Move default paths, use jsonlines for tasks
This commit is contained in:
parent
bce3dc3bfa
commit
ac3798bd62
|
@ -13,6 +13,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
@ -27,6 +28,7 @@ from lerobot.common.datasets.compute_stats import aggregate_stats
|
|||
from lerobot.common.datasets.utils import (
|
||||
check_delta_timestamps,
|
||||
check_timestamps_sync,
|
||||
create_dataset_info,
|
||||
get_delta_indices,
|
||||
get_episode_data_index,
|
||||
get_hub_safe_version,
|
||||
|
@ -34,17 +36,12 @@ from lerobot.common.datasets.utils import (
|
|||
load_metadata,
|
||||
)
|
||||
from lerobot.common.datasets.video_utils import VideoFrame, decode_video_frames_torchvision
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
|
||||
# For maintainers, see lerobot/common/datasets/push_dataset_to_hub/CODEBASE_VERSION.md
|
||||
CODEBASE_VERSION = "v2.0"
|
||||
LEROBOT_HOME = Path(os.getenv("LEROBOT_HOME", "~/.cache/huggingface/lerobot")).expanduser()
|
||||
|
||||
DEFAULT_CHUNK_SIZE = 1000
|
||||
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
|
||||
DEFAULT_PARQUET_PATH = (
|
||||
"data/chunk-{episode_chunk:03d}/train-{episode_index:05d}-of-{total_episodes:05d}.parquet"
|
||||
)
|
||||
|
||||
|
||||
class LeRobotDataset(torch.utils.data.Dataset):
|
||||
def __init__(
|
||||
|
@ -400,6 +397,10 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||
|
||||
return item
|
||||
|
||||
def write_info(self) -> None:
|
||||
with open(self.root / "meta/info.json", "w") as f:
|
||||
json.dump(self.info, f, indent=4, ensure_ascii=False)
|
||||
|
||||
def __repr__(self):
|
||||
return (
|
||||
f"{self.__class__.__name__}(\n"
|
||||
|
@ -419,17 +420,22 @@ class LeRobotDataset(torch.utils.data.Dataset):
|
|||
def create(
|
||||
cls,
|
||||
repo_id: str,
|
||||
fps: int,
|
||||
robot: Robot,
|
||||
root: Path | None = None,
|
||||
image_transforms: Callable | None = None,
|
||||
delta_timestamps: dict[list[float]] | None = None,
|
||||
tolerance_s: float = 1e-4,
|
||||
video_backend: str | None = None,
|
||||
) -> "LeRobotDataset":
|
||||
"""Create a LeRobot Dataset from scratch in order to record data."""
|
||||
# create an empty object of type LeRobotDataset
|
||||
obj = cls.__new__(cls)
|
||||
obj.repo_id = repo_id
|
||||
obj.root = root if root is not None else LEROBOT_HOME / repo_id
|
||||
obj._version = CODEBASE_VERSION
|
||||
|
||||
obj.root.mkdir(exist_ok=True, parents=True)
|
||||
obj.info = create_dataset_info(obj._version, fps, robot)
|
||||
obj.write_info()
|
||||
obj.fps = fps
|
||||
|
||||
# obj.episodes = None
|
||||
# obj.image_transforms = None
|
||||
# obj.delta_timestamps = None
|
||||
|
|
|
@ -28,6 +28,13 @@ from huggingface_hub import DatasetCard, HfApi
|
|||
from PIL import Image as PILImage
|
||||
from torchvision import transforms
|
||||
|
||||
from lerobot.common.robot_devices.robots.utils import Robot
|
||||
|
||||
DEFAULT_CHUNK_SIZE = 1000 # Max number of episodes per chunk
|
||||
DEFAULT_VIDEO_PATH = "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4"
|
||||
DEFAULT_PARQUET_PATH = (
|
||||
"data/chunk-{episode_chunk:03d}/train-{episode_index:05d}-of-{total_episodes:05d}.parquet"
|
||||
)
|
||||
DATASET_CARD_TEMPLATE = """
|
||||
---
|
||||
# Metadata will go there
|
||||
|
@ -145,7 +152,7 @@ def load_hf_dataset(
|
|||
|
||||
def load_metadata(local_dir: Path) -> tuple[dict | list]:
|
||||
"""Loads metadata files from a dataset."""
