self._env.reset()
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue = deque(
[obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue = deque(
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": TensorDict(obs, batch_size=[]),
"done": torch.tensor([False], dtype=torch.bool),
},
batch_size=[],
)
return td
def _step(self, tensordict: TensorDict):
td = tensordict
action = td["action"].numpy()
assert action.ndim == 1
# TODO(rcadene): add info["is_success"] and info["success"] ?
raw_obs, reward, done, info = self._env.step(action)
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue.append(obs["image"])
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue.append(obs["state"])
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": TensorDict(obs, batch_size=[]),
"reward": torch.tensor([reward], dtype=torch.float32),
# success and done are true when coverage > self.success_threshold in env
"done": torch.tensor([done], dtype=torch.bool),
"success": torch.tensor([done], dtype=torch.bool),
},
batch_size=[],
)
return td
def _make_spec(self):
obs = {}
if self.from_pixels:
image_shape = (3, self.image_size, self.image_size)
if self.num_prev_obs > 0:
image_shape = (self.num_prev_obs + 1, *image_shape)
obs["image"] = BoundedTensorSpec(
low=0,
high=255,
shape=image_shape,
dtype=torch.uint8,
device=self.device,
)
if not self.pixels_only:
state_shape = self._env.observation_space["agent_pos"].shape
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = BoundedTensorSpec(
low=0,
high=512,
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
else:
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
state_shape = self._env.observation_space["observation"].shape
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = UnboundedContinuousTensorSpec(
# TODO:
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
self.observation_spec = CompositeSpec({"observation": obs})
self.action_spec = _gym_to_torchrl_spec_transform(
self._env.action_space,
device=self.device,
)
self.reward_spec = UnboundedContinuousTensorSpec(
shape=(1,),
dtype=torch.float32,
device=self.device,
)
self.done_spec = CompositeSpec(
{
"done": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
"success": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
}
)
def _set_seed(self, seed: Optional[int]):
# Set global seed.
set_global_seed(seed)
# Set PushTImageEnv seed as it relies on it's own internal _seed attribute.
self._env.seed(seed)

View File

@ -1,378 +0,0 @@
import collections
import cv2
import gymnasium as gym
import numpy as np
import pygame
import pymunk
import pymunk.pygame_util
import shapely.geometry as sg
import skimage.transform as st
from gymnasium import spaces
from pymunk.vec2d import Vec2d
from lerobot.common.envs.pusht.pymunk_override import DrawOptions
def pymunk_to_shapely(body, shapes):
geoms = []
for shape in shapes:
if isinstance(shape, pymunk.shapes.Poly):
verts = [body.local_to_world(v) for v in shape.get_vertices()]
verts += [verts[0]]
geoms.append(sg.Polygon(verts))
else:
raise RuntimeError(f"Unsupported shape type {type(shape)}")
geom = sg.MultiPolygon(geoms)
return geom
class PushTEnv(gym.Env):
metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 10}
reward_range = (0.0, 1.0)
def __init__(
self,
legacy=True, # compatibility with original
block_cog=None,
damping=None,
render_action=True,
render_size=96,
reset_to_state=None,
):
self._seed = None
self.seed()
self.window_size = ws = 512 # The size of the PyGame window
self.render_size = render_size
self.sim_hz = 100
# Local controller params.
self.k_p, self.k_v = 100, 20 # PD control.z
self.control_hz = self.metadata["video.frames_per_second"]
# legcay set_state for data compatibility
self.legacy = legacy
# agent_pos, block_pos, block_angle
self.observation_space = spaces.Box(
low=np.array([0, 0, 0, 0, 0], dtype=np.float64),
high=np.array([ws, ws, ws, ws, np.pi * 2], dtype=np.float64),
shape=(5,),
dtype=np.float64,
)
# positional goal for agent
self.action_space = spaces.Box(
low=np.array([0, 0], dtype=np.float64),
high=np.array([ws, ws], dtype=np.float64),
shape=(2,),
dtype=np.float64,
)
self.block_cog = block_cog
self.damping = damping
self.render_action = render_action
"""
If human-rendering is used, `self.window` will be a reference
to the window that we draw to. `self.clock` will be a clock that is used
to ensure that the environment is rendered at the correct framerate in
human-mode. They will remain `None` until human-mode is used for the
first time.
"""
self.window = None
self.clock = None
self.screen = None
self.space = None
self.teleop = None
self.render_buffer = None
self.latest_action = None
self.reset_to_state = reset_to_state
def reset(self):
seed = self._seed
self._setup()
if self.block_cog is not None:
self.block.center_of_gravity = self.block_cog
if self.damping is not None:
self.space.damping = self.damping
# use legacy RandomState for compatibility
state = self.reset_to_state
if state is None:
rs = np.random.RandomState(seed=seed)
state = np.array(
[
rs.randint(50, 450),
rs.randint(50, 450),
rs.randint(100, 400),
rs.randint(100, 400),
rs.randn() * 2 * np.pi - np.pi,
]
)
self._set_state(state)
observation = self._get_obs()
return observation
def step(self, action):
dt = 1.0 / self.sim_hz
self.n_contact_points = 0
n_steps = self.sim_hz // self.control_hz
if action is not None:
self.latest_action = action
for _ in range(n_steps):
# Step PD control.
# self.agent.velocity = self.k_p * (act - self.agent.position) # P control works too.
acceleration = self.k_p * (action - self.agent.position) + self.k_v * (
Vec2d(0, 0) - self.agent.velocity
)
self.agent.velocity += acceleration * dt
# Step physics.
self.space.step(dt)
# compute reward
goal_body = self._get_goal_pose_body(self.goal_pose)
goal_geom = pymunk_to_shapely(goal_body, self.block.shapes)
block_geom = pymunk_to_shapely(self.block, self.block.shapes)
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage = intersection_area / goal_area
reward = np.clip(coverage / self.success_threshold, 0, 1)
done = coverage > self.success_threshold
observation = self._get_obs()
info = self._get_info()
return observation, reward, done, info
def render(self, mode):
return self._render_frame(mode)
def teleop_agent(self):
TeleopAgent = collections.namedtuple("TeleopAgent", ["act"])
def act(obs):
act = None
mouse_position = pymunk.pygame_util.from_pygame(Vec2d(*pygame.mouse.get_pos()), self.screen)
if self.teleop or (mouse_position - self.agent.position).length < 30:
self.teleop = True
act = mouse_position
return act
return TeleopAgent(act)
def _get_obs(self):
obs = np.array(
tuple(self.agent.position) + tuple(self.block.position) + (self.block.angle % (2 * np.pi),)
)
return obs
def _get_goal_pose_body(self, pose):
mass = 1
inertia = pymunk.moment_for_box(mass, (50, 100))
body = pymunk.Body(mass, inertia)
# preserving the legacy assignment order for compatibility
# the order here doesn't matter somehow, maybe because CoM is aligned with body origin
body.position = pose[:2].tolist()
body.angle = pose[2]
return body
def _get_info(self):
n_steps = self.sim_hz // self.control_hz
n_contact_points_per_step = int(np.ceil(self.n_contact_points / n_steps))
info = {
"pos_agent": np.array(self.agent.position),
"vel_agent": np.array(self.agent.velocity),
"block_pose": np.array(list(self.block.position) + [self.block.angle]),
"goal_pose": self.goal_pose,
"n_contacts": n_contact_points_per_step,
}
return info
def _render_frame(self, mode):
if self.window is None and mode == "human":
pygame.init()
pygame.display.init()
self.window = pygame.display.set_mode((self.window_size, self.window_size))
if self.clock is None and mode == "human":
self.clock = pygame.time.Clock()
canvas = pygame.Surface((self.window_size, self.window_size))
canvas.fill((255, 255, 255))
self.screen = canvas
draw_options = DrawOptions(canvas)
# Draw goal pose.
goal_body = self._get_goal_pose_body(self.goal_pose)
for shape in self.block.shapes:
goal_points = [
pymunk.pygame_util.to_pygame(goal_body.local_to_world(v), draw_options.surface)
for v in shape.get_vertices()
]
goal_points += [goal_points[0]]
pygame.draw.polygon(canvas, self.goal_color, goal_points)
# Draw agent and block.
self.space.debug_draw(draw_options)
if mode == "human":
# The following line copies our drawings from `canvas` to the visible window
self.window.blit(canvas, canvas.get_rect())
pygame.event.pump()
pygame.display.update()
# the clock is already ticked during in step for "human"
img = np.transpose(np.array(pygame.surfarray.pixels3d(canvas)), axes=(1, 0, 2))
img = cv2.resize(img, (self.render_size, self.render_size))
if self.render_action and self.latest_action is not None:
action = np.array(self.latest_action)
coord = (action / 512 * 96).astype(np.int32)
marker_size = int(8 / 96 * self.render_size)
thickness = int(1 / 96 * self.render_size)
cv2.drawMarker(
img,
coord,
color=(255, 0, 0),
markerType=cv2.MARKER_CROSS,
markerSize=marker_size,
thickness=thickness,
)
return img
def close(self):
if self.window is not None:
pygame.display.quit()
pygame.quit()
def seed(self, seed=None):
if seed is None:
seed = np.random.randint(0, 25536)
self._seed = seed
self.np_random = np.random.default_rng(seed)
def _handle_collision(self, arbiter, space, data):
self.n_contact_points += len(arbiter.contact_point_set.points)
def _set_state(self, state):
if isinstance(state, np.ndarray):
state = state.tolist()
pos_agent = state[:2]
pos_block = state[2:4]
rot_block = state[4]
self.agent.position = pos_agent
# setting angle rotates with respect to center of mass
# therefore will modify the geometric position
# if not the same as CoM
# therefore should be modified first.
if self.legacy:
# for compatibility with legacy data
self.block.position = pos_block
self.block.angle = rot_block
else:
self.block.angle = rot_block
self.block.position = pos_block
# Run physics to take effect
self.space.step(1.0 / self.sim_hz)
def _set_state_local(self, state_local):
agent_pos_local = state_local[:2]
block_pose_local = state_local[2:]
tf_img_obj = st.AffineTransform(translation=self.goal_pose[:2], rotation=self.goal_pose[2])
tf_obj_new = st.AffineTransform(translation=block_pose_local[:2], rotation=block_pose_local[2])
tf_img_new = st.AffineTransform(matrix=tf_img_obj.params @ tf_obj_new.params)
agent_pos_new = tf_img_new(agent_pos_local)
new_state = np.array(list(agent_pos_new[0]) + list(tf_img_new.translation) + [tf_img_new.rotation])
self._set_state(new_state)
return new_state
def _setup(self):
self.space = pymunk.Space()
self.space.gravity = 0, 0
self.space.damping = 0
self.teleop = False
self.render_buffer = []
# Add walls.
walls = [
self._add_segment((5, 506), (5, 5), 2),
self._add_segment((5, 5), (506, 5), 2),
self._add_segment((506, 5), (506, 506), 2),
self._add_segment((5, 506), (506, 506), 2),
]
self.space.add(*walls)
# Add agent, block, and goal zone.
self.agent = self.add_circle((256, 400), 15)
self.block = self.add_tee((256, 300), 0)
self.goal_color = pygame.Color("LightGreen")
self.goal_pose = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
# Add collision handling
self.collision_handeler = self.space.add_collision_handler(0, 0)
self.collision_handeler.post_solve = self._handle_collision
self.n_contact_points = 0
self.max_score = 50 * 100
self.success_threshold = 0.95 # 95% coverage.
def _add_segment(self, a, b, radius):
shape = pymunk.Segment(self.space.static_body, a, b, radius)
shape.color = pygame.Color("LightGray") # https://htmlcolorcodes.com/color-names
return shape
def add_circle(self, position, radius):
body = pymunk.Body(body_type=pymunk.Body.KINEMATIC)
body.position = position
body.friction = 1
shape = pymunk.Circle(body, radius)
shape.color = pygame.Color("RoyalBlue")
self.space.add(body, shape)
return body
def add_box(self, position, height, width):
mass = 1
inertia = pymunk.moment_for_box(mass, (height, width))
body = pymunk.Body(mass, inertia)
body.position = position
shape = pymunk.Poly.create_box(body, (height, width))
shape.color = pygame.Color("LightSlateGray")
self.space.add(body, shape)
return body
def add_tee(self, position, angle, scale=30, color="LightSlateGray", mask=None):
if mask is None:
mask = pymunk.ShapeFilter.ALL_MASKS()
mass = 1
length = 4
vertices1 = [
(-length * scale / 2, scale),
(length * scale / 2, scale),
(length * scale / 2, 0),
(-length * scale / 2, 0),
]
inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
vertices2 = [
(-scale / 2, scale),
(-scale / 2, length * scale),
(scale / 2, length * scale),
(scale / 2, scale),
]
inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
body = pymunk.Body(mass, inertia1 + inertia2)
shape1 = pymunk.Poly(body, vertices1)
shape2 = pymunk.Poly(body, vertices2)
shape1.color = pygame.Color(color)
shape2.color = pygame.Color(color)
shape1.filter = pymunk.ShapeFilter(mask=mask)
shape2.filter = pymunk.ShapeFilter(mask=mask)
body.center_of_gravity = (shape1.center_of_gravity + shape2.center_of_gravity) / 2
body.position = position
body.angle = angle
body.friction = 1
self.space.add(body, shape1, shape2)
return body

View File

@ -1,41 +0,0 @@
import numpy as np
from gymnasium import spaces
from lerobot.common.envs.pusht.pusht_env import PushTEnv
class PushTImageEnv(PushTEnv):
metadata = {"render.modes": ["rgb_array"], "video.frames_per_second": 10}
# Note: legacy defaults to True for compatibility with original
def __init__(self, legacy=True, block_cog=None, damping=None, render_size=96):
super().__init__(
legacy=legacy, block_cog=block_cog, damping=damping, render_size=render_size, render_action=False
)
ws = self.window_size
self.observation_space = spaces.Dict(
{
"image": spaces.Box(low=0, high=1, shape=(3, render_size, render_size), dtype=np.float32),
"agent_pos": spaces.Box(low=0, high=ws, shape=(2,), dtype=np.float32),
}
)
self.render_cache = None
def _get_obs(self):
img = super()._render_frame(mode="rgb_array")
agent_pos = np.array(self.agent.position)
img_obs = np.moveaxis(img, -1, 0)
obs = {"image": img_obs, "agent_pos": agent_pos}
self.render_cache = img
return obs
def render(self, mode):
assert mode == "rgb_array"
if self.render_cache is None:
self._get_obs()
return self.render_cache

View File

@ -1,244 +0,0 @@
# ----------------------------------------------------------------------------
# pymunk
# Copyright (c) 2007-2016 Victor Blomqvist
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ----------------------------------------------------------------------------
"""This submodule contains helper functions to help with quick prototyping
using pymunk together with pygame.
Intended to help with debugging and prototyping, not for actual production use
in a full application. The methods contained in this module is opinionated
about your coordinate system and not in any way optimized.
"""
__docformat__ = "reStructuredText"
__all__ = [
"DrawOptions",
"get_mouse_pos",
"to_pygame",
"from_pygame",
# "lighten",
"positive_y_is_up",
]
from typing import Sequence, Tuple
import numpy as np
import pygame
import pymunk
from pymunk.space_debug_draw_options import SpaceDebugColor
from pymunk.vec2d import Vec2d
positive_y_is_up: bool = False
"""Make increasing values of y point upwards.
When True::
y
^
| . (3, 3)
|
| . (2, 2)
|
+------ > x
When False::
+------ > x
|
| . (2, 2)
|
| . (3, 3)
v
y
"""
class DrawOptions(pymunk.SpaceDebugDrawOptions):
def __init__(self, surface: pygame.Surface) -> None:
"""Draw a pymunk.Space on a pygame.Surface object.
Typical usage::
>>> import pymunk
>>> surface = pygame.Surface((10,10))
>>> space = pymunk.Space()
>>> options = pymunk.pygame_util.DrawOptions(surface)
>>> space.debug_draw(options)
You can control the color of a shape by setting shape.color to the color
you want it drawn in::
>>> c = pymunk.Circle(None, 10)
>>> c.color = pygame.Color("pink")
See pygame_util.demo.py for a full example
Since pygame uses a coordinate system where y points down (in contrast
to many other cases), you either have to make the physics simulation
with Pymunk also behave in that way, or flip everything when you draw.
The easiest is probably to just make the simulation behave the same
way as Pygame does. In that way all coordinates used are in the same
orientation and easy to reason about::
>>> space = pymunk.Space()
>>> space.gravity = (0, -1000)
>>> body = pymunk.Body()
>>> body.position = (0, 0) # will be positioned in the top left corner
>>> space.debug_draw(options)
To flip the drawing its possible to set the module property
:py:data:`positive_y_is_up` to True. Then the pygame drawing will flip
the simulation upside down before drawing::
>>> positive_y_is_up = True
>>> body = pymunk.Body()
>>> body.position = (0, 0)
>>> # Body will be position in bottom left corner
:Parameters:
surface : pygame.Surface
Surface that the objects will be drawn on
"""
self.surface = surface
super().__init__()
def draw_circle(
self,
pos: Vec2d,
angle: float,
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
p = to_pygame(pos, self.surface)
pygame.draw.circle(self.surface, fill_color.as_int(), p, round(radius), 0)
pygame.draw.circle(self.surface, light_color(fill_color).as_int(), p, round(radius - 4), 0)
# circle_edge = pos + Vec2d(radius, 0).rotated(angle)
# p2 = to_pygame(circle_edge, self.surface)
# line_r = 2 if radius > 20 else 1
# pygame.draw.lines(self.surface, outline_color.as_int(), False, [p, p2], line_r)
def draw_segment(self, a: Vec2d, b: Vec2d, color: SpaceDebugColor) -> None:
p1 = to_pygame(a, self.surface)
p2 = to_pygame(b, self.surface)
pygame.draw.aalines(self.surface, color.as_int(), False, [p1, p2])
def draw_fat_segment(
self,
a: Tuple[float, float],
b: Tuple[float, float],
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
p1 = to_pygame(a, self.surface)
p2 = to_pygame(b, self.surface)
r = round(max(1, radius * 2))
pygame.draw.lines(self.surface, fill_color.as_int(), False, [p1, p2], r)
if r > 2:
orthog = [abs(p2[1] - p1[1]), abs(p2[0] - p1[0])]
if orthog[0] == 0 and orthog[1] == 0:
return
scale = radius / (orthog[0] * orthog[0] + orthog[1] * orthog[1]) ** 0.5
orthog[0] = round(orthog[0] * scale)
orthog[1] = round(orthog[1] * scale)
points = [
(p1[0] - orthog[0], p1[1] - orthog[1]),
(p1[0] + orthog[0], p1[1] + orthog[1]),
(p2[0] + orthog[0], p2[1] + orthog[1]),
(p2[0] - orthog[0], p2[1] - orthog[1]),
]
pygame.draw.polygon(self.surface, fill_color.as_int(), points)
pygame.draw.circle(
self.surface,
fill_color.as_int(),
(round(p1[0]), round(p1[1])),
round(radius),
)
pygame.draw.circle(
self.surface,
fill_color.as_int(),
(round(p2[0]), round(p2[1])),
round(radius),
)
def draw_polygon(
self,
verts: Sequence[Tuple[float, float]],
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
ps = [to_pygame(v, self.surface) for v in verts]
ps += [ps[0]]
radius = 2
pygame.draw.polygon(self.surface, light_color(fill_color).as_int(), ps)
if radius > 0:
for i in range(len(verts)):
a = verts[i]
b = verts[(i + 1) % len(verts)]
self.draw_fat_segment(a, b, radius, fill_color, fill_color)
def draw_dot(self, size: float, pos: Tuple[float, float], color: SpaceDebugColor) -> None:
p = to_pygame(pos, self.surface)
pygame.draw.circle(self.surface, color.as_int(), p, round(size), 0)
def get_mouse_pos(surface: pygame.Surface) -> Tuple[int, int]:
"""Get position of the mouse pointer in pymunk coordinates."""
p = pygame.mouse.get_pos()
return from_pygame(p, surface)
def to_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
"""Convenience method to convert pymunk coordinates to pygame surface
local coordinates.
Note that in case positive_y_is_up is False, this function won't actually do
anything except converting the point to integers.
"""
if positive_y_is_up:
return round(p[0]), surface.get_height() - round(p[1])
else:
return round(p[0]), round(p[1])
def from_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
"""Convenience method to convert pygame surface local coordinates to
pymunk coordinates
"""
return to_pygame(p, surface)
def light_color(color: SpaceDebugColor):
color = np.minimum(1.2 * np.float32([color.r, color.g, color.b, color.a]), np.float32([255]))
color = SpaceDebugColor(r=color[0], g=color[1], b=color[2], a=color[3])
return color