|
||||
info_path = local_dir / "meta/info.json"
|
||||
info_path = local_dir / "meta/info.jsonl"
|
||||
episodes_path = local_dir / "meta/episodes.jsonl"
|
||||
stats_path = local_dir / "meta/stats.json"
|
||||
tasks_path = local_dir / "meta/tasks.json"
|
||||
|
@ -159,8 +166,8 @@ def load_metadata(local_dir: Path) -> tuple[dict | list]:
|
|||
with open(stats_path) as f:
|
||||
stats = json.load(f)
|
||||
|
||||
with open(tasks_path) as f:
|
||||
tasks = json.load(f)
|
||||
with jsonlines.open(tasks_path, "r") as reader:
|
||||
tasks = list(reader)
|
||||
|
||||
stats = {key: torch.tensor(value) for key, value in flatten_dict(stats).items()}
|
||||
stats = unflatten_dict(stats)
|
||||
|
@ -169,6 +176,28 @@ def load_metadata(local_dir: Path) -> tuple[dict | list]:
|
|||
return info, episode_dicts, stats, tasks
|
||||
|
||||
|
||||
def create_dataset_info(codebase_version: str, fps: int, robot: Robot) -> dict:
|
||||
return {
|
||||
"codebase_version": codebase_version,
|
||||
"data_path": DEFAULT_PARQUET_PATH,
|
||||
"robot_type": robot.robot_type,
|
||||
"total_episodes": 0,
|
||||
"total_frames": 0,
|
||||
"total_tasks": 0,
|
||||
"total_videos": 0,
|
||||
"total_chunks": 0,
|
||||
"chunks_size": DEFAULT_CHUNK_SIZE,
|
||||
"fps": fps,
|
||||
"splits": {},
|
||||
# "keys": keys,
|
||||
# "video_keys": video_keys,
|
||||
# "image_keys": image_keys,
|
||||
# "shapes": {**sequence_shapes, **video_shapes, **image_shapes},
|
||||
# "names": names,
|
||||
# "videos": {"videos_path": DEFAULT_VIDEO_PATH} if video_keys else None,
|
||||
}
|
||||
|
||||
|
||||
def get_episode_data_index(episodes: list, episode_dicts: list[dict]) -> dict[str, torch.Tensor]:
|
||||
episode_lengths = {ep_idx: ep_dict["length"] for ep_idx, ep_dict in enumerate(episode_dicts)}
|
||||
if episodes is not None:
|
||||
|
|
|
@ -120,12 +120,15 @@ from huggingface_hub.errors import EntryNotFoundError
|
|||
from PIL import Image
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from lerobot.common.datasets.lerobot_dataset import (
|
||||
from lerobot.common.datasets.utils import (
|
||||
DEFAULT_CHUNK_SIZE,
|
||||
DEFAULT_PARQUET_PATH,
|
||||
DEFAULT_VIDEO_PATH,
|
||||
create_branch,
|
||||
flatten_dict,
|
||||
get_hub_safe_version,
|
||||
unflatten_dict,
|
||||
)
|
||||
from lerobot.common.datasets.utils import create_branch, flatten_dict, get_hub_safe_version, unflatten_dict
|
||||
from lerobot.common.utils.utils import init_hydra_config
|
||||
from lerobot.scripts.push_dataset_to_hub import push_dataset_card_to_hub
|
||||
|
||||
|
@ -607,8 +610,8 @@ def convert_dataset(
|
|||
raise ValueError
|
||||
|
||||
assert set(tasks) == {task for ep_tasks in tasks_by_episodes.values() for task in ep_tasks}
|
||||
task_json = [{"task_index": task_idx, "task": task} for task_idx, task in enumerate(tasks)]
|
||||
write_json(task_json, v20_dir / "meta" / "tasks.json")
|
||||
tasks = [{"task_index": task_idx, "task": task} for task_idx, task in enumerate(tasks)]
|
||||
write_jsonlines(tasks, v20_dir / "meta" / "tasks.json")
|
||||
|
||||
# Shapes
|
||||
sequence_shapes = {key: dataset.features[key].length for key in keys["sequence"]}
|
||||
|
|
Loading…
Reference in New Issue