View File

@ -1,237 +0,0 @@
import importlib
import logging
from collections import deque
from typing import Optional
import einops
import numpy as np
import torch
from tensordict import TensorDict
from torchrl.data.tensor_specs import (
BoundedTensorSpec,
CompositeSpec,
DiscreteTensorSpec,
UnboundedContinuousTensorSpec,
)
from torchrl.envs.libs.gym import _gym_to_torchrl_spec_transform
from lerobot.common.envs.abstract import AbstractEnv
from lerobot.common.utils import set_global_seed
MAX_NUM_ACTIONS = 4
_has_gym = importlib.util.find_spec("gymnasium") is not None
class SimxarmEnv(AbstractEnv):
name = "simxarm"
available_tasks = ["lift"]
def __init__(
self,
task,
frame_skip: int = 1,
from_pixels: bool = False,
pixels_only: bool = False,
image_size=None,
seed=1337,
device="cpu",
num_prev_obs=0,
num_prev_action=0,
):
super().__init__(
task=task,
frame_skip=frame_skip,
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=image_size,
seed=seed,
device=device,
num_prev_obs=num_prev_obs,
num_prev_action=num_prev_action,
)
def _make_env(self):
if not _has_gym:
raise ImportError("Cannot import gymnasium.")
import gymnasium as gym
from lerobot.common.envs.simxarm.simxarm import TASKS
if self.task not in TASKS:
raise ValueError(f"Unknown task {self.task}. Must be one of {list(TASKS.keys())}")
self._env = TASKS[self.task]["env"]()
num_actions = len(TASKS[self.task]["action_space"])
self._action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(num_actions,))
self._action_padding = np.zeros((MAX_NUM_ACTIONS - num_actions), dtype=np.float32)
if "w" not in TASKS[self.task]["action_space"]:
self._action_padding[-1] = 1.0
def render(self, mode="rgb_array", width=384, height=384):
return self._env.render(mode, width=width, height=height)
def _format_raw_obs(self, raw_obs):
if self.from_pixels:
image = self.render(mode="rgb_array", width=self.image_size, height=self.image_size)
image = image.transpose(2, 0, 1) # (H, W, C) -> (C, H, W)
image = torch.tensor(image.copy(), dtype=torch.uint8)
obs = {"image": image}
if not self.pixels_only:
obs["state"] = torch.tensor(self._env.robot_state, dtype=torch.float32)
else:
obs = {"state": torch.tensor(raw_obs["observation"], dtype=torch.float32)}
# obs = TensorDict(obs, batch_size=[])
return obs
def _reset(self, tensordict: Optional[TensorDict] = None):
td = tensordict
if td is None or td.is_empty():
raw_obs = self._env.reset()
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue = deque(
[obs["image"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue = deque(
[obs["state"]] * (self.num_prev_obs + 1), maxlen=(self.num_prev_obs + 1)
)
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": TensorDict(obs, batch_size=[]),
"done": torch.tensor([False], dtype=torch.bool),
},
batch_size=[],
)
else:
raise NotImplementedError()
return td
def _step(self, tensordict: TensorDict):
td = tensordict
action = td["action"].numpy()
# step expects shape=(4,) so we pad if necessary
action = np.concatenate([action, self._action_padding])
# TODO(rcadene): add info["is_success"] and info["success"] ?
sum_reward = 0
if action.ndim == 1:
action = einops.repeat(action, "c -> t c", t=self.frame_skip)
else:
if self.frame_skip > 1:
raise NotImplementedError()
num_action_steps = action.shape[0]
for i in range(num_action_steps):
raw_obs, reward, done, info = self._env.step(action[i])
sum_reward += reward
obs = self._format_raw_obs(raw_obs)
if self.num_prev_obs > 0:
stacked_obs = {}
if "image" in obs:
self._prev_obs_image_queue.append(obs["image"])
stacked_obs["image"] = torch.stack(list(self._prev_obs_image_queue))
if "state" in obs:
self._prev_obs_state_queue.append(obs["state"])
stacked_obs["state"] = torch.stack(list(self._prev_obs_state_queue))
obs = stacked_obs
td = TensorDict(
{
"observation": self._format_raw_obs(raw_obs),
"reward": torch.tensor([sum_reward], dtype=torch.float32),
"done": torch.tensor([done], dtype=torch.bool),
"success": torch.tensor([info["success"]], dtype=torch.bool),
},
batch_size=[],
)
return td
def _make_spec(self):
obs = {}
if self.from_pixels:
image_shape = (3, self.image_size, self.image_size)
if self.num_prev_obs > 0:
image_shape = (self.num_prev_obs + 1, *image_shape)
obs["image"] = BoundedTensorSpec(
low=0,
high=255,
shape=image_shape,
dtype=torch.uint8,
device=self.device,
)
if not self.pixels_only:
state_shape = (len(self._env.robot_state),)
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = UnboundedContinuousTensorSpec(
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
else:
# TODO(rcadene): add observation_space achieved_goal and desired_goal?
state_shape = self._env.observation_space["observation"].shape
if self.num_prev_obs > 0:
state_shape = (self.num_prev_obs + 1, *state_shape)
obs["state"] = UnboundedContinuousTensorSpec(
# TODO:
shape=state_shape,
dtype=torch.float32,
device=self.device,
)
self.observation_spec = CompositeSpec({"observation": obs})
self.action_spec = _gym_to_torchrl_spec_transform(
self._action_space,
device=self.device,
)
self.reward_spec = UnboundedContinuousTensorSpec(
shape=(1,),
dtype=torch.float32,
device=self.device,
)
self.done_spec = CompositeSpec(
{
"done": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
"success": DiscreteTensorSpec(
2,
shape=(1,),
dtype=torch.bool,
device=self.device,
),
}
)
def _set_seed(self, seed: Optional[int]):
set_global_seed(seed)
self._seed = seed
# TODO(aliberts): change self._reset so that it takes in a seed value
logging.warning("simxarm env is not properly seeded")

View File

@ -1,166 +0,0 @@
from collections import OrderedDict, deque
import gymnasium as gym
import numpy as np
from gymnasium.wrappers import TimeLimit
from lerobot.common.envs.simxarm.simxarm.tasks.base import Base as Base
from lerobot.common.envs.simxarm.simxarm.tasks.lift import Lift
from lerobot.common.envs.simxarm.simxarm.tasks.peg_in_box import PegInBox
from lerobot.common.envs.simxarm.simxarm.tasks.push import Push
from lerobot.common.envs.simxarm.simxarm.tasks.reach import Reach
TASKS = OrderedDict(
(
(
"reach",
{
"env": Reach,
"action_space": "xyz",
"episode_length": 50,
"description": "Reach a target location with the end effector",
},
),
(
"push",
{
"env": Push,
"action_space": "xyz",
"episode_length": 50,
"description": "Push a cube to a target location",
},
),
(
"peg_in_box",
{
"env": PegInBox,
"action_space": "xyz",
"episode_length": 50,
"description": "Insert a peg into a box",
},
),
(
"lift",
{
"env": Lift,
"action_space": "xyzw",
"episode_length": 50,
"description": "Lift a cube above a height threshold",
},
),
)
)
class SimXarmWrapper(gym.Wrapper):
"""
A wrapper for the SimXarm environments. This wrapper is used to
convert the action and observation spaces to the correct format.
"""
def __init__(self, env, task, obs_mode, image_size, action_repeat, frame_stack=1, channel_last=False):
super().__init__(env)
self._env = env
self.obs_mode = obs_mode
self.image_size = image_size
self.action_repeat = action_repeat
self.frame_stack = frame_stack
self._frames = deque([], maxlen=frame_stack)
self.channel_last = channel_last
self._max_episode_steps = task["episode_length"] // action_repeat
image_shape = (
(image_size, image_size, 3 * frame_stack)
if channel_last
else (3 * frame_stack, image_size, image_size)
)
if obs_mode == "state":
self.observation_space = env.observation_space["observation"]
elif obs_mode == "rgb":
self.observation_space = gym.spaces.Box(low=0, high=255, shape=image_shape, dtype=np.uint8)
elif obs_mode == "all":
self.observation_space = gym.spaces.Dict(
state=gym.spaces.Box(low=-np.inf, high=np.inf, shape=(4,), dtype=np.float32),
rgb=gym.spaces.Box(low=0, high=255, shape=image_shape, dtype=np.uint8),
)
else:
raise ValueError(f"Unknown obs_mode {obs_mode}. Must be one of [rgb, all, state]")
self.action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(len(task["action_space"]),))
self.action_padding = np.zeros(4 - len(task["action_space"]), dtype=np.float32)
if "w" not in task["action_space"]:
self.action_padding[-1] = 1.0
def _render_obs(self):
obs = self.render(mode="rgb_array", width=self.image_size, height=self.image_size)
if not self.channel_last:
obs = obs.transpose(2, 0, 1)
return obs.copy()
def _update_frames(self, reset=False):
pixels = self._render_obs()
self._frames.append(pixels)
if reset:
for _ in range(1, self.frame_stack):
self._frames.append(pixels)
assert len(self._frames) == self.frame_stack
def transform_obs(self, obs, reset=False):
if self.obs_mode == "state":
return obs["observation"]
elif self.obs_mode == "rgb":
self._update_frames(reset=reset)
rgb_obs = np.concatenate(list(self._frames), axis=-1 if self.channel_last else 0)
return rgb_obs
elif self.obs_mode == "all":
self._update_frames(reset=reset)
rgb_obs = np.concatenate(list(self._frames), axis=-1 if self.channel_last else 0)
return OrderedDict((("rgb", rgb_obs), ("state", self.robot_state)))
else:
raise ValueError(f"Unknown obs_mode {self.obs_mode}. Must be one of [rgb, all, state]")
def reset(self):
return self.transform_obs(self._env.reset(), reset=True)
def step(self, action):
action = np.concatenate([action, self.action_padding])
reward = 0.0
for _ in range(self.action_repeat):
obs, r, done, info = self._env.step(action)
reward += r
return self.transform_obs(obs), reward, done, info
def render(self, mode="rgb_array", width=384, height=384, **kwargs):
return self._env.render(mode, width=width, height=height)
@property
def state(self):
return self._env.robot_state
def make(task, obs_mode="state", image_size=84, action_repeat=1, frame_stack=1, channel_last=False, seed=0):
"""
Create a new environment.
Args:
task (str): The task to create an environment for. Must be one of:
- 'reach'
- 'push'
- 'peg-in-box'
- 'lift'
obs_mode (str): The observation mode to use. Must be one of:
- 'state': Only state observations
- 'rgb': RGB images
- 'all': RGB images and state observations
image_size (int): The size of the image observations
action_repeat (int): The number of times to repeat the action
seed (int): The random seed to use
Returns:
gym.Env: The environment
"""
if task not in TASKS:
raise ValueError(f"Unknown task {task}. Must be one of {list(TASKS.keys())}")
env = TASKS[task]["env"]()
env = TimeLimit(env, TASKS[task]["episode_length"])
env = SimXarmWrapper(env, TASKS[task], obs_mode, image_size, action_repeat, frame_stack, channel_last)
env.seed(seed)
return env

View File

@ -1,53 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.002">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="20.0 20.0 1" type="plane" condim="3" material="floor_mat"></geom>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 1 1"></geom>
</body>
<body name="object" pos="1.405 0.3 0.58625">
<joint name="object_joint0" type="free" limited="false"></joint>
<geom size="0.035 0.035 0.035" type="box" name="object0" material="block_mat" density="50000" condim="4" friction="1 1 1" solimp="1 1 1" solref="0.02 1"></geom>
<site name="object_site" pos="0 0 0" size="0.035 0.035 0.035" rgba="1 0 0 0" type="box"></site>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:21fb81ae7fba19e3c6b2d2ca60c8051712ba273357287eb5a397d92d61c7a736
size 1211434

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:be68ce180d11630a667a5f37f4dffcc3feebe4217d4bb3912c813b6d9ca3ec66
size 3284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:2c6448552bf6b1c4f17334d686a5320ce051bcdfe31431edf69303d8a570d1de
size 3284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:748b9e197e6521914f18d1f6383a36f211136b3f33f2ad2a8c11b9f921c2cf86
size 6284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a44756eb72f9c214cb37e61dc209cd7073fdff3e4271a7423476ef6fd090d2d4
size 242684

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e8e48692ad26837bb3d6a97582c89784d09948fc09bfe4e5a59017859ff04dac
size 366284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:501665812b08d67e764390db781e839adc6896a9540301d60adf606f57648921
size 22284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:34b541122df84d2ef5fcb91b715eb19659dc15ad8d44a191dde481f780265636
size 184184

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:61e641cd47c169ecef779683332e00e4914db729bf02dfb61bfbe69351827455
size 225584

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:9e2798e7946dd70046c95455d5ba96392d0b54a6069caba91dc4ca66e1379b42
size 237084

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:c757fee95f873191a0633c355c07a360032960771cabbd7593a6cdb0f1ffb089
size 243684

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:715ad5787c5dab57589937fd47289882707b5e1eb997e340d567785b02f4ec90
size 229084

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:85b320aa420497827223d16d492bba8de091173374e361396fc7a5dad7bdb0cb
size 399384

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:97115d848fbf802cb770cd9be639ae2af993103b9d9bbb0c50c943c738a36f18
size 231684

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:f6fcbc18258090eb56c21cfb17baa5ae43abc98b1958cd366f3a73b9898fc7f0
size 2106184

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:c5dee87c7f37baf554b8456ebfe0b3e8ed0b22b8938bd1add6505c2ad6d32c7d
size 242684

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:b41dd2c2c550281bf78d7cc6fa117b14786700e5c453560a0cb5fd6dfa0ffb3e
size 366284

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:75ca1107d0a42a0f03802a9a49cab48419b31851ee8935f8f1ca06be1c1c91e8
size 22284

View File

@ -1,74 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.001">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
</body>
<body name="box0" pos="1.605 0.25 0.55">
<joint name="box_joint0" type="free" limited="false"></joint>
<site name="box_site" pos="0 0.075 -0.01" size="0.02" rgba="0 0 0 0" type="sphere"></site>
<geom name="box_side0" pos="0 0 0" size="0.065 0.002 0.04" type= "box" rgba="0.8 0.1 0.1 1" mass ="1" condim="4" />
<geom name="box_side1" pos="0 0.149 0" size="0.065 0.002 0.04" type="box" rgba="0.9 0.2 0.2 1" mass ="2" condim="4" />
<geom name="box_side2" pos="0.064 0.074 0" size="0.002 0.075 0.04" type="box" rgba="0.8 0.1 0.1 1" mass ="2" condim="4" />
<geom name="box_side3" pos="-0.064 0.074 0" size="0.002 0.075 0.04" type="box" rgba="0.9 0.2 0.2 1" mass ="2" condim="4" />
<geom name="box_side4" pos="-0 0.074 -0.038" size="0.065 0.075 0.002" type="box" rgba="0.5 0 0 1" mass ="2" condim="4"/>
</body>
<body name="object0" pos="1.4 0.25 0.65">
<joint name="object_joint0" type="free" limited="false"></joint>
<geom name="object_target0" type="cylinder" pos="0 0 -0.05" size="0.03 0.035" rgba="0.6 0.8 0.5 1" mass ="0.1" condim="3" />
<site name="object_site" pos="0 0 -0.05" size="0.0325 0.0375" rgba="0 0 0 0" type="cylinder"></site>
<body name="B0" pos="0 0 0" euler="0 0 0 ">
<joint name="B0:joint" type="slide" limited="true" axis="0 0 1" damping="0.05" range="0.0001 0.0001001" solimpfriction="0.98 0.98 0.95" frictionloss="1"></joint>
<geom type="capsule" size="0.002 0.03" rgba="0 0 0 1" mass="0.001" condim="4"/>
<body name="B1" pos="0 0 0.04" euler="0 3.14 0 ">
<joint name="B1:joint1" type="hinge" axis="1 0 0" range="-0.1 0.1" frictionloss="1"></joint>
<joint name="B1:joint2" type="hinge" axis="0 1 0" range="-0.1 0.1" frictionloss="1"></joint>
<joint name="B1:joint3" type="hinge" axis="0 0 1" range="-0.1 0.1" frictionloss="1"></joint>
<geom type="capsule" size="0.002 0.004" rgba="1 0 0 0" mass="0.001" condim="4"/>
</body>
</body>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<weld body1="right_hand" body2="B1" solimp="0.99 0.99 0.99" solref="0.02 1"></weld>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@ -1,54 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.002">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
<site name="target0" pos="1.565 0.3 0.545" size="0.0475 0.001" rgba="1 0 0 1" type="cylinder"></site>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
</body>
<body name="object" pos="1.655 0.3 0.68">
<joint name="object_joint0" type="free" limited="false"></joint>
<geom size="0.024 0.024 0.024" type="box" name="object" material="block_mat" density="50000" condim="4" friction="1 1 1" solimp="1 1 1" solref="0.02 1"></geom>
<site name="object_site" pos="0 0 0" size="0.024 0.024 0.024" rgba="0 0 0 0" type="box"></site>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@ -1,48 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.002">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
<site name="target0" pos="1.605 0.3 0.58" size="0.0475 0.001" rgba="1 0 0 1" type="cylinder"></site>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@ -1,51 +0,0 @@
<mujoco>
<asset>
<texture type="skybox" builtin="gradient" rgb1="0.0 0.0 0.0" rgb2="0.0 0.0 0.0" width="32" height="32"></texture>
<material name="floor_mat" specular="0" shininess="0.0" reflectance="0" rgba="0.043 0.055 0.051 1"></material>
<material name="table_mat" specular="0.2" shininess="0.2" reflectance="0" rgba="1 1 1 1"></material>
<material name="pedestal_mat" specular="0.35" shininess="0.5" reflectance="0" rgba="0.705 0.585 0.405 1"></material>
<material name="block_mat" specular="0.5" shininess="0.9" reflectance="0.05" rgba="0.373 0.678 0.627 1"></material>
<material name="robot0:geomMat" shininess="0.03" specular="0.4"></material>
<material name="robot0:gripper_finger_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:gripper_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="background:gripper_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:arm_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:head_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:torso_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:base_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<mesh name="link_base" file="link_base.stl" />
<mesh name="link1" file="link1.stl" />
<mesh name="link2" file="link2.stl" />
<mesh name="link3" file="link3.stl" />
<mesh name="link4" file="link4.stl" />
<mesh name="link5" file="link5.stl" />
<mesh name="link6" file="link6.stl" />
<mesh name="link7" file="link7.stl" />
<mesh name="base_link" file="base_link.stl" />
<mesh name="left_outer_knuckle" file="left_outer_knuckle.stl" />
<mesh name="left_finger" file="left_finger.stl" />
<mesh name="left_inner_knuckle" file="left_inner_knuckle.stl" />
<mesh name="right_outer_knuckle" file="right_outer_knuckle.stl" />
<mesh name="right_finger" file="right_finger.stl" />
<mesh name="right_inner_knuckle" file="right_inner_knuckle.stl" />
</asset>
<equality>
<weld body1="robot0:mocap2" body2="link7" solimp="0.9 0.95 0.001" solref="0.02 1"></weld>
</equality>
<default>
<joint armature="1" damping="0.1" limited="true"/>
<default class="robot0:blue">
<geom rgba="0.086 0.506 0.767 1.0"></geom>
</default>
<default class="robot0:grey">
<geom rgba="0.356 0.361 0.376 1.0"></geom>
</default>
</default>
</mujoco>

View File

@ -1,88 +0,0 @@
<mujoco model="xarm7">
<body mocap="true" name="robot0:mocap2" pos="0 0 0">
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0 0.5 0 0" size="0.005 0.005 0.005" type="box"></geom>
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0.5 0 0 0" size="1 0.005 0.005" type="box"></geom>
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0 0 0.5 0" size="0.005 1 0.001" type="box"></geom>
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0.5 0.5 0 0" size="0.005 0.005 1" type="box"></geom>
</body>
<body name="link0" pos="1.09 0.28 0.655">
<geom name="bb" type="mesh" mesh="link_base" material="robot0:base_mat" rgba="1 1 1 1"/>
<body name="link1" pos="0 0 0.267">
<inertial pos="-0.0042142 0.02821 -0.0087788" quat="0.917781 -0.277115 0.0606681 0.277858" mass="0.42603" diaginertia="0.00144551 0.00137757 0.000823511" />
<joint name="joint1" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="10" frictionloss="1" />
<geom name="j1" type="mesh" mesh="link1" material="robot0:arm_mat" rgba="1 1 1 1"/>
<body name="link2" pos="0 0 0" quat="0.707105 -0.707108 0 0">
<inertial pos="-3.3178e-05 -0.12849 0.026337" quat="0.447793 0.894132 -0.00224061 0.00218314" mass="0.56095" diaginertia="0.00319151 0.00311598 0.000980804" />
<joint name="joint2" pos="0 0 0" axis="0 0 1" limited="true" range="-2.059 2.0944" damping="10" frictionloss="1" />
<geom name="j2" type="mesh" mesh="link2" material="robot0:head_mat" rgba="1 1 1 1"/>
<body name="link3" pos="0 -0.293 0" quat="0.707105 0.707108 0 0">
<inertial pos="0.04223 -0.023258 -0.0096674" quat="0.883205 0.339803 0.323238 0.000542237" mass="0.44463" diaginertia="0.00133227 0.00119126 0.000780475" />
<joint name="joint3" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="5" frictionloss="1" />
<geom name="j3" type="mesh" mesh="link3" material="robot0:gripper_mat" rgba="1 1 1 1"/>
<body name="link4" pos="0.0525 0 0" quat="0.707105 0.707108 0 0">
<inertial pos="0.067148 -0.10732 0.024479" quat="0.0654142 0.483317 -0.738663 0.465298" mass="0.52387" diaginertia="0.00288984 0.00282705 0.000894409" />
<joint name="joint4" pos="0 0 0" axis="0 0 1" limited="true" range="-0.19198 3.927" damping="5" frictionloss="1" />
<geom name="j4" type="mesh" mesh="link4" material="robot0:arm_mat" rgba="1 1 1 1"/>
<body name="link5" pos="0.0775 -0.3425 0" quat="0.707105 0.707108 0 0">
<inertial pos="-0.00023397 0.036705 -0.080064" quat="0.981064 -0.19003 0.00637998 0.0369004" mass="0.18554" diaginertia="0.00099553 0.000988613 0.000247126" />
<joint name="joint5" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="5" frictionloss="1" />
<geom name="j5" type="mesh" material="robot0:gripper_mat" rgba="1 1 1 1" mesh="link5" />
<body name="link6" pos="0 0 0" quat="0.707105 0.707108 0 0">
<inertial pos="0.058911 0.028469 0.0068428" quat="-0.188705 0.793535 0.166088 0.554173" mass="0.31344" diaginertia="0.000827892 0.000768871 0.000386708" />
<joint name="joint6" pos="0 0 0" axis="0 0 1" limited="true" range="-1.69297 3.14159" damping="2" frictionloss="1" />
<geom name="j6" type="mesh" material="robot0:gripper_mat" rgba="1 1 1 1" mesh="link6" />
<body name="link7" pos="0.076 0.097 0" quat="0.707105 -0.707108 0 0">
<inertial pos="-0.000420033 -0.00287433 0.0257078" quat="0.999372 -0.0349129 -0.00605634 0.000551744" mass="0.85624" diaginertia="0.00137671 0.00118744 0.000514968" />
<joint name="joint7" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="2" frictionloss="1" />
<geom name="j8" material="robot0:gripper_mat" type="mesh" rgba="0.753 0.753 0.753 1" mesh="link7" />
<geom name="j9" material="robot0:gripper_mat" type="mesh" rgba="1 1 1 1" mesh="base_link" />
<site name="grasp" pos="0 0 0.16" rgba="1 0 0 0" type="sphere" size="0.01" group="1"/>
<body name="left_outer_knuckle" pos="0 0.035 0.059098">
<inertial pos="0 0.021559 0.015181" quat="0.47789 0.87842 0 0" mass="0.033618" diaginertia="1.9111e-05 1.79089e-05 1.90167e-06" />
<joint name="drive_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="left_outer_knuckle" />
<body name="left_finger" pos="0 0.035465 0.042039">
<inertial pos="0 -0.016413 0.029258" quat="0.697634 0.115353 -0.115353 0.697634" mass="0.048304" diaginertia="1.88037e-05 1.7493e-05 3.56792e-06" />
<joint name="left_finger_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
<geom name="j10" material="robot0:gripper_finger_mat" type="mesh" rgba="0 0 0 1" conaffinity="3" contype="2" mesh="left_finger" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
<body name="right_hand" pos="0 -0.03 0.05" quat="-0.7071 0 0 0.7071">
<site name="ee" pos="0 0 0" rgba="0 0 1 0" type="sphere" group="1"/>
<site name="ee_x" pos="0 0 0" size="0.005 .1" quat="0.707105 0.707108 0 0 " rgba="1 0 0 0" type="cylinder" group="1"/>
<site name="ee_z" pos="0 0 0" size="0.005 .1" quat="0.707105 0 0 0.707108" rgba="0 0 1 0" type="cylinder" group="1"/>
<site name="ee_y" pos="0 0 0" size="0.005 .1" quat="0.707105 0 0.707108 0 " rgba="0 1 0 0" type="cylinder" group="1"/>
</body>
</body>
</body>
<body name="left_inner_knuckle" pos="0 0.02 0.074098">
<inertial pos="1.86601e-06 0.0220468 0.0261335" quat="0.664139 -0.242732 0.242713 0.664146" mass="0.0230126" diaginertia="8.34216e-06 6.0949e-06 2.75601e-06" />
<joint name="left_inner_knuckle_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="left_inner_knuckle" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
</body>
<body name="right_outer_knuckle" pos="0 -0.035 0.059098">
<inertial pos="0 -0.021559 0.015181" quat="0.87842 0.47789 0 0" mass="0.033618" diaginertia="1.9111e-05 1.79089e-05 1.90167e-06" />
<joint name="right_outer_knuckle_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="right_outer_knuckle" />
<body name="right_finger" pos="0 -0.035465 0.042039">
<inertial pos="0 0.016413 0.029258" quat="0.697634 -0.115356 0.115356 0.697634" mass="0.048304" diaginertia="1.88038e-05 1.7493e-05 3.56779e-06" />
<joint name="right_finger_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
<geom name="j11" material="robot0:gripper_finger_mat" type="mesh" rgba="0 0 0 1" conaffinity="3" contype="2" mesh="right_finger" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
<body name="left_hand" pos="0 0.03 0.05" quat="-0.7071 0 0 0.7071">
<site name="ee_2" pos="0 0 0" rgba="1 0 0 0" type="sphere" size="0.01" group="1"/>
</body>
</body>
</body>
<body name="right_inner_knuckle" pos="0 -0.02 0.074098">
<inertial pos="1.866e-06 -0.022047 0.026133" quat="0.66415 0.242702 -0.242721 0.664144" mass="0.023013" diaginertia="8.34209e-06 6.0949e-06 2.75601e-06" />
<joint name="right_inner_knuckle_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="right_inner_knuckle" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</mujoco>

View File

@ -1,145 +0,0 @@
import os
import mujoco
import numpy as np
from gymnasium_robotics.envs import robot_env
from lerobot.common.envs.simxarm.simxarm.tasks import mocap
class Base(robot_env.MujocoRobotEnv):
"""
Superclass for all simxarm environments.
Args:
xml_name (str): name of the xml environment file
gripper_rotation (list): initial rotation of the gripper (given as a quaternion)
"""
def __init__(self, xml_name, gripper_rotation=None):
if gripper_rotation is None:
gripper_rotation = [0, 1, 0, 0]
self.gripper_rotation = np.array(gripper_rotation, dtype=np.float32)
self.center_of_table = np.array([1.655, 0.3, 0.63625])
self.max_z = 1.2
self.min_z = 0.2
super().__init__(
model_path=os.path.join(os.path.dirname(__file__), "assets", xml_name + ".xml"),
n_substeps=20,
n_actions=4,
initial_qpos={},
)
@property
def dt(self):
return self.n_substeps * self.model.opt.timestep
@property
def eef(self):
return self._utils.get_site_xpos(self.model, self.data, "grasp")
@property
def obj(self):
return self._utils.get_site_xpos(self.model, self.data, "object_site")
@property
def robot_state(self):
gripper_angle = self._utils.get_joint_qpos(self.model, self.data, "right_outer_knuckle_joint")
return np.concatenate([self.eef, gripper_angle])
def is_success(self):
return NotImplementedError()
def get_reward(self):
raise NotImplementedError()
def _sample_goal(self):
raise NotImplementedError()
def get_obs(self):
return self._get_obs()
def _step_callback(self):
self._mujoco.mj_forward(self.model, self.data)
def _limit_gripper(self, gripper_pos, pos_ctrl):
if gripper_pos[0] > self.center_of_table[0] - 0.105 + 0.15:
pos_ctrl[0] = min(pos_ctrl[0], 0)
if gripper_pos[0] < self.center_of_table[0] - 0.105 - 0.3:
pos_ctrl[0] = max(pos_ctrl[0], 0)
if gripper_pos[1] > self.center_of_table[1] + 0.3:
pos_ctrl[1] = min(pos_ctrl[1], 0)
if gripper_pos[1] < self.center_of_table[1] - 0.3:
pos_ctrl[1] = max(pos_ctrl[1], 0)
if gripper_pos[2] > self.max_z:
pos_ctrl[2] = min(pos_ctrl[2], 0)
if gripper_pos[2] < self.min_z:
pos_ctrl[2] = max(pos_ctrl[2], 0)
return pos_ctrl
def _apply_action(self, action):
assert action.shape == (4,)
action = action.copy()
pos_ctrl, gripper_ctrl = action[:3], action[3]
pos_ctrl = self._limit_gripper(
self._utils.get_site_xpos(self.model, self.data, "grasp"), pos_ctrl
) * (1 / self.n_substeps)
gripper_ctrl = np.array([gripper_ctrl, gripper_ctrl])
mocap.apply_action(
self.model,
self._model_names,
self.data,
np.concatenate([pos_ctrl, self.gripper_rotation, gripper_ctrl]),
)
def _render_callback(self):
self._mujoco.mj_forward(self.model, self.data)
def _reset_sim(self):
self.data.time = self.initial_time
self.data.qpos[:] = np.copy(self.initial_qpos)
self.data.qvel[:] = np.copy(self.initial_qvel)
self._sample_goal()
self._mujoco.mj_step(self.model, self.data, nstep=10)
return True
def _set_gripper(self, gripper_pos, gripper_rotation):
self._utils.set_mocap_pos(self.model, self.data, "robot0:mocap", gripper_pos)
self._utils.set_mocap_quat(self.model, self.data, "robot0:mocap", gripper_rotation)
self._utils.set_joint_qpos(self.model, self.data, "right_outer_knuckle_joint", 0)
self.data.qpos[10] = 0.0
self.data.qpos[12] = 0.0
def _env_setup(self, initial_qpos):
for name, value in initial_qpos.items():
self.data.set_joint_qpos(name, value)
mocap.reset(self.model, self.data)
mujoco.mj_forward(self.model, self.data)
self._sample_goal()
mujoco.mj_forward(self.model, self.data)
def reset(self):
self._reset_sim()
return self._get_obs()
def step(self, action):
assert action.shape == (4,)
assert self.action_space.contains(action), "{!r} ({}) invalid".format(action, type(action))
self._apply_action(action)
self._mujoco.mj_step(self.model, self.data, nstep=2)
self._step_callback()
obs = self._get_obs()
reward = self.get_reward()
done = False
info = {"is_success": self.is_success(), "success": self.is_success()}
return obs, reward, done, info
def render(self, mode="rgb_array", width=384, height=384):
self._render_callback()
# HACK
self.model.vis.global_.offwidth = width
self.model.vis.global_.offheight = height
return self.mujoco_renderer.render(mode)
def close(self):
if self.mujoco_renderer is not None:
self.mujoco_renderer.close()

View File

@ -1,100 +0,0 @@
import numpy as np
from lerobot.common.envs.simxarm.simxarm import Base
class Lift(Base):
def __init__(self):
self._z_threshold = 0.15
super().__init__("lift")
@property
def z_target(self):
return self._init_z + self._z_threshold
def is_success(self):
return self.obj[2] >= self.z_target
def get_reward(self):
reach_dist = np.linalg.norm(self.obj - self.eef)
reach_dist_xy = np.linalg.norm(self.obj[:-1] - self.eef[:-1])
pick_completed = self.obj[2] >= (self.z_target - 0.01)
obj_dropped = (self.obj[2] < (self._init_z + 0.005)) and (reach_dist > 0.02)
# Reach
if reach_dist < 0.05:
reach_reward = -reach_dist + max(self._action[-1], 0) / 50
elif reach_dist_xy < 0.05:
reach_reward = -reach_dist
else:
z_bonus = np.linalg.norm(np.linalg.norm(self.obj[-1] - self.eef[-1]))
reach_reward = -reach_dist - 2 * z_bonus
# Pick
if pick_completed and not obj_dropped:
pick_reward = self.z_target
elif (reach_dist < 0.1) and (self.obj[2] > (self._init_z + 0.005)):
pick_reward = min(self.z_target, self.obj[2])
else:
pick_reward = 0
return reach_reward / 100 + pick_reward
def _get_obs(self):
eef_velp = self._utils.get_site_xvelp(self.model, self.data, "grasp") * self.dt
gripper_angle = self._utils.get_joint_qpos(self.model, self.data, "right_outer_knuckle_joint")
eef = self.eef - self.center_of_table
obj = self.obj - self.center_of_table
obj_rot = self._utils.get_joint_qpos(self.model, self.data, "object_joint0")[-4:]
obj_velp = self._utils.get_site_xvelp(self.model, self.data, "object_site") * self.dt
obj_velr = self._utils.get_site_xvelr(self.model, self.data, "object_site") * self.dt
obs = np.concatenate(
[
eef,
eef_velp,
obj,
obj_rot,
obj_velp,
obj_velr,
eef - obj,
np.array(
[
np.linalg.norm(eef - obj),
np.linalg.norm(eef[:-1] - obj[:-1]),
self.z_target,
self.z_target - obj[-1],
self.z_target - eef[-1],
]
),
gripper_angle,
],
axis=0,
)
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": eef}
def _sample_goal(self):
# Gripper
gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
super()._set_gripper(gripper_pos, self.gripper_rotation)
# Object
object_pos = self.center_of_table - np.array([0.15, 0.10, 0.07])
object_pos[0] += self.np_random.uniform(-0.05, 0.05, size=1)
object_pos[1] += self.np_random.uniform(-0.05, 0.05, size=1)
object_qpos = self._utils.get_joint_qpos(self.model, self.data, "object_joint0")
object_qpos[:3] = object_pos
self._utils.set_joint_qpos(self.model, self.data, "object_joint0", object_qpos)
self._init_z = object_pos[2]
# Goal
return object_pos + np.array([0, 0, self._z_threshold])
def reset(self):
self._action = np.zeros(4)
return super().reset()
def step(self, action):
self._action = action.copy()
return super().step(action)

View File

@ -1,67 +0,0 @@
# import mujoco_py
import mujoco
import numpy as np
def apply_action(model, model_names, data, action):
if model.nmocap > 0:
pos_action, gripper_action = np.split(action, (model.nmocap * 7,))
if data.ctrl is not None:
for i in range(gripper_action.shape[0]):
data.ctrl[i] = gripper_action[i]
pos_action = pos_action.reshape(model.nmocap, 7)
pos_delta, quat_delta = pos_action[:, :3], pos_action[:, 3:]
reset_mocap2body_xpos(model, model_names, data)
data.mocap_pos[:] = data.mocap_pos + pos_delta
data.mocap_quat[:] = data.mocap_quat + quat_delta
def reset(model, data):
if model.nmocap > 0 and model.eq_data is not None:
for i in range(model.eq_data.shape[0]):
# if sim.model.eq_type[i] == mujoco_py.const.EQ_WELD:
if model.eq_type[i] == mujoco.mjtEq.mjEQ_WELD:
# model.eq_data[i, :] = np.array([0., 0., 0., 1., 0., 0., 0.])
model.eq_data[i, :] = np.array(
[
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
)
# sim.forward()
mujoco.mj_forward(model, data)
def reset_mocap2body_xpos(model, model_names, data):
if model.eq_type is None or model.eq_obj1id is None or model.eq_obj2id is None:
return
# For all weld constraints
for eq_type, obj1_id, obj2_id in zip(model.eq_type, model.eq_obj1id, model.eq_obj2id, strict=False):
# if eq_type != mujoco_py.const.EQ_WELD:
if eq_type != mujoco.mjtEq.mjEQ_WELD:
continue
# body2 = model.body_id2name(obj2_id)
body2 = model_names.body_id2name[obj2_id]
if body2 == "B0" or body2 == "B9" or body2 == "B1":
continue
mocap_id = model.body_mocapid[obj1_id]
if mocap_id != -1:
# obj1 is the mocap, obj2 is the welded body
body_idx = obj2_id
else:
# obj2 is the mocap, obj1 is the welded body
mocap_id = model.body_mocapid[obj2_id]
body_idx = obj1_id
assert mocap_id != -1
data.mocap_pos[mocap_id][:] = data.xpos[body_idx]
data.mocap_quat[mocap_id][:] = data.xquat[body_idx]

View File

@ -1,86 +0,0 @@
import numpy as np
from lerobot.common.envs.simxarm.simxarm import Base
class PegInBox(Base):
def __init__(self):
super().__init__("peg_in_box")
def _reset_sim(self):
self._act_magnitude = 0
super()._reset_sim()
for _ in range(10):
self._apply_action(np.array([0, 0, 0, 1], dtype=np.float32))
self.sim.step()
@property
def box(self):
return self.sim.data.get_site_xpos("box_site")
def is_success(self):
return np.linalg.norm(self.obj - self.box) <= 0.05
def get_reward(self):
dist_xy = np.linalg.norm(self.obj[:2] - self.box[:2])
dist_xyz = np.linalg.norm(self.obj - self.box)
return float(dist_xy <= 0.045) * (2 - 6 * dist_xyz) - 0.2 * np.square(self._act_magnitude) - dist_xy
def _get_obs(self):
eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
eef, box = self.eef - self.center_of_table, self.box - self.center_of_table
obj = self.obj - self.center_of_table
obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
obs = np.concatenate(
[
eef,
eef_velp,
box,
obj,
obj_rot,
obj_velp,
obj_velr,
eef - box,
eef - obj,
obj - box,
np.array(
[
np.linalg.norm(eef - box),
np.linalg.norm(eef - obj),
np.linalg.norm(obj - box),
gripper_angle,
]
),
],
axis=0,
)
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": box}
def _sample_goal(self):
# Gripper
gripper_pos = np.array([1.280, 0.295, 0.9]) + self.np_random.uniform(-0.05, 0.05, size=3)
super()._set_gripper(gripper_pos, self.gripper_rotation)
# Object
object_pos = gripper_pos - np.array([0, 0, 0.06]) + self.np_random.uniform(-0.005, 0.005, size=3)
object_qpos = self.sim.data.get_joint_qpos("object_joint0")
object_qpos[:3] = object_pos
self.sim.data.set_joint_qpos("object_joint0", object_qpos)
# Box
box_pos = np.array([1.61, 0.18, 0.58])
box_pos[:2] += self.np_random.uniform(-0.11, 0.11, size=2)
box_qpos = self.sim.data.get_joint_qpos("box_joint0")
box_qpos[:3] = box_pos
self.sim.data.set_joint_qpos("box_joint0", box_qpos)
return self.box
def step(self, action):
self._act_magnitude = np.linalg.norm(action[:3])
return super().step(action)

View File

@ -1,78 +0,0 @@
import numpy as np
from lerobot.common.envs.simxarm.simxarm import Base
class Push(Base):
def __init__(self):
super().__init__("push")
def _reset_sim(self):
self._act_magnitude = 0
super()._reset_sim()
def is_success(self):
return np.linalg.norm(self.obj - self.goal) <= 0.05
def get_reward(self):
dist = np.linalg.norm(self.obj - self.goal)
penalty = self._act_magnitude**2
return -(dist + 0.15 * penalty)
def _get_obs(self):
eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
eef, goal = self.eef - self.center_of_table, self.goal - self.center_of_table
obj = self.obj - self.center_of_table
obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
obs = np.concatenate(
[
eef,
eef_velp,
goal,
obj,
obj_rot,
obj_velp,
obj_velr,
eef - goal,
eef - obj,
obj - goal,
np.array(
[
np.linalg.norm(eef - goal),
np.linalg.norm(eef - obj),
np.linalg.norm(obj - goal),
gripper_angle,
]
),
],
axis=0,
)
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": goal}
def _sample_goal(self):
# Gripper
gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
super()._set_gripper(gripper_pos, self.gripper_rotation)
# Object
object_pos = self.center_of_table - np.array([0.25, 0, 0.07])
object_pos[0] += self.np_random.uniform(-0.08, 0.08, size=1)
object_pos[1] += self.np_random.uniform(-0.08, 0.08, size=1)
object_qpos = self.sim.data.get_joint_qpos("object_joint0")
object_qpos[:3] = object_pos
self.sim.data.set_joint_qpos("object_joint0", object_qpos)
# Goal
self.goal = np.array([1.600, 0.200, 0.545])
self.goal[:2] += self.np_random.uniform(-0.1, 0.1, size=2)
self.sim.model.site_pos[self.sim.model.site_name2id("target0")] = self.goal
return self.goal
def step(self, action):
self._act_magnitude = np.linalg.norm(action[:3])
return super().step(action)

View File

@ -1,44 +0,0 @@
import numpy as np
from lerobot.common.envs.simxarm.simxarm import Base
class Reach(Base):
def __init__(self):
super().__init__("reach")
def _reset_sim(self):
self._act_magnitude = 0
super()._reset_sim()
def is_success(self):
return np.linalg.norm(self.eef - self.goal) <= 0.05
def get_reward(self):
dist = np.linalg.norm(self.eef - self.goal)
penalty = self._act_magnitude**2
return -(dist + 0.15 * penalty)
def _get_obs(self):
eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
eef, goal = self.eef - self.center_of_table, self.goal - self.center_of_table
obs = np.concatenate(
[eef, eef_velp, goal, eef - goal, np.array([np.linalg.norm(eef - goal), gripper_angle])], axis=0
)
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": goal}
def _sample_goal(self):
# Gripper
gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
super()._set_gripper(gripper_pos, self.gripper_rotation)
# Goal
self.goal = np.array([1.550, 0.287, 0.580])
self.goal[:2] += self.np_random.uniform(-0.125, 0.125, size=2)
self.sim.model.site_pos[self.sim.model.site_name2id("target0")] = self.goal
return self.goal
def step(self, action):
self._act_magnitude = np.linalg.norm(action[:3])
return super().step(action)

View File

@ -0,0 +1,32 @@
import einops
import torch
from lerobot.common.transforms import apply_inverse_transform
def preprocess_observation(observation, transform=None):
# map to expected inputs for the policy
obs = {
"observation.image": torch.from_numpy(observation["pixels"]).float(),
"observation.state": torch.from_numpy(observation["agent_pos"]).float(),
}
# convert to (b c h w) torch format
obs["observation.image"] = einops.rearrange(obs["observation.image"], "b h w c -> b c h w")
# apply same transforms as in training
if transform is not None:
for key in obs:
obs[key] = torch.stack([transform({key: item})[key] for item in obs[key]])
return obs
def postprocess_action(action, transform=None):
action = action.to("cpu")
# action is a batch (num_env,action_dim) instead of an item (action_dim),
# we assume applying inverse transform on a batch works the same
action = apply_inverse_transform({"action": action}, transform)["action"].numpy()
assert (
action.ndim == 2
), "we assume dimensions are respectively the number of parallel envs, action dimensions"
return action

View File

@ -168,21 +168,15 @@ class ActionChunkingTransformerPolicy(nn.Module):
nn.init.xavier_uniform_(p)
@torch.no_grad()
def select_actions(self, observation, step_count):
# TODO(rcadene): remove unused step_count
del step_count
def select_actions(self, batch, *_):
# TODO(now): Implement queueing mechanism.
self.eval()
self._preprocess_batch(batch)
# TODO(rcadene): remove hack
# add 1 camera dimension
observation["image", "top"] = observation["image", "top"].unsqueeze(1)
obs_dict = {
"image": observation["image", "top"],
"agent_pos": observation["state"],
}
action = self._forward(qpos=obs_dict["agent_pos"] * 0.182, image=obs_dict["image"])
# TODO(now): What's up with this 0.182?
action = self.forward(
robot_state=batch["observation.state"] * 0.182, image=batch["observation.images.top"]
)
if self.cfg.temporal_agg:
# TODO(rcadene): implement temporal aggregation
@ -197,9 +191,7 @@ class ActionChunkingTransformerPolicy(nn.Module):
# exp_weights = torch.from_numpy(exp_weights).cuda().unsqueeze(dim=1)
# raw_action = (actions_for_curr_step * exp_weights).sum(dim=0, keepdim=True)
# take first predicted action or n first actions
action = action[: self.n_action_steps]
return action
return action[: self.n_action_steps]
def __call__(self, *args, **kwargs):
# TODO(now): Temporary bridge.

View File

@ -1,6 +1,7 @@
# ruff: noqa: N806
import time
from collections import deque
from copy import deepcopy
import einops
@ -9,7 +10,7 @@ import torch
import torch.nn as nn
import lerobot.common.policies.tdmpc.helper as h
from lerobot.common.policies.abstract import AbstractPolicy
from lerobot.common.policies.utils import populate_queues
from lerobot.common.utils import get_safe_torch_device
FIRST_FRAME = 0
@ -87,16 +88,18 @@ class TOLD(nn.Module):
return torch.min(Q1, Q2) if return_type == "min" else (Q1 + Q2) / 2
class TDMPCPolicy(AbstractPolicy):
class TDMPCPolicy(nn.Module):
"""Implementation of TD-MPC learning + inference."""
name = "tdmpc"
def __init__(self, cfg, device):
super().__init__(None)
def __init__(self, cfg, n_obs_steps, n_action_steps, device):
super().__init__()
self.action_dim = cfg.action_dim
self.cfg = cfg
self.n_obs_steps = n_obs_steps
self.n_action_steps = n_action_steps
self.device = get_safe_torch_device(device)
self.std = h.linear_schedule(cfg.std_schedule, 0)
self.model = TOLD(cfg)
@ -128,20 +131,42 @@ class TDMPCPolicy(AbstractPolicy):
self.model.load_state_dict(d["model"])
self.model_target.load_state_dict(d["model_target"])
@torch.no_grad()
def select_actions(self, observation, step_count):
if observation["image"].shape[0] != 1:
raise NotImplementedError("Batch size > 1 not handled")
t0 = step_count.item() == 0
obs = {
# TODO(rcadene): remove contiguous hack...
"rgb": observation["image"].contiguous(),
"state": observation["state"].contiguous(),
def reset(self):
"""
Clear observation and action queues. Should be called on `env.reset()`
"""
self._queues = {
"observation.image": deque(maxlen=self.n_obs_steps),
"observation.state": deque(maxlen=self.n_obs_steps),
"action": deque(maxlen=self.n_action_steps),
}
# Note: unsqueeze needed because `act` still uses non-batch logic.
action = self.act(obs, t0=t0, step=self.step.item()).unsqueeze(0)
@torch.no_grad()
def select_action(self, batch, step):
assert "observation.image" in batch
assert "observation.state" in batch
assert len(batch) == 2
self._queues = populate_queues(self._queues, batch)
t0 = step == 0
if len(self._queues["action"]) == 0:
batch = {key: torch.stack(list(self._queues[key]), dim=1) for key in batch}
actions = []
batch_size = batch["observation.image."].shape[0]
for i in range(batch_size):
obs = {
"rgb": batch["observation.image"][[i]],
"state": batch["observation.state"][[i]],
}
# Note: unsqueeze needed because `act` still uses non-batch logic.
action = self.act(obs, t0=t0, step=self.step)
actions.append(action)
action = torch.stack(actions)
action = self._queues["action"].popleft()
return action
@torch.no_grad()
@ -293,97 +318,97 @@ class TDMPCPolicy(AbstractPolicy):
td_target = reward + self.cfg.discount * mask * next_v
return td_target
def update(self, replay_buffer, step, demo_buffer=None):
def forward(self, batch, step):
"""Main update function. Corresponds to one iteration of the model learning."""
start_time = time.time()
num_slices = self.cfg.batch_size
batch_size = self.cfg.horizon * num_slices
# num_slices = self.cfg.batch_size
# batch_size = self.cfg.horizon * num_slices
if demo_buffer is None:
demo_batch_size = 0
else:
# Update oversampling ratio
demo_pc_batch = h.linear_schedule(self.cfg.demo_schedule, step)
demo_num_slices = int(demo_pc_batch * self.batch_size)
demo_batch_size = self.cfg.horizon * demo_num_slices
batch_size -= demo_batch_size
num_slices -= demo_num_slices
replay_buffer._sampler.num_slices = num_slices
demo_buffer._sampler.num_slices = demo_num_slices
# if demo_buffer is None:
# demo_batch_size = 0
# else:
# # Update oversampling ratio
# demo_pc_batch = h.linear_schedule(self.cfg.demo_schedule, step)
# demo_num_slices = int(demo_pc_batch * self.batch_size)
# demo_batch_size = self.cfg.horizon * demo_num_slices
# batch_size -= demo_batch_size
# num_slices -= demo_num_slices
# replay_buffer._sampler.num_slices = num_slices
# demo_buffer._sampler.num_slices = demo_num_slices
assert demo_batch_size % self.cfg.horizon == 0
assert demo_batch_size % demo_num_slices == 0
# assert demo_batch_size % self.cfg.horizon == 0
# assert demo_batch_size % demo_num_slices == 0
assert batch_size % self.cfg.horizon == 0
assert batch_size % num_slices == 0
# assert batch_size % self.cfg.horizon == 0
# assert batch_size % num_slices == 0
# Sample from interaction dataset
# # Sample from interaction dataset
def process_batch(batch, horizon, num_slices):
# trajectory t = 256, horizon h = 5
# (t h) ... -> h t ...
batch = batch.reshape(num_slices, horizon).transpose(1, 0).contiguous()
# def process_batch(batch, horizon, num_slices):
# # trajectory t = 256, horizon h = 5
# # (t h) ... -> h t ...
# batch = batch.reshape(num_slices, horizon).transpose(1, 0).contiguous()
obs = {
"rgb": batch["observation", "image"][FIRST_FRAME].to(self.device, non_blocking=True),
"state": batch["observation", "state"][FIRST_FRAME].to(self.device, non_blocking=True),
}
action = batch["action"].to(self.device, non_blocking=True)
next_obses = {
"rgb": batch["next", "observation", "image"].to(self.device, non_blocking=True),
"state": batch["next", "observation", "state"].to(self.device, non_blocking=True),
}
reward = batch["next", "reward"].to(self.device, non_blocking=True)
# obs = {
# "rgb": batch["observation", "image"][FIRST_FRAME].to(self.device, non_blocking=True),
# "state": batch["observation", "state"][FIRST_FRAME].to(self.device, non_blocking=True),
# }
# action = batch["action"].to(self.device, non_blocking=True)
# next_obses = {
# "rgb": batch["next", "observation", "image"].to(self.device, non_blocking=True),
# "state": batch["next", "observation", "state"].to(self.device, non_blocking=True),
# }
# reward = batch["next", "reward"].to(self.device, non_blocking=True)
idxs = batch["index"][FIRST_FRAME].to(self.device, non_blocking=True)
weights = batch["_weight"][FIRST_FRAME, :, None].to(self.device, non_blocking=True)
# idxs = batch["index"][FIRST_FRAME].to(self.device, non_blocking=True)
# weights = batch["_weight"][FIRST_FRAME, :, None].to(self.device, non_blocking=True)
# TODO(rcadene): rearrange directly in offline dataset
if reward.ndim == 2:
reward = einops.rearrange(reward, "h t -> h t 1")
# # TODO(rcadene): rearrange directly in offline dataset
# if reward.ndim == 2:
# reward = einops.rearrange(reward, "h t -> h t 1")
assert reward.ndim == 3
assert reward.shape == (horizon, num_slices, 1)
# We dont use `batch["next", "done"]` since it only indicates the end of an
# episode, but not the end of the trajectory of an episode.
# Neither does `batch["next", "terminated"]`
done = torch.zeros_like(reward, dtype=torch.bool, device=reward.device)
mask = torch.ones_like(reward, dtype=torch.bool, device=reward.device)
return obs, action, next_obses, reward, mask, done, idxs, weights
# assert reward.ndim == 3
# assert reward.shape == (horizon, num_slices, 1)
# # We dont use `batch["next", "done"]` since it only indicates the end of an
# # episode, but not the end of the trajectory of an episode.
# # Neither does `batch["next", "terminated"]`
# done = torch.zeros_like(reward, dtype=torch.bool, device=reward.device)
# mask = torch.ones_like(reward, dtype=torch.bool, device=reward.device)
# return obs, action, next_obses, reward, mask, done, idxs, weights
batch = replay_buffer.sample(batch_size) if self.cfg.balanced_sampling else replay_buffer.sample()
# batch = replay_buffer.sample(batch_size) if self.cfg.balanced_sampling else replay_buffer.sample()
obs, action, next_obses, reward, mask, done, idxs, weights = process_batch(
batch, self.cfg.horizon, num_slices
)
# obs, action, next_obses, reward, mask, done, idxs, weights = process_batch(
# batch, self.cfg.horizon, num_slices
# )
# Sample from demonstration dataset
if demo_batch_size > 0:
demo_batch = demo_buffer.sample(demo_batch_size)
(
demo_obs,
demo_action,
demo_next_obses,
demo_reward,
demo_mask,
demo_done,
demo_idxs,
demo_weights,
) = process_batch(demo_batch, self.cfg.horizon, demo_num_slices)
# if demo_batch_size > 0:
# demo_batch = demo_buffer.sample(demo_batch_size)
# (
# demo_obs,
# demo_action,
# demo_next_obses,
# demo_reward,
# demo_mask,
# demo_done,
# demo_idxs,
# demo_weights,
# ) = process_batch(demo_batch, self.cfg.horizon, demo_num_slices)
if isinstance(obs, dict):
obs = {k: torch.cat([obs[k], demo_obs[k]]) for k in obs}
next_obses = {k: torch.cat([next_obses[k], demo_next_obses[k]], dim=1) for k in next_obses}
else:
obs = torch.cat([obs, demo_obs])
next_obses = torch.cat([next_obses, demo_next_obses], dim=1)
action = torch.cat([action, demo_action], dim=1)
reward = torch.cat([reward, demo_reward], dim=1)
mask = torch.cat([mask, demo_mask], dim=1)
done = torch.cat([done, demo_done], dim=1)
idxs = torch.cat([idxs, demo_idxs])
weights = torch.cat([weights, demo_weights])
# if isinstance(obs, dict):
# obs = {k: torch.cat([obs[k], demo_obs[k]]) for k in obs}
# next_obses = {k: torch.cat([next_obses[k], demo_next_obses[k]], dim=1) for k in next_obses}
# else:
# obs = torch.cat([obs, demo_obs])
# next_obses = torch.cat([next_obses, demo_next_obses], dim=1)
# action = torch.cat([action, demo_action], dim=1)
# reward = torch.cat([reward, demo_reward], dim=1)
# mask = torch.cat([mask, demo_mask], dim=1)
# done = torch.cat([done, demo_done], dim=1)
# idxs = torch.cat([idxs, demo_idxs])
# weights = torch.cat([weights, demo_weights])
# Apply augmentations
aug_tf = h.aug(self.cfg)

View File

@ -17,7 +17,7 @@ env:
from_pixels: True
pixels_only: False
image_size: 84
action_repeat: 2
# action_repeat: 2 # we can remove if policy has n_action_steps=2
episode_length: 25
fps: ${fps}

View File

@ -1,6 +1,6 @@
# @package _global_
n_action_steps: 1
n_action_steps: 2
n_obs_steps: 1
policy:

View File

@ -44,9 +44,9 @@ from huggingface_hub import snapshot_download
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.envs.factory import make_env
from lerobot.common.envs.utils import postprocess_action, preprocess_observation
from lerobot.common.logger import log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.transforms import apply_inverse_transform
from lerobot.common.utils import get_safe_torch_device, init_hydra_config, init_logging, set_global_seed
@ -54,34 +54,6 @@ def write_video(video_path, stacked_frames, fps):
imageio.mimsave(video_path, stacked_frames, fps=fps)
def preprocess_observation(observation, transform=None):
# map to expected inputs for the policy
obs = {
"observation.image": torch.from_numpy(observation["pixels"]).float(),
"observation.state": torch.from_numpy(observation["agent_pos"]).float(),
}
# convert to (b c h w) torch format
obs["observation.image"] = einops.rearrange(obs["observation.image"], "b h w c -> b c h w")
# apply same transforms as in training
if transform is not None:
for key in obs:
obs[key] = torch.stack([transform({key: item})[key] for item in obs[key]])
return obs
def postprocess_action(action, transform=None):
action = action.to("cpu")
# action is a batch (num_env,action_dim) instead of an item (action_dim),
# we assume applying inverse transform on a batch works the same
action = apply_inverse_transform({"action": action}, transform)["action"].numpy()
assert (
action.ndim == 2
), "we assume dimensions are respectively the number of parallel envs, action dimensions"
return action
def eval_policy(
env: gym.vector.VectorEnv,
policy,
@ -114,10 +86,10 @@ def eval_policy(
def maybe_render_frame(env):
if save_video: # noqa: B023
if return_first_video:
visu = env.envs[0].render()
visu = env.envs[0].render(mode="visualization")
visu = visu[None, ...] # add batch dim
else:
visu = np.stack([env.render() for env in env.envs])
visu = np.stack([env.render(mode="visualization") for env in env.envs])
ep_frames.append(visu) # noqa: B023
for _ in range(num_episodes):

23
poetry.lock generated
View File

@ -903,6 +903,26 @@ url = "git@github.com:huggingface/gym-pusht.git"
reference = "HEAD"
resolved_reference = "0fe4449cca5a2b08f529f7a07fbf5b9df24962ec"
[[package]]
name = "gym-xarm"
version = "0.1.0"
description = "A gym environment for xArm"
optional = true
python-versions = "^3.10"
files = []
develop = false
[package.dependencies]
gymnasium = "^0.29.1"
gymnasium-robotics = "^1.2.4"
mujoco = "^2.3.7"
[package.source]
type = "git"
url = "git@github.com:huggingface/gym-xarm.git"
reference = "HEAD"
resolved_reference = "2eb83fc4fc871b9d271c946d169e42f226ac3a7c"
[[package]]
name = "gymnasium"
version = "0.29.1"
@ -3695,8 +3715,9 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
[extras]
pusht = ["gym_pusht"]
xarm = ["gym_xarm"]
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "3eee17e4bf2b7a570f41ef9c400ec5a24a3113f62a13162229cf43504ca0d005"
content-hash = "c9524cdf000eaa755a2ab3be669118222b4f8b1c262013f103f6874cbd54eeb6"

View File

@ -53,9 +53,13 @@ gymnasium-robotics = "^1.2.4"
gymnasium = "^0.29.1"
cmake = "^3.29.0.1"
gym_pusht = { git = "git@github.com:huggingface/gym-pusht.git", optional = true}
gym_xarm = { git = "git@github.com:huggingface/gym-xarm.git", optional = true}
# gym_pusht = { path = "../gym-pusht", develop = true, optional = true}
# gym_xarm = { path = "../gym-xarm", develop = true, optional = true}
[tool.poetry.extras]
pusht = ["gym_pusht"]
xarm = ["gym_xarm"]
[tool.poetry.group.dev.dependencies]
pre-commit = "^3.6.2"

View File

@ -6,7 +6,7 @@
#SBATCH --time=2-00:00:00
#SBATCH --output=/home/rcadene/slurm/%j.out
#SBATCH --error=/home/rcadene/slurm/%j.err
#SBATCH --qos=medium
#SBATCH --qos=low
#SBATCH --mail-user=re.cadene@gmail.com
#SBATCH --mail-type=ALL
@ -20,4 +20,6 @@ source ~/.bashrc
#conda activate fowm
conda activate lerobot
export DATA_DIR="data"
srun $CMD

View File

@ -1,45 +1,47 @@
import pytest
from tensordict import TensorDict
import torch
from torchrl.envs.utils import check_env_specs, step_mdp
from lerobot.common.datasets.factory import make_dataset
import gymnasium as gym
from gymnasium.utils.env_checker import check_env
from lerobot.common.envs.aloha.env import AlohaEnv
from lerobot.common.envs.factory import make_env
from lerobot.common.envs.pusht.env import PushtEnv
from lerobot.common.envs.simxarm.env import SimxarmEnv
from lerobot.common.utils import init_hydra_config
from lerobot.common.envs.utils import preprocess_observation
# import dmc_aloha # noqa: F401
from .utils import DEVICE, DEFAULT_CONFIG_PATH
def print_spec_rollout(env):
print("observation_spec:", env.observation_spec)
print("action_spec:", env.action_spec)
print("reward_spec:", env.reward_spec)
print("done_spec:", env.done_spec)
# def print_spec_rollout(env):
# print("observation_spec:", env.observation_spec)
# print("action_spec:", env.action_spec)
# print("reward_spec:", env.reward_spec)
# print("done_spec:", env.done_spec)
td = env.reset()
print("reset tensordict", td)
# td = env.reset()
# print("reset tensordict", td)
td = env.rand_step(td)
print("random step tensordict", td)
# td = env.rand_step(td)
# print("random step tensordict", td)
def simple_rollout(steps=100):
# preallocate:
data = TensorDict({}, [steps])
# reset
_data = env.reset()
for i in range(steps):
_data["action"] = env.action_spec.rand()
_data = env.step(_data)
data[i] = _data
_data = step_mdp(_data, keep_other=True)
return data
# def simple_rollout(steps=100):
# # preallocate:
# data = TensorDict({}, [steps])
# # reset
# _data = env.reset()
# for i in range(steps):
# _data["action"] = env.action_spec.rand()
# _data = env.step(_data)
# data[i] = _data
# _data = step_mdp(_data, keep_other=True)
# return data
print("data from rollout:", simple_rollout(100))
# print("data from rollout:", simple_rollout(100))
@pytest.mark.skip("TODO")
@pytest.mark.parametrize(
"task,from_pixels,pixels_only",
[
@ -61,53 +63,41 @@ def test_aloha(task, from_pixels, pixels_only):
@pytest.mark.parametrize(
"task,from_pixels,pixels_only",
"env_task, obs_type",
[
("lift", False, False),
("lift", True, False),
("lift", True, True),
# TODO(aliberts): Add simxarm other tasks
# ("reach", False, False),
# ("reach", True, False),
# ("push", False, False),
# ("push", True, False),
# ("peg_in_box", False, False),
# ("peg_in_box", True, False),
("XarmLift-v0", "state"),
("XarmLift-v0", "pixels"),
("XarmLift-v0", "pixels_agent_pos"),
# TODO(aliberts): Add gym_xarm other tasks
],
)
def test_simxarm(task, from_pixels, pixels_only):
env = SimxarmEnv(
task,
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=84 if from_pixels else None,
)
# print_spec_rollout(env)
check_env_specs(env)
def test_xarm(env_task, obs_type):
import gym_xarm # noqa: F401
env = gym.make(f"gym_xarm/{env_task}", obs_type=obs_type)
check_env(env)
@pytest.mark.parametrize(
"from_pixels,pixels_only",
"env_task, obs_type",
[
(True, False),
("PushTPixels-v0", "state"),
("PushTPixels-v0", "pixels"),
("PushTPixels-v0", "pixels_agent_pos"),
],
)
def test_pusht(from_pixels, pixels_only):
env = PushtEnv(
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=96 if from_pixels else None,
)
# print_spec_rollout(env)
check_env_specs(env)
def test_pusht(env_task, obs_type):
import gym_pusht # noqa: F401
env = gym.make(f"gym_pusht/{env_task}", obs_type=obs_type)
check_env(env)
@pytest.mark.parametrize(
"env_name",
[
"simxarm",
"pusht",
"aloha",
"simxarm",
# "aloha",
],
)
def test_factory(env_name):
@ -119,15 +109,12 @@ def test_factory(env_name):
dataset = make_dataset(cfg)
env = make_env(cfg)
obs, info = env.reset()
obs = {key: obs[key][None, ...] for key in obs}
obs = preprocess_observation(obs, transform=dataset.transform)
for key in dataset.image_keys:
assert env.reset().get(key).dtype == torch.uint8
check_env_specs(env)
env = make_env(cfg, transform=dataset.transform)
for key in dataset.image_keys:
img = env.reset().get(key)
img = obs[key]
assert img.dtype == torch.float32
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert img.max() <= 1.0
assert img.min() >= 0.0
check_env_specs(env